Optimization of discounted income for a structured population exposed to harvesting

Cover Page

Cite item

Full Text

Abstract

A structured population the individuals of which are divided into $n$ age or typical groups $x_1,\ldots,x_n$ is considered.
We assume that at any time moment $k,$ $k=0,1,2\ldots$ the size of the population $x(k)$  is determined by
the normal autonomous system of difference equations $x(k+1)=F\bigl(x(k)\bigr)$,
where $F(x)={\rm col}\bigl(f_1(x),\ldots,f_n(x)\bigr)$ are given vector functions with real non-negative components $f_i(x),$ $i=1,\ldots,n.$
We investigate the case when it is possible to influence the population size by means of harvesting.
The model of the exploited population under discussion has the form
x(k+1)=F((1-u(k) )x(k) ),
where $u(k)=\bigl(u_1(k),\dots,u_n(k)\bigr)\in[0,1]^n$ is a control vector, which can be varied to achieve the best result of harvesting the resource.
We assume that the cost of a conventional unit
of each of $n$ classes is constant and equals to $C_i\geqslant 0,$ $i=1,\ldots,n.$
To determine the cost of the resource obtained as the result of harvesting, the discounted income function is introduced into consideration. It has the form

Hα(u¯,x(0))=j=0 i=1n(Cixi(j)ui(j)e(-αj),

where $\alpha>0$ is the discount coefficient.
The problem of constructing controls on finite and infinite time intervals at which the discounted income from the extraction of a renewable resource reaches the maximal value is
solved. As a corollary, the results on the construction of the optimal harvesting mode for a homogeneous population are obtained (that is, for $n =1$).

About the authors

Anastasia V. Egorova

Vladimir State University named after Alexander and Nikolay Stoletovs

Author for correspondence.
Email: nastik.e@bk.ru
ORCID iD: 0000-0002-3930-0743

Post-Graduate Student, Functional Analysis and its Applications Department

Russian Federation, 87 Gorky St., Vladimir 600000, Russian Federation

References

  1. E.Ya. Frisman, M.P. Kulakov, O. L. Revutskaya, O. L. Zhdanova, G.P. Neverova, "The key approaches and review of current researches on dynamics of structured and interacting populations", Computer Research and Modeling, 11:1 (2019), 119-151 (In Russian).
  2. G.P. Neverova, A. I. Abakumov, E.Ya. Frisman, "Dynamic modes of exploited limited population: results of modeling and numerical study", Mathematical Biology and Bioinformatics, 11:1 (2016), 1-13 (In Russian).
  3. O. L. Revutskaya, E.Ya. Frisman, "In uence of stationary harvesting on development of a two-age population scenario", Informatika i Sistemy Upravleniya, 53:3 (2017), 36-48 (In Russian).
  4. L. I. Rodina, "About one stochastic harvesting model of a renewed resourse", Tambov University Reports. Series: Natural and Technical Sciences, 23:124 (2018), 685-695 (In Russian).
  5. L. I. Rodina, "Properties of average time prot in stochastic models of harvesting a renewable resource", Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:2 (2018), 213-221 (In Russian).
  6. L. G. Hansen, F. Jensen, "Regulating sheries under uncertainty", Resource and Energy Economics, 50 (2017), 164-177.
  7. A. O. Belyakov, A. A. Davydov, "Eficiency Optimization for the Cyclic Use of a Renewable Resource", Proceedings of the Steklov Institute of Mathematics, 299:suppl. 1 (2017), 14-21.
  8. M. I. Zelikin, L. V. Lokutsievskiy, S. V. Skopincev, "On optimal harvesting of a resource on a circle", Mathematical Notes, 102:4 (2017), 521-532 (In Russian).
  9. A. O. Belyakov, V. M. Veliov, "On optimal harvesting in age-structured populations", Dynamic Perspectives on Managerial Decision Making, 2016, 149-166.
  10. A. V. Egorova,L. I. Rodina, "On optimal harvesting of renewable resource from the structured population", Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 29:4 (2019), 501-517 (In Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».