Some questions connected with implementation of attraction sets accurate to a predetermined neighborhood

Cover Page

Cite item

Full Text

Abstract

Questions connected with implementation of attraction sets (AS) in attainability problem with constraints of asymptotic nature (CAN) are considered. It is investigated the possibility of AS implementation accurate to arbitrary neighborhood in class of closures of attainability sets corresponding to concrete sets from the family generating CAN. Moreover, some relations for AS generated by different CAN are considered (disjunction conditions of AS are investigated). General constructions of neighborhood implementation of AS were applied in the case when these AS were considered in the space of ultrafilters of broadly understood measurable space (MS). In particular, the case when CAN are defined by a filter was investigated in detail; for this case, under non-restrictive conditions on the original MS, the set of ultrafilters majorizing the original filter is implemented as AS. In this case (of ultrafilter space) variants of equipment of ultrafilter set with topologies of Stone and Wallman types are investigated separately.

Full Text

Введение

Настоящая статья продолжает исследование [1]. Основным предметом настоящего исследования являются множества притяжения (МП) в задачах о достижимости в топологических пространствах (ТП) с ограничениями асимптотического характера (ОАХ). Упомянутые ОАХ могут возникать при последовательном ослаблении стандартных ограничений (неравенства MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  в задачах математического программирования; краевые и промежуточные условия, фазовые ограничения MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  в задачах управления), но могут задаваться и изначально (см., в частности, [2, 3]). Так или иначе возникает непустое семейство множеств в пространстве обычных (доступных для непосредственного применения) решений, которое без потери общности можно считать направленным (двойственно к упорядоченности по включению). Предполагая, что каждому обычному решению (или управлению) сопоставляется точка топологического пространства (ТП), мы имеем некоторое целевое отображение (ЦО). Образы множеств с точками в виде обычных решений (управлений) при действии ЦО можно трактовать как аналоги областей достижимости (ОД) в задачах управления (см. в этой связи [4-6]). Известно, что ослабление стандартных ограничений в задачах управления зачастую приводит к скачкообразному расширению ОД. Возникающее при этом предельное множество, отвечающее семейству ОД при ослабленных условиях, является МП, реализуемым (в задачах об исследовании ОД управляемой системы с конечномерным фазовым пространством) в обычной секвенциальной форме, что соответствует идейно конструкциям на основе приближенных решений Дж. Варги (см. [7, гл. III]) в задачах оптимизации и, в частности, в задачах оптимального управления. Однако подход, связанный с построением МП в задачах о достижимости с ОАХ, является намного более общим; он охватывает, в частности, и уже упоминавшиеся случаи, когда ОАХ не связаны с ослаблением каких-либо стандартных ограничений. С другой стороны, в рамках данного подхода, базирующегося на конструкциях общей топологии, неестественным является и исключительно секвенциальный вариант реализации элементов МП; здесь уже имеет смысл использовать направленности и фильтры в качестве аналогов приближенных решений Дж. Варги. Отметим, что при таком (расширенном) определении МП удается охватить и некоторые, далекие на первый взгляд от ОД управляемых систем, объекты. Так, в [1] указан вариант МП в пространстве ультрафильтров (у/ф) широко понимаемого измеримого пространства (ИП): имеется в виду «совокупность» у/ф, мажорирующих наперед заданный фильтр.

Вместе с тем следует отметить, что МП являются по самому смыслу обобщенными пределами некоторых «настоящих» достижимых множеств (ДМ) (в задачах управления таковыми следует признать замыкания обычных ОД; замыкание здесь выступает в роли несущественной «технической» операции, не связанной с ослаблением стандартных ограничений исходной задачи). Упомянутые ДМ отвечают всякий раз стандартному ограничению на выбор обычного решения (управления) в виде множества из семейства, порождающего ОАХ; при этом соответствующее МП является п/м каждого такого ДМ. Вполне естественным является вопрос о реализации МП в классе ДМ, соответствующих семейству, порождающему ОАХ, с точностью до любой наперед выбранной окрестности исходного МП (т. е. о реализации уже не только в пределе). В этой связи отметим построения [8, 3.6], естественное развитие которых осуществляется в настоящей работе. В частности, мы рассматриваем, продолжая [1] , данные построения в пространстве у/ф при оснащении топологиями стоуновского и волмэновского типов.

В связи с общими вопросами построения расширений задач о достижимости с ОАХ отметим, что здесь вполне применимы методы, использовавшиеся в случае экстремальных задач и, в частности, задач оптимального управления. Особо отметим подход Дж. Варги (см. [7, гл. III,IV]); в частности, напомним понятия точных, приближенных и обобщенных решений в [7, гл. III]. Отметим исследования Р. В. Гамкрелидзе, касающиеся применения управлений-мер (мерозначных функций) в задачах оптимального управления и, в частности, в задаче быстродействия (см. [9]).

В задачах теории дифференциальных игр Н. Н. Красовский и А. И. Субботин широко использовали конструкции решения с приближенным соблюдением фазовых ограничений в виде сечений стабильных мостов, что позволило установить фундаментальную теорему об альтернативе (см.[10, 11]). Кроме того, в их работах использовались управления-меры на этапе построения программных конструкций для решения нелинейных дифференциальных игр (см.[11]). Отметим в этом направлении также монографию [12] и серию журнальных публикаций в связи с методом программных итераций, где применялись управления-меры.

Для построения расширений в задачах импульсного управления Н. Н. Красовскийпредложил использовать аппарат обобщенных функций (см. [4, гл. 4, 14]), что впоследствии стало основой в конструкциях импульсного управления. Для линейных систем управления с ограничениями импульсного и моментного характера и разрывностью в коэффициентах при управляющих воздействиях (в [2, 3, 8, 13, 14] и ряде других работ) использовались процедуры расширения в классе конечно-аддитивных мер как в случае экстремальных задач, так и в случае задач о достижимости, где с их помощью определялись МП в классе обобщенных управлений. Этот подход получил естественное развитие в виде конструкций, использующих у/ф широко понимаемых ИП (см. [1, 15, 16]).

1. Основные понятия

В статье используется стандартная теоретико-множественная символика (кванторы, связки и др.); MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyybIymaaa@3980@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  пустое множество, = Δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbiaeaaca aI9aaaleqabaGaeyiLdqeaaaaa@3A7E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  равенство по определению, def MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeizaiaabw gacaqGMbaaaa@3ABF@  заменяет фразу «по определению». Семейством называем множество, все элементы которого MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  множества. Принимаем аксиому выбора. Если x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@3904@  и y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@3905@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  объекты, то {x;y} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadI hacaaI7aGaamyEaiaai2haaaa@3CD3@  есть def MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeizaiaabw gacaqGMbaaaa@3ABF@  непустое множество, содержащее x, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaaiY caaaa@39BA@   y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@3905@  и не содержащее никаких других элементов. Тогда каждому объекту z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaaaa@3906@  сопоставляется синглетон {z} = Δ {z;z}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadQ hacaaI9bWaaCbiaeaacaaI9aaaleqabaGaeyiLdqeaaOGaaG4Eaiaa dQhacaaI7aGaamOEaiaai2hacaaISaaaaa@4318@  содержащий z:z{z}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaiaaiQ dacaWG6bGaeyicI4SaaG4EaiaadQhacaaI9bGaaGOlaaaa@4010@  Множества MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  объекты и, следуя [17, с. 67], полагаем для объектов u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@3901@  и v, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaaiY caaaa@39B8@  что (u,v) = Δ {{u};{u;v}}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw hacaaISaGaamODaiaaiMcadaWfGaqaaiaai2daaSqabeaacqGHuoar aaGccaaI7bGaaG4EaiaadwhacaaI9bGaaG4oaiaaiUhacaWG1bGaaG 4oaiaadAhacaaI9bGaaGyFaiaaiYcaaaa@49EB@  получая упорядоченную пару (УП) с первым элементом u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@3901@  и вторым элементом v. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaai6 caaaa@39BA@  Для каждой УП h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaaaa@38F4@  через pr 1 (h) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiCaiaabk hadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiAaiaaiMcaaaa@3D32@  и pr 2 (h) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiCaiaabk hadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiAaiaaiMcaaaa@3D33@  обозначаем первый и второй элементы h, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiY caaaa@39AA@  однозначно определяемые условием h=( pr 1 (h), pr 2 (h)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaai2 dacaaIOaGaaeiCaiaabkhadaWgaaWcbaGaaGymaaqabaGccaaIOaGa amiAaiaaiMcacaaISaGaaeiCaiaabkhadaWgaaWcbaGaaGOmaaqaba GccaaIOaGaamiAaiaaiMcacaaIPaGaaGOlaaaa@46E5@

Множеству H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaaaa@38D4@  сопоставляем семейство P(H) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFpepucaaIOaGaamis aiaaiMcaaaa@4598@  всех подмножеств (п/м) H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaaaa@38D4@  и P'(H) = Δ P(H)\{} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFpepucaaINaGaaGik aiaadIeacaaIPaWaaCbiaeaacaaI9aaaleqabaGaeyiLdqeaaOGae8 3dXdLaaGikaiaadIeacaaIPaGaaiixaiaaiUhacqGHfiIXcaaI9baa aa@5136@  (семейство всех непустых п/м H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaaaa@38D4@  ); Fin(H) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOraiaabM gacaqGUbGaaGikaiaadIeacaaIPaaaaa@3CDF@  есть def MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeizaiaabw gacaqGMbaaaa@3ABF@  семейство всех конечных множеств из P'(H). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFpepucaaINaGaaGik aiaadIeacaaIPaGaaGOlaaaa@4701@  В качестве H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaaaa@38D4@  может использоваться семейство. Множеству M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFmcFtaaa@43F8@  и (непустому) семейству MP'(P(M)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFZestcqGHiiIZcqWF pepucaaINaGaaGikaiab=9q8qjaaiIcatuuDJXwAK1uy0HMmaeXbfv 3ySLgzG0uy0HgiuD3BaGGbaiab+Xi8njaaiMcacaaIPaaaaa@5752@  сопоставляем семейство

C M [M] = Δ {M\M:MM}P'(P(M)), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4qamaaBa aaleaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab =Xi8nbqabaGccaaIBbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDOb YtUvgaiyaacqGFZestcaaIDbWaaCbiaeaacaaI9aaaleqabaGaeyiL dqeaaOGaaG4EaiaaysW7cqWFmcFtcaGGCbGaamytaiaaiQdacaaMe8 UaamytaiabgIGiolab+ntinjaai2hacqGHiiIZcqGFpepucaaINaGa aGikaiab+9q8qjaaiIcacqWFmcFtcaaIPaGaaGykaiaaiYcaaaa@6D08@ (1.1)

двойственное к M. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFZestcaaIUaaaaa@436F@  Если A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqaaa@4348@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  непустое семейство и B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaaaa@38CE@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  множество, то

A | B = Δ {AB:AA}P'(P(B)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaI8bWaaSba aSqaaiaadkeaaeqaaOWaaCbiaeaacaaI9aaaleqabaGaeyiLdqeaaO GaaG4EaiaaysW7caWGbbGaeyykICSaamOqaiaaiQdacaaMe8Uaamyq aiabgIGiolab=bq8bjaai2hacqGHiiIZcqWFpepucaaINaGaaGikai ab=9q8qjaaiIcacaWGcbGaaGykaiaaiMcaaaa@5E52@ (1.2)

есть след A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqaaa@4348@  на B. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaai6 caaaa@3986@  Используем (1.1), (1.2) в конструкциях, связанных с топологией. Если H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFlecsaaa@428A@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  семейство и S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaaaa@38DF@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  множество, то

([H](S) = Δ {HH|SH}P(H))&(]H[(S) = Δ {HH|HS}P(H)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaiU fatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=Tqi ijaai2facaaIOaGaam4uaiaaiMcadaWfGaqaaiaai2daaSqabeaacq GHuoaraaGccaaI7bGaamisaiabgIGiolab=TqiijaacYhacaWGtbGa eyOGIWSaamisaiaai2hacqGHiiIZcqWFpepucaaIOaGae83cHGKaaG ykaiaaiMcacaaIMaGaaGikaiaai2facaaMi8Uae83cHGKaaGjcVlaa iUfacaaMi8UaaGikaiaadofacaaIPaWaaCbiaeaacaaI9aaaleqaba GaeyiLdqeaaOGaaG4EaiaadIeacqGHiiIZcqWFlecscaGG8bGaamis aiabgkOimlaadofacaaI9bGaeyicI4Sae83dXdLaaGikaiab=Tqiij aaiMcacaaIPaGaaGOlaaaa@78D8@

Наконец, множеству X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFxcpwaaa@440E@  и (непустому) семейству XP'(P(X)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFxepwcqGHiiIZcqWF pepucaaINaGaaGikaiab=9q8qjaaiIcatuuDJXwAK1uy0HMmaeXbfv 3ySLgzG0uy0HgiuD3BaGGbaiab+Dj8yjaaiMcacaaIPaaaaa@5827@  сопоставляем семейство

(COV)[X|X] = Δ {χP'(X)|X= Xχ X}P(P'(X)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaabo eacaqGpbGaaeOvaiaaiMcacaaIBbWefv3ySLgznfgDOjdaryqr1ngB PrginfgDObcv39gaiuaacqWFxcpwcaGG8bWefv3ySLgznfgDOfdarC qr1ngBPrginfgDObYtUvgaiyaacqGFxepwcaaIDbWaaCbiaeaacaaI 9aaaleqabaGaeyiLdqeaaOGaaG4EaiabeE8aJjabgIGiolab+9q8qj aaiEcacaaIOaGae43fXJLaaGykaiaacYhacqWFxcpwcaaI9aWaambu aeqaleaacaWGybGaeyicI4Saeq4XdmgabeqdcqWIQisvaOGaamiwai aai2hacqGHiiIZcqGFpepucaaIOaGae43dXdLaaG4jaiaaiIcacqGF xepwcaaIPaGaaGykaaaa@7920@

всех покрытий X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFxcpwaaa@440E@  множествами из X. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFxepwcaaIUaaaaa@442E@  Если P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaaaa@38DC@  и Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaaaa@38DD@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  множества, то Q P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaCa aaleqabaGaamiuaaaaaaa@39DF@  есть def MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeizaiaabw gacaqGMbaaaa@3ABF@  множество всех функций из P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaaaa@38DC@  в Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaaaa@38DD@  (при f Q P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI GiolaadgfadaahaaWcbeqaaiaadcfaaaaaaa@3C4E@  и xP MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI Giolaadcfaaaa@3B5D@  в виде f(x)Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiabgIGiolaadgfaaaa@3DAE@  имеем значение функции f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa@38F2@  в точке x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@3904@  ); при g Q P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgI GiolaadgfadaahaaWcbeqaaiaadcfaaaaaaa@3C4F@  и CP(P) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae83d XdLaaGikaiaadcfacaaIPaaaaa@47EC@  в виде g 1 (C) = Δ {g(x):xC}P(Q) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaCa aaleqabaGaaGymaaaakiaaiIcacaWGdbGaaGykamaaxacabaGaaGyp aaWcbeqaaiabgs5aebaakiaaiUhacaWGNbGaaGikaiaadIhacaaIPa GaaGOoaiaadIhacqGHiiIZcaWGdbGaaGyFaiabgIGioprr1ngBPrwt HrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae83dXdLaaGikaiaadg facaaIPaaaaa@5718@  имеем образ C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaaaa@38CF@  при действии g MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@38F3@  (для прообраза множества MP(Q) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae83d XdLaaGikaiaadgfacaaIPaaaaa@47F7@  при действии g MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@38F3@  используем стандартное обозначение g 1 (M) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaCa aaleqabaGaeyOeI0IaaGymaaaakiaaiIcacaWGnbGaaGykaaaa@3D09@  ). Если A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFacFqaaa@43E0@  и B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFbcVqaaa@43E2@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  непустые множества и f B A , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xG Wl0aaWbaaSqabeaacqWFacFqaaGccaaISaaaaa@4974@  то

( f 1 [A] = Δ { f 1 (A):AA}P'(P(B))AP'(P(A))) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadA gadaahaaWcbeqaaiaaigdaaaGccaaIBbWefv3ySLgznfgDOfdaryqr 1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaIDbWaaCbiaeaacaaI9a aaleqabaGaeyiLdqeaaOGaaG4EaiaadAgadaahaaWcbeqaaiaaigda aaGccaaIOaGaamyqaiaaiMcacaaI6aGaamyqaiabgIGiolab=bq8bj aai2hacqGHiiIZcqWFpepucaaINaGaaGikaiab=9q8qjaaiIcatuuD JXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+fi8cjaaiM cacaaIPaGaaGjbVlaaysW7cqGHaiIicqWFaeFqcqGHiiIZcqWFpepu caaINaGaaGikaiab=9q8qjaaiIcacqGFacFqcaaIPaGaaGykaiaaiM caaaa@7AB4@ (1.3)

&( f 1 [B] = Δ { f 1 (B):BB}P'(P(A))BP'(P(B))); MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOjaiaaiI cacaWGMbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaG4wamrr1ngB PrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8hlHiKaaGyxam aaxacabaGaaGypaaWcbeqaaiabgs5aebaakiaaiUhacaWGMbWaaWba aSqabeaacqGHsislcaaIXaaaaOGaaGikaiaadkeacaaIPaGaaGOoai aadkeacqGHiiIZcqWFSeIqcaaI9bGaeyicI4Sae83dXdLaaG4jaiaa iIcacqWFpepucaaIOaWefv3ySLgznfgDOjdarCqr1ngBPrginfgDOb cv39gaiyaacqGFacFqcaaIPaGaaGykaiaaysW7caaMe8UaeyiaIiIa e8hlHiKaeyicI4Sae83dXdLaaG4jaiaaiIcacqWFpepucaaIOaGae4 xGWlKaaGykaiaaiMcacaaIPaGaaG4oaaaa@7C1C@

семейства, определяемые в (1.3), называем образом и прообразом соответствующих подсемейств P(A) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFpepucaaIOaWefv3y SLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiyaacqGFacFqcaaIPa aaaa@50A5@  и P(B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFpepucaaIOaWefv3y SLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiyaacqGFbcVqcaaIPa aaaa@50A7@  соответственно.

Через MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIuaaa@42BF@  обозначаем вещественную прямую, = Δ {1;2;}P'() MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFveItdaWfGaqaaiaa i2daaSqabeaacqGHuoaraaGccaaI7bGaaGymaiaaiUdacaaIYaGaaG 4oaiablAciljaai2hacqGHiiIZtuuDJXwAK1uy0HwmaeXbfv3ySLgz G0uy0Hgip5wzaGGbaiab+9q8qjaaiEcacaaIOaGae8xhHiLaaGykaa aa@5B72@  и

1,n ¯ = Δ {k|kn}P'()n. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca aIXaGaaGilaiaad6gaaaWaaCbiaeaacaaI9aaaleqabaGaeyiLdqea aOGaaG4EaiaadUgacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGqbaiab=vriojaacYhacaWGRbGae8xFQqOaamOBaiaa i2hacqGHiiIZtuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaG Gbaiab+9q8qjaaiEcacaaIOaGae8xfH4KaaGykaiaaysW7caaMe8Ua eyiaIiIaamOBaiabgIGiolab=vriojaai6caaaa@68E1@

Мы полагаем, что элементы , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFveItcaaISaaaaa@4369@  т. е. натуральные числа, множествами не являются. С учетом этого для каждых множества H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaaaa@38D4@  и числа n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xf H4eaaa@452A@  вместо H 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaCa aaleqabaWaa0aaaeaacaaIXaGaaGilaiaad6gaaaaaaaaa@3B76@  используем более традиционное обозначение H n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaCa aaleqabaGaamOBaaaaaaa@39F4@  для множества всех отображений из 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca aIXaGaaGilaiaad6gaaaaaaa@3A7C@  в H, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiY caaaa@398A@  именуемых далее кортежами («длины» n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@38FA@  ). В дальнейшем используем индексную форму записи функций (см. [18, с. 20,21]) и, в частности, кортежей.

Специальные семейства. Фиксируем до конца настоящего раздела множество I. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaai6 caaaa@398D@  В виде

π[I] = Δ {IP'(P(I))|(I)&(II)&(ABIAIBI)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG 4waiaadMeacaaIDbWaaCbiaeaacaaI9aaaleqabaGaeyiLdqeaaOGa aG4Eamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8 heHKKaeyicI4Sae83dXdLaaG4jaiaaiIcacqWFpepucaaIOaGaamys aiaaiMcacaaIPaGaaiiFaiaaiIcacqGHfiIXcqGHiiIZcqWFqessca aIPaGaaGOjaiaaiIcacaWGjbGaeyicI4Sae8heHKKaaGykaiaaiAca caaIOaGaamyqaiabgMIihlaadkeacqGHiiIZcqWFqesscaaMe8UaaG jbVlabgcGiIiaadgeacqGHiiIZcqWFqesscaaMe8UaaGjbVlabgcGi IiaadkeacqGHiiIZcqWFqesscaaIPaGaaGyFaaaa@76DC@ (1.4)

имеем семейство всех π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdahaaa@39C4@  -систем [19, с. 14] п/м I MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaaaa@38D5@  с «нулем» и «единицей». Среди всевозможных π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdahaaa@39C4@  -систем из семейства (1.4) выделяем отделимые:

π ˜ 0 [I] = Δ {Iπ[I]|LIxI\LΛI:(xΛ)&(ΛL=)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiWdaNbaG aadaahaaWcbeqaaiaaicdaaaGccaaIBbGaamysaiaai2fadaWfGaqa aiaai2daaSqabeaacqGHuoaraaGccaaI7bGaaGjbVprr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8heHKKaeyicI4SaeqiW daNaaG4waiaadMeacaaIDbGaaiiFaiabgcGiIiaadYeacqGHiiIZcq WFqesscaaMe8UaeyiaIiIaamiEaiabgIGiolaadMeacaGGCbGaamit aiaaysW7cqGHdicjcqqHBoatcqGHiiIZcqWFqesscaaI6aGaaGjbVl aaiIcacaWG4bGaeyicI4Saeu4MdWKaaGykaiaaiAcacaaIOaGaeu4M dWKaeyykICSaamitaiaai2dacqGHfiIXcaaIPaGaaGyFaaaa@769C@

есть семейство всех отделимых π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdahaaa@39C4@  -систем из (1.4). В качестве примера π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdahaaa@39C4@  -системы отметим полуалгебру множеств (см. [20, гл. I]). При этом Lπ[I]AP(I)n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiYefv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcqGH iiIZcqaHapaCcaaIBbGaamysaiaai2facaaMe8UaaGjbVlabgcGiIi aadgeacqGHiiIZcqWFpepucaaIOaGaamysaiaaiMcacaaMe8UaaGjb VlabgcGiIiaad6gacqGHiiIZtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0 uy0HgiuD3BaGGbaiab+vriobaa@648A@  

Δ n (A,L) = Δ { ( L i ) i 1,n ¯ L n |(A= i=1 n L i )&( L p L q =p 1,n ¯ q 1,n ¯ \{p})} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaS baaSqaaiaad6gaaeqaaOGaaGikaiaadgeacaaISaWefv3ySLgznfgD Ofdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcaaIPaWaaCbiae aacaaI9aaaleqabaGaeyiLdqeaaOGaaG4EaiaaysW7caaIOaGaamit amaaBaaaleaacaWGPbaabeaakiaaiMcadaWgaaWcbaGaamyAaiabgI GiopaanaaabaGaaGymaiaaiYcacaWGUbaaaaqabaGccqGHiiIZcqWF sectdaahaaWcbeqaaiaad6gaaaGccaGG8bGaaGjbVlaaiIcacaWGbb GaaGypamaatahabeWcbaGaamyAaiaai2dacaaIXaaabaGaamOBaaqd cqWIQisvaOGaamitamaaBaaaleaacaWGPbaabeaakiaaiMcacaaIMa GaaGikaiaadYeadaWgaaWcbaGaamiCaaqabaGccqGHPiYXcaWGmbWa aSbaaSqaaiaadghaaeqaaOGaaGypaiabgwGiglaaysW7caaMe8Uaey iaIiIaamiCaiabgIGiopaanaaabaGaaGymaiaaiYcacaWGUbaaaiaa ysW7caaMe8UaeyiaIiIaamyCaiabgIGiopaanaaabaGaaGymaiaaiY cacaWGUbaaaiaacYfacaaI7bGaamiCaiaai2hacaaIPaGaaGyFaaaa @867B@

(введены упорядоченные конечные разбиения A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaaaa@38CD@  множествами π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdahaaa@39C4@  -системы L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectaaa@4295@  ). Тогда

Π[I] = Δ {Iπ[I]|JIn: Δ n (I\J,I)}P'( π ˜ 0 [I]) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOdaLaaG 4waiaadMeacaaIDbWaaCbiaeaacaaI9aaaleqabaGaeyiLdqeaaOGa aG4Eamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8 heHKKaeyicI4SaeqiWdaNaaG4waiaadMeacaaIDbGaaGiFaiaaysW7 cqGHaiIicaWGkbGaeyicI4Sae8heHKKaaGjbVlabgoGiKiaad6gacq GHiiIZtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab +vriojaaiQdacaaMe8UaeuiLdq0aaSbaaSqaaiaad6gaaeqaaOGaaG ikaiaadMeacaGGCbGaamOsaiaaiYcacqWFqesscaaIPaGaeyiyIKRa eyybIySaaGyFaiabgIGiolab=9q8qjaaiEcacaaIOaGafqiWdaNbaG aadaahaaWcbeqaaiaaicdaaaGccaaIBbGaamysaiaai2facaaIPaaa aa@7FC8@ (1.5)

(заметим, что P(I)Π[I] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFpepucaaIOaGaamys aiaaiMcacqGHiiIZcqqHGoaucaaIBbGaamysaiaai2faaaa@4B35@  ). Итак, при IΠ[I] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFqesscqGHiiIZcqqH GoaucaaIBbGaamysaiaai2faaaa@482C@  мы имеем вариант отделимой π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdahaaa@39C4@  -системы; заметим, что (I,I) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadM eacaaISaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa cqWFqesscaaIPaaaaa@4579@  есть в этом случае измеримое пространство (ИП) с полуалгеброй множеств (алгебры и σ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdmhaaa@39CA@  -алгебры п/м I MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaaaa@38D5@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  суть частные случаи полуалгебр). Вообще, при Iπ[I] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFqesscqGHiiIZcqaH apaCcaaIBbGaamysaiaai2faaaa@486B@  мы рассматриваем (I,I) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadM eacaaISaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa cqWFqesscaaIPaaaaa@4579@  как широко понимаемое ИП; отметим. что в этом случае в виде

(Cen)[I] = Δ {ZP'(I)| ZK ZKFin(Z)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaabo eacaqGLbGaaeOBaiaaiMcacaaIBbWefv3ySLgznfgDOfdaryqr1ngB PrginfgDObYtUvgaiuaacqWFqesscaaIDbWaaCbiaeaacaaI9aaale qabaGaeyiLdqeaaOGaaG4Eaiab=Lr8AjabgIGiolab=9q8qjaaiEca caaIOaGae8heHKKaaGykaiaacYhadaafqbqabSqaaiaadQfacqGHii IZcqWFke=saeqaniablMIijbGccaWGAbGaeyiyIKRaeyybIySaaGjb VlaaysW7cqGHaiIicqWFke=scqGHiiIZcaqGgbGaaeyAaiaab6gaca aIOaGae8xgXRLaaGykaiaai2haaaa@6D71@

реализуется семейство всех непустых центрированных подсемейств I. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFqesscaaIUaaaaa@4348@

2. Элементы топологии

В настоящем разделе мы сосредоточимся на некоторых представлениях топологических пространств (ТП), так или иначе связанных с вопросами отделимости и свойствами окрестностей. Однако, сначала введем ряд общих обозначений, фиксируя до тех пор, пока не будет оговорено противное, множество I; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaaiU daaaa@399A@  тогда в виде

(top)[I] = Δ {τπ[I]| GG GτGP'(τ)}={τπ[I]| GG GτGP(τ)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaabs hacaqGVbGaaeiCaiaaiMcacaaIBbGaamysaiaai2fadaWfGaqaaiaa i2daaSqabeaacqGHuoaraaGccaaI7bGaeqiXdqNaeyicI4SaeqiWda NaaG4waiaadMeacaaIDbGaaiiFaiaaysW7daWeqbqabSqaaiaadEea cqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbai ab=zq8hbqab0GaeSOkIufakiaadEeacqGHiiIZcqaHepaDcaaMe8Ua eyiaIiIae8NbXFKaeyicI4Sae83dXdLaaG4jaiaaiIcacqaHepaDca aIPaGaaGyFaiaai2dacaaI7bGaeqiXdqNaeyicI4SaeqiWdaNaaG4w aiaadMeacaaIDbGaaiiFaiaaysW7daWeqbqabSqaaiaadEeacqGHii IZcqWFge=raeqaniablQIivbGccaWGhbGaeyicI4SaeqiXdqNaaGjb VlabgcGiIiab=zq8hjabgIGiolab=9q8qjaaiIcacqaHepaDcaaIPa GaaGyFaaaa@8DEB@

имеем семейство всех топологий на множестве I. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaai6 caaaa@398D@  При τ(top)[I] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaey icI4SaaGikaiaabshacaqGVbGaaeiCaiaaiMcacaaIBbGaamysaiaa i2faaaa@422B@  в виде (I,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadM eacaaISaGaeqiXdqNaaGykaaaa@3CB5@  имеем ТП, а в виде C I [τ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4qamaaBa aaleaacaWGjbaabeaakiaaiUfacqaHepaDcaaIDbaaaa@3D68@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  семейство всех замкнутых в (I,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadM eacaaISaGaeqiXdqNaaGykaaaa@3CB5@  п/м I; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaaiU daaaa@399A@  при xI MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaadMeaaaa@3B56@  полагаем, что N τ 0 (x) = Δ {Gτ|xG} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaDa aaleaacqaHepaDaeaacaaIWaaaaOGaaGikaiaadIhacaaIPaWaaCbi aeaacaaI9aaaleqabaGaeyiLdqeaaOGaaG4EaiaadEeacqGHiiIZcq aHepaDcaGG8bGaamiEaiabgIGiolaadEeacaaI9baaaa@4AE1@  и

N τ (x) = Δ {HP(I)|G N τ 0 (x):GH}={HP(I)|] N τ 0 (x)[(H)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacqaHepaDaeqaaOGaaGikaiaadIhacaaIPaWaaCbiaeaacaaI 9aaaleqabaGaeyiLdqeaaOGaaG4EaiaadIeacqGHiiIZtuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=9q8qjaaiIcacaWG jbGaaGykaiaacYhacqGHdicjcaWGhbGaeyicI4SaamOtamaaDaaale aacqaHepaDaeaacaaIWaaaaOGaaGikaiaadIhacaaIPaGaaGOoaiaa dEeacqGHckcZcaWGibGaaGyFaiaai2dacaaI7bGaamisaiabgIGiol ab=9q8qjaaiIcacaWGjbGaaGykaiaacYhacaaMi8UaaGyxaiaayIW7 caWGobWaa0baaSqaaiabes8a0bqaaiaaicdaaaGccaaIOaGaamiEai aaiMcacaaMi8UaaG4waiaayIW7caaIOaGaamisaiaaiMcacqGHGjsU cqGHfiIXcaaI9baaaa@7DA9@ (2.1)

 (фильтр [21, гл. I] окрестностей x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@3904@  в ТП (I,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadM eacaaISaGaeqiXdqNaaGykaaaa@3CB5@  ), N τ 0 (x)=τ N τ (x). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaDa aaleaacqaHepaDaeaacaaIWaaaaOGaaGikaiaadIhacaaIPaGaaGyp aiabes8a0jabgMIihlaad6eadaWgaaWcbaGaeqiXdqhabeaakiaaiI cacaWG4bGaaGykaiaai6caaaa@4804@  По аналогии с (2.1) вводим окрестности множеств: если τ(top)[I] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaey icI4SaaGikaiaabshacaqGVbGaaeiCaiaaiMcacaaIBbGaamysaiaa i2faaaa@422B@  и AP(I), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae83d XdLaaGikaiaadMeacaaIPaGaaGilaaaa@4899@  то N τ 0 [A] = Δ {Gτ|AG} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOtamaaDa aaleaacqaHepaDaeaacaaIWaaaaOGaaG4waiaadgeacaaIDbWaaCbi aeaacaaI9aaaleqabaGaeyiLdqeaaOGaaG4EaiaadEeacqGHiiIZcq aHepaDcaGG8bGaamyqaiabgkOimlaadEeacaaI9baaaa@4B56@  и

N τ [A] = Δ {HP(I)|G N τ 0 [A]:GH}={HP(I)|] N τ 0 [A][(H)}; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOtamaaBa aaleaacqaHepaDaeqaaOGaaG4waiaadgeacaaIDbWaaCbiaeaacaaI 9aaaleqabaGaeyiLdqeaaOGaaG4EaiaadIeacqGHiiIZtuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=9q8qjaaiIcacaWG jbGaaGykaiaacYhacqGHdicjcaWGhbGaeyicI4SaaCOtamaaDaaale aacqaHepaDaeaacaaIWaaaaOGaaG4waiaadgeacaaIDbGaaGOoaiaa dEeacqGHckcZcaWGibGaaGyFaiaai2dacaaI7bGaamisaiabgIGiol ab=9q8qjaaiIcacaWGjbGaaGykaiaacYhacaaMi8UaaGyxaiaayIW7 caWHobWaa0baaSqaaiabes8a0bqaaiaaicdaaaGccaaIBbGaamyqai aai2facaaMi8UaaG4waiaayIW7caaIOaGaamisaiaaiMcacqGHGjsU cqGHfiIXcaaI9bGaaG4oaaaa@7F0A@ (2.2)

ясно, что мы получаем два непустых подсемейства P(I). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFpepucaaIOaGaamys aiaaiMcacaaIUaaaaa@4651@  Конечно, при τ(top)[I] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaey icI4SaaGikaiaabshacaqGVbGaaeiCaiaaiMcacaaIBbGaamysaiaa i2faaaa@422B@  и xI MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaadMeaaaa@3B56@  имеем равенства

( N τ 0 (x)= N τ 0 [{x}])&( N τ (x)= N τ [{x}]). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaad6 eadaqhaaWcbaGaeqiXdqhabaGaaGimaaaakiaaiIcacaWG4bGaaGyk aiaai2dacaWHobWaa0baaSqaaiabes8a0bqaaiaaicdaaaGccaaIBb GaaG4EaiaadIhacaaI9bGaaGyxaiaaiMcacaaIMaGaaGikaiaad6ea daWgaaWcbaGaeqiXdqhabeaakiaaiIcacaWG4bGaaGykaiaai2daca WHobWaaSbaaSqaaiabes8a0bqabaGccaaIBbGaaG4EaiaadIhacaaI 9bGaaGyxaiaaiMcacaaIUaaaaa@58EB@

Мы полагаем далее, что

(Dtop)[I] = Δ {τ(top)[I]|xIyI\{x}G N τ 0 (x):yG}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae83aXtKaeyOe I0IaaeiDaiaab+gacaqGWbGaaGykaiaaiUfacaWGjbGaaGyxamaaxa cabaGaaGypaaWcbeqaaiabgs5aebaakiaaiUhacqaHepaDcqGHiiIZ caaIOaGaaeiDaiaab+gacaqGWbGaaGykaiaaiUfacaWGjbGaaGyxai aacYhacaaMe8UaaGjbVlabgcGiIiaadIhacqGHiiIZcaWGjbGaaGjb VlaaysW7cqGHaiIicaWG5bGaeyicI4SaamysaiaacYfacaaI7bGaam iEaiaai2hacaaMe8UaaGjbVlabgoGiKiaayIW7caWGhbGaeyicI4Sa amOtamaaDaaaleaacqaHepaDaeaacaaIWaaaaOGaaGikaiaadIhaca aIPaGaaGOoaiaadMhacqGHjiYZcaWGhbGaaGyFaiaaiYcaaaa@7FA8@ (2.3)

(top) 0 [I] = Δ {τ(top)[I]|xIyI\{x} G 1 N τ 0 (x) G 2 N τ 0 (y): G 1 G 2 =}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeGabiqaaa qaaiaaiIcacaqG0bGaae4BaiaabchacaaIPaWaaSbaaSqaaiaaicda aeqaaOGaaG4waiaadMeacaaIDbWaaCbiaeaacaaI9aaaleqabaGaey iLdqeaaOGaaG4Eaiabes8a0jabgIGiolaaiIcacaqG0bGaae4Baiaa bchacaaIPaGaaG4waiaadMeacaaIDbGaaiiFaiaaysW7cqGHaiIica WG4bGaeyicI4SaamysaiaaysW7caaMe8UaeyiaIiIaamyEaiabgIGi olaadMeacaGGCbGaaG4EaiaadIhacaaI9baabaGaey4aIqIaaGjcVl aadEeadaWgaaWcbaGaaGymaaqabaGccqGHiiIZcaWGobWaa0baaSqa aiabes8a0bqaaiaaicdaaaGccaaIOaGaamiEaiaaiMcacaaMe8UaaG jbVlabgoGiKiaadEeadaWgaaWcbaGaaGOmaaqabaGccqGHiiIZcaWG obWaa0baaSqaaiabes8a0bqaaiaaicdaaaGccaaIOaGaamyEaiaaiM cacaaI6aGaam4ramaaBaaaleaacaaIXaaabeaakiabgMIihlaadEea daWgaaWcbaGaaGOmaaqabaGccaaI9aGaeyybIySaaGyFaiaaiYcaaa aaaa@81E2@ (2.4)

(top) 0 [I] = Δ {τ(top)[I]|F C I [τ]xI\F G 1 N τ 0 [F] G 2 N τ 0 (x): G 1 G 2 =}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeGabiqaaa qaaiaaiIcacaqG0bGaae4BaiaabchacaaIPaWaaWbaaSqabeaacaaI WaaaaOGaaG4waiaadMeacaaIDbWaaCbiaeaacaaI9aaaleqabaGaey iLdqeaaOGaaG4Eaiabes8a0jabgIGiolaaiIcacaqG0bGaae4Baiaa bchacaaIPaGaaG4waiaadMeacaaIDbGaaiiFaiaaysW7cqGHaiIica WGgbGaeyicI4SaaC4qamaaBaaaleaacaWGjbaabeaakiaaiUfacqaH epaDcaaIDbGaaGjbVlaaysW7cqGHaiIicaWG4bGaeyicI4Saamysai aacYfacaWGgbGaaGjbVlaaysW7cqGHdicjcaaMi8Uaam4ramaaBaaa leaacaaIXaaabeaakiabgIGiolaah6eadaqhaaWcbaGaeqiXdqhaba GaaGimaaaakiaaiUfacaWGgbGaaGyxaaqaaiabgoGiKiaayIW7caWG hbWaaSbaaSqaaiaaikdaaeqaaOGaeyicI4SaamOtamaaDaaaleaacq aHepaDaeaacaaIWaaaaOGaaGikaiaadIhacaaIPaGaaGOoaiaadEea daWgaaWcbaGaaGymaaqabaGccqGHPiYXcaWGhbWaaSbaaSqaaiaaik daaeqaaOGaaGypaiabgwGiglaai2hacaaISaaaaaaa@85CE@ (2.5)

(regtop)[I] = Δ (Dtop)[I] (top) 0 [I]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaabk hacaqGLbGaae4zaiabgkHiTiaabshacaqGVbGaaeiCaiaaiMcacaaI BbGaamysaiaai2fadaWfGaqaaiaai2daaSqabeaacqGHuoaraaGcca aIOaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWF deprcqGHsislcaqG0bGaae4BaiaabchacaaIPaGaaG4waiaadMeaca aIDbGaeyykICSaaGikaiaabshacaqGVbGaaeiCaiaaiMcadaahaaWc beqaaiaaicdaaaGccaaIBbGaamysaiaai2facaaIUaaaaa@6248@ (2.6)

В (2.3) имеем семейство всех достижимых топологий на I MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaaaa@38D5@  (т. е. топологий, превращающих I MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaaaa@38D5@  в достижимые [22, c. 191] ТП), в (2.4) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  семейство всех хаусдорфовых топологий ( T 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIYaaabeaaaaa@39C8@  -топологий) на I; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaaiU daaaa@399A@  (2.5) определяет семейство всех топологий на I, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaaiY caaaa@398B@  превращающих I MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaaaa@38D5@  в T 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIZaaabeaaaaa@39C9@  -пространство; (2.6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  семейство всех топологий на I, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaaiY caaaa@398B@  реализующих каждая регулярное ТП с «единицей» I. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaai6 caaaa@398D@  В виде

(ctop)[I]={τ(top)[I]|ξ(COV)[I|τ]KFin(ξ):I= GK G} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaho gacqGHsislcaqG0bGaae4BaiaabchacaaIPaGaaG4waiaadMeacaaI DbGaaGypaiaaiUhacqaHepaDcqGHiiIZcaaIOaGaaeiDaiaab+gaca qGWbGaaGykaiaaiUfacaWGjbGaaGyxaiaacYhacaaMe8UaeyiaIiIa eqOVdGNaeyicI4SaaGikaiaaboeacaqGpbGaaeOvaiaaiMcacaaIBb GaamysaiaacYhacqaHepaDcaaIDbGaaGjbVlaaysW7cqGHdicjcaaM i8+efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFke =scqGHiiIZcaqGgbGaaeyAaiaab6gacaaIOaGaeqOVdGNaaGykaiaa iQdacaWGjbGaaGypamaatafabeWcbaGaam4raiabgIGiolab=Pq8lb qab0GaeSOkIufakiaadEeacaaI9baaaa@7EB1@

={τ(top)[I]| FF FF(Cen)[ C I [τ]]} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaaiU hacqaHepaDcqGHiiIZcaaIOaGaaeiDaiaab+gacaqGWbGaaGykaiaa iUfacaWGjbGaaGyxaiaacYhadaafqbqabSqaaiaadAeacqGHiiIZtu uDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=ftigbqa b0GaeSykIKeakiaadAeacqGHGjsUcqGHfiIXcaaMe8UaaGjbVlabgc GiIiab=ftigjabgIGiolaaiIcacaqGdbGaaeyzaiaab6gacaaIPaGa aG4waiaahoeadaWgaaWcbaGaamysaaqabaGccaaIBbGaeqiXdqNaaG yxaiaai2facaaI9baaaa@6A6E@

(мы учитываем, что C I [ τ ˜ ]π[I] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4qamaaBa aaleaacaWGjbaabeaakiaaiUfacuaHepaDgaacaiaai2facqGHiiIZ cqaHapaCcaaIBbGaamysaiaai2faaaa@4352@  при τ ˜ (top)[I] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiXdqNbaG aacqGHiiIZcaaIOaGaaeiDaiaab+gacaqGWbGaaGykaiaaiUfacaWG jbGaaGyxaaaa@423A@  ) имеем семейство всех топологий, превращающих I MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaaaa@38D5@  в компактное ТП; будем называть такие топологии компактными. Особо выделяем

(ctop) 0 [I] = Δ (ctop)[I] (top) 0 [I]; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaho gacqGHsislcaqG0bGaae4BaiaabchacaaIPaWaaSbaaSqaaiaaicda aeqaaOGaaG4waiaadMeacaaIDbWaaCbiaeaacaaI9aaaleqabaGaey iLdqeaaOGaaGikaiaahogacqGHsislcaqG0bGaae4BaiaabchacaaI PaGaaG4waiaadMeacaaIDbGaeyykICSaaGikaiaabshacaqGVbGaae iCaiaaiMcadaWgaaWcbaGaaGimaaqabaGccaaIBbGaamysaiaai2fa caaI7aaaaa@570E@

при τ (ctop) 0 [I] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaey icI4SaaGikaiaahogacqGHsislcaqG0bGaae4BaiaabchacaaIPaWa aSbaaSqaaiaaicdaaeqaaOGaaG4waiaadMeacaaIDbaaaa@44F4@  называем ТП (I,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadM eacaaISaGaeqiXdqNaaGykaaaa@3CB5@  компактом. При τ(top)[I] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaey icI4SaaGikaiaabshacaqGVbGaaeiCaiaaiMcacaaIBbGaamysaiaa i2faaaa@422B@  в виде

(τcomp)[I] = Δ {KP(I)|GP'(τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabes 8a0jabgkHiTiaabogacaqGVbGaaeyBaiaabchacaaIPaGaaG4waiaa dMeacaaIDbWaaCbiaeaacaaI9aaaleqabaGaeyiLdqeaaOGaaG4Eai aadUeacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz aGqbaiab=9q8qjaaiIcacaWGjbGaaGykaiaacYhacaaMe8UaeyiaIi IaaGjcVlab=zq8hjabgIGiolab=9q8qjaaiEcacaaIOaGaeqiXdqNa aGykaaaa@63C4@

(K GG G)(KFin(G):K GK G)}P'(P(I)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadU eacqGHckcZdaWeqbqabSqaaiaadEeacqGHiiIZtuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=zq8hbqab0GaeSOkIufaki aadEeacaaIPaGaeyO0H4TaaGikaiabgoGiKiaaysW7cqWFke=scqGH iiIZcaqGgbGaaeyAaiaab6gacaaIOaGae8NbXFKaaGykaiaaiQdaca WGlbGaeyOGIW8aambuaeqaleaacaWGhbGaeyicI4Sae8NcXVeabeqd cqWIQisvaOGaam4raiaaiMcacaaI9bGaeyicI4Sae83dXdLaaG4jai aaiIcacqWFpepucaaIOaGaamysaiaaiMcacaaIPaaaaa@7055@

имеем семейство всех компактных в ТП (I,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadM eacaaISaGaeqiXdqNaaGykaaaa@3CB5@  п/м I MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaaaa@38D5@  (всегда (τcomp)[I] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyybIySaey icI4SaaGikaiabes8a0jabgkHiTiaabogacaqGVbGaaeyBaiaabcha caaIPaGaaG4waiaadMeacaaIDbaaaa@4570@  ). Отметим теперь ряд простых следствий известных определений (2.3) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ (2.6), использующих [23, следствие 3.1.5, теорема 3.1.6] и используемых в дальнейшем. Так, в частности,

(ctop)[I]={τ(top)[I]| N τ 0 [ FF F]= KFin(F) N τ 0 [ FK F]FP'( C I [τ])} ={τ(top)[I]| N τ [ FF F]= KFin(F) N τ [ FK F]FP'( C I [τ])}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeGabiqaaa qaaiaaiIcacaWHJbGaeyOeI0IaaeiDaiaab+gacaqGWbGaaGykaiaa iUfacaWGjbGaaGyxaiaai2dacaaI7bGaeqiXdqNaeyicI4SaaGikai aabshacaqGVbGaaeiCaiaaiMcacaaIBbGaamysaiaai2facaGG8bGa aCOtamaaDaaaleaacqaHepaDaeaacaaIWaaaaOGaaG4wamaauafabe WcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF fcVrcqGHiiIZtuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaG Gbaiab+ftigbqab0GaeSykIKeakiab=vi8gjaai2facaaI9aWaambu aeqaleaacqGFke=scqGHiiIZcaqGgbGaaeyAaiaab6gacaaIOaGae4 xmHyKaaGykaaqab0GaeSOkIufakiaah6eadaqhaaWcbaGaeqiXdqha baGaaGimaaaakiaaiUfadaafqbqabSqaaiab=vi8gjabgIGiolab+P q8lbqab0GaeSykIKeakiab=vi8gjaai2facaaMe8UaaGjbVlabgcGi IiaayIW7cqGFXeIrcqGHiiIZcqGFpepucaaINaGaaGikaiaahoeada WgaaWcbaGaamysaaqabaGccaaIBbGaeqiXdqNaaGyxaiaaiMcacaaI 9baabaGaaGypaiaaiUhacqaHepaDcqGHiiIZcaaIOaGaaeiDaiaab+ gacaqGWbGaaGykaiaaiUfacaWGjbGaaGyxaiaacYhacaWHobWaaSba aSqaaiabes8a0bqabaGccaaIBbWaaqbuaeqaleaacqWFfcVrcqGHii IZcqGFXeIraeqaniablMIijbGccqWFfcVrcaaIDbGaaGypamaatafa beWcbaGae4NcXVKaeyicI4SaaeOraiaabMgacaqGUbGaaGikaiab+f tigjaaiMcaaeqaniablQIivbGccaWHobWaaSbaaSqaaiabes8a0bqa baGccaaIBbWaaqbuaeqaleaacqWFfcVrcqGHiiIZcqGFke=saeqani ablMIijbGccqWFfcVrcaaIDbGaaGjbVlaaysW7cqGHaiIicaaMi8Ua e4xmHyKaeyicI4Sae43dXdLaaG4jaiaaiIcacaWHdbWaaSbaaSqaai aadMeaaeqaaOGaaG4waiabes8a0jaai2facaaIPaGaaGyFaiaai6ca aaaaaa@E1F6@ (2.7)

В представлении (2.7) проявляется эквивалентность открытых и произвольных (см. [21, гл. I]) окрестностей множеств; по этой причине далее мы будем ограничиваться, как правило, представлениями в терминах открытых окрестностей.

Замечание 2.1. В связи с (2.7) полезно отметить аналогию, касающуюся условий счетной компактности. В этой связи заметим, что

( c top)[I] = Δ {τ(top)[I]| ( G i ) i τ (I= i G i )(n:I= i=1 n G i )} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaho gadaWgaaWcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39ga iuaacqWFveItaeqaaOGaeyOeI0IaaeiDaiaab+gacaqGWbGaaGykai aaiUfacaWGjbGaaGyxamaaxacabaGaaGypaaWcbeqaaiabgs5aebaa kiaaiUhacqaHepaDcqGHiiIZcaaIOaGaaeiDaiaab+gacaqGWbGaaG ykaiaaiUfacaWGjbGaaGyxaiaacYhacqGHaiIicaaMi8UaaGikaiaa dEeadaWgaaWcbaGaamyAaaqabaGccaaIPaWaaSbaaSqaaiaadMgacq GHiiIZcqWFveItaeqaaOGaeyicI4SaeqiXdq3aaWbaaSqabeaacqWF veItaaGccaaMe8UaaGjbVlaaiIcacaWGjbGaaGypamaatafabeWcba GaamyAaiabgIGiolab=vriobqab0GaeSOkIufakiaadEeadaWgaaWc baGaamyAaaqabaGccaaIPaGaeyO0H4TaaGikaiabgoGiKiaayIW7ca WGUbGaeyicI4Sae8xfH4KaaGOoaiaadMeacaaI9aWaambCaeqaleaa caWGPbGaaGypaiaaigdaaeaacaWGUbaaniablQIivbGccaWGhbWaaS baaSqaaiaadMgaaeqaaOGaaGykaiaai2haaaa@89AE@

есть семейство всех топологий, превращающих I MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaaaa@38D5@  в счетно компактное ТП. Тогда, используя аналоги конструкции [8, предложение 3.6.2], получаем, что

( c top)[I]={τ(top)[I]| N τ 0 [ i F i ]= k N τ 0 [ i=1 k F i ] ( F i ) i C I [τ] }. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaho gadaWgaaWcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39ga iuaacqWFveItaeqaaOGaeyOeI0IaaeiDaiaab+gacaqGWbGaaGykai aaiUfacaWGjbGaaGyxaiaai2dacaaI7bGaeqiXdqNaeyicI4SaaGik aiaabshacaqGVbGaaeiCaiaaiMcacaaIBbGaamysaiaai2facaGG8b GaaCOtamaaDaaaleaacqaHepaDaeaacaaIWaaaaOGaaG4wamaauafa beWcbaGaamyAaiabgIGiolab=vriobqab0GaeSykIKeakiaadAeada WgaaWcbaGaamyAaaqabaGccaaIDbGaaGypamaatafabeWcbaGaam4A aiabgIGiolab=vriobqab0GaeSOkIufakiaah6eadaqhaaWcbaGaeq iXdqhabaGaaGimaaaakiaaiUfadaafWbqabSqaaiaadMgacaaI9aGa aGymaaqaaiaadUgaa0GaeSykIKeakiaadAeadaWgaaWcbaGaamyAaa qabaGccaaIDbGaaGjbVlaaysW7cqGHaiIicaaMi8UaaGikaiaadAea daWgaaWcbaGaamyAaaqabaGccaaIPaWaaSbaaSqaaiaadMgacqGHii IZcqWFveItaeqaaOGaeyicI4SaaC4qamaaBaaaleaacaWGjbaabeaa kiaaiUfacqaHepaDcaaIDbWaaWbaaSqabeaacqWFveItaaGccaaI9b GaaGOlaaaa@8DE4@

В развитие [8, теорема 3.1.6] отметим весьма очевидное представление

(top) 0 [I]={τ(top)[I]| K 1 (τcomp)[I] K 2 (τcomp)[I] ( K 1 K 2 =)( G 1 N τ 0 [ K 1 ] G 2 N τ 0 [ K 2 ]: G 1 G 2 =)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeGabiqaaa qaaiaaiIcacaqG0bGaae4BaiaabchacaaIPaWaaSbaaSqaaiaaicda aeqaaOGaaG4waiaadMeacaaIDbGaaGypaiaaiUhacqaHepaDcqGHii IZcaaIOaGaaeiDaiaab+gacaqGWbGaaGykaiaaiUfacaWGjbGaaGyx aiaacYhacqGHaiIicaaMi8Uaam4samaaBaaaleaacaaIXaaabeaaki abgIGiolaaiIcacqaHepaDcqGHsislcaqGJbGaae4Baiaab2gacaqG WbGaaGykaiaaiUfacaWGjbGaaGyxaiaaysW7caaMe8UaeyiaIiIaaG jcVlaadUeadaWgaaWcbaGaaGOmaaqabaGccqGHiiIZcaaIOaGaeqiX dqNaeyicI4Saae4yaiaab+gacaqGTbGaaeiCaiaaiMcacaaIBbGaam ysaiaai2faaeaacaaIOaGaam4samaaBaaaleaacaaIXaaabeaakiab gMIihlaadUeadaWgaaWcbaGaaGOmaaqabaGccaaI9aGaeyybIySaaG ykaiabgkDiElaaiIcacqGHdicjcaaMe8Uaam4ramaaBaaaleaacaaI XaaabeaakiabgIGiolaah6eadaqhaaWcbaGaeqiXdqhabaGaaGimaa aakiaaiUfacaWGlbWaaSbaaSqaaiaaigdaaeqaaOGaaGyxaiaaysW7 caaMe8Uaey4aIqIaaGjbVlaadEeadaWgaaWcbaGaaGOmaaqabaGccq GHiiIZcaWHobWaa0baaSqaaiabes8a0bqaaiaaicdaaaGccaaIBbGa am4samaaBaaaleaacaaIYaaabeaakiaai2facaaI6aGaam4ramaaBa aaleaacaaIXaaabeaakiabgMIihlaadEeadaWgaaWcbaGaaGOmaaqa baGccaaI9aGaeyybIySaaGykaiaai2haaaaaaa@A2E8@ (2.8)

(в (2.8) имеем понятное свойство: в T 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIYaaabeaaaaa@39C8@  -пространстве компактные множества ведут себя как точки). Аналогичное представление реализуется для T 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIZaaabeaaaaa@39C9@  -пространств:

(top) 0 [I]={τ(top)[I]|A(τcomp)[I] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaabs hacaqGVbGaaeiCaiaaiMcadaahaaWcbeqaaiaaicdaaaGccaaIBbGa amysaiaai2facaaI9aGaaG4Eaiabes8a0jabgIGiolaaiIcacaqG0b Gaae4BaiaabchacaaIPaGaaG4waiaadMeacaaIDbGaaiiFaiabgcGi IiaayIW7caWGbbGaeyicI4SaaGikaiabes8a0jabgkHiTiaabogaca qGVbGaaeyBaiaabchacaaIPaGaaG4waiaadMeacaaIDbaaaa@5BDA@

B C I [τ](AB=)( G 1 N τ 0 [A] G 2 N τ 0 [B]: G 1 G 2 =)}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jcVlaadkeacqGHiiIZcaWHdbWaaSbaaSqaaiaadMeaaeqaaOGaaG4w aiabes8a0jaai2facaaMe8UaaGjbVlaaiIcacaWGbbGaeyykICSaam Oqaiaai2dacqGHfiIXcaaIPaGaeyO0H4TaaGikaiabgoGiKiaaysW7 caWGhbWaaSbaaSqaaiaaigdaaeqaaOGaeyicI4SaaCOtamaaDaaale aacqaHepaDaeaacaaIWaaaaOGaaG4waiaadgeacaaIDbGaaGjbVlaa ysW7cqGHdicjcaaMe8Uaam4ramaaBaaaleaacaaIYaaabeaakiabgI Giolaah6eadaqhaaWcbaGaeqiXdqhabaGaaGimaaaakiaaiUfacaWG cbGaaGyxaiaaiQdacaWGhbWaaSbaaSqaaiaaigdaaeqaaOGaeyykIC Saam4ramaaBaaaleaacaaIYaaabeaakiaai2dacqGHfiIXcaaIPaGa aGyFaiaai6caaaa@743C@

Отметим здесь полезное следствие, касающееся аналогичных представлений для регулярных ТП:

(regtop)[I]={τ(Dtop)[I]|A(τcomp)[I] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaabk hacaqGLbGaae4zaiabgkHiTiaabshacaqGVbGaaeiCaiaaiMcacaaI BbGaamysaiaai2facaaI9aGaaG4Eaiabes8a0jabgIGiolaaiIcatu uDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=nq8ejab gkHiTiaabshacaqGVbGaaeiCaiaaiMcacaaIBbGaamysaiaai2faca GG8bGaeyiaIiIaaGjcVlaadgeacqGHiiIZcaaIOaGaeqiXdqNaeyOe I0Iaae4yaiaab+gacaqGTbGaaeiCaiaaiMcacaaIBbGaamysaiaai2 faaaa@6AD1@

B C I [τ](AB=)( G 1 N τ 0 [A] G 2 N τ 0 [B]: G 1 G 2 =)}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jcVlaadkeacqGHiiIZcaWHdbWaaSbaaSqaaiaadMeaaeqaaOGaaG4w aiabes8a0jaai2facaaMe8UaaGjbVlaaiIcacaWGbbGaeyykICSaam Oqaiaai2dacqGHfiIXcaaIPaGaeyO0H4TaaGikaiabgoGiKiaaysW7 caWGhbWaaSbaaSqaaiaaigdaaeqaaOGaeyicI4SaaCOtamaaDaaale aacqaHepaDaeaacaaIWaaaaOGaaG4waiaadgeacaaIDbGaaGjbVlaa ysW7cqGHdicjcaaMe8Uaam4ramaaBaaaleaacaaIYaaabeaakiabgI Giolaah6eadaqhaaWcbaGaeqiXdqhabaGaaGimaaaakiaaiUfacaWG cbGaaGyxaiaaiQdacaWGhbWaaSbaaSqaaiaaigdaaeqaaOGaeyykIC Saam4ramaaBaaaleaacaaIYaaabeaakiaai2dacqGHfiIXcaaIPaGa aGyFaiaai6caaaa@743C@

Отметим здесь же, что при τ(top)[I], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaey icI4SaaGikaiaabshacaqGVbGaaeiCaiaaiMcacaaIBbGaamysaiaa i2facaaISaaaaa@42E1@   n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xf H4eaaa@452A@  и ( K i ) i 1,n ¯ (τcomp)[I ] n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadU eadaWgaaWcbaGaamyAaaqabaGccaaIPaWaaSbaaSqaaiaadMgacqGH iiIZdaqdaaqaaiaaigdacaaISaGaamOBaaaaaeqaaOGaeyicI4SaaG ikaiabes8a0jabgIGiolaabogacaqGVbGaaeyBaiaabchacaaIPaGa aG4waiaadMeacaaIDbWaaWbaaSqabeaacaWGUbaaaaaa@4E24@  

i=1 n K i (τcomp)[I]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaambCaeqale aacaWGPbGaaGypaiaaigdaaeaacaWGUbaaniablQIivbGccaWGlbWa aSbaaSqaaiaadMgaaeqaaOGaeyicI4SaaGikaiabes8a0jabgIGiol aabogacaqGVbGaaeyBaiaabchacaaIPaGaaG4waiaadMeacaaIDbGa aGOlaaaa@4C7B@

Тогда из (2.8) извлекается полезное следствие: если τ (top) 0 [I], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaey icI4SaaGikaiaabshacaqGVbGaaeiCaiaaiMcadaWgaaWcbaGaaGim aaqabaGccaaIBbGaamysaiaai2facaaISaaaaa@43D1@   n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xf H4eaaa@452A@  и ( K i ) i 1,n ¯ (τcomp)[I ] n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadU eadaWgaaWcbaGaamyAaaqabaGccaaIPaWaaSbaaSqaaiaadMgacqGH iiIZdaqdaaqaaiaaigdacaaISaGaamOBaaaaaeqaaOGaeyicI4SaaG ikaiabes8a0jabgkHiTiaabogacaqGVbGaaeyBaiaabchacaaIPaGa aG4waiaadMeacaaIDbWaaWbaaSqabeaacaWGUbaaaOGaaGilaaaa@4E4D@  то

( K r K s =r 1,n ¯ s 1,n ¯ \{r}) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadU eadaWgaaWcbaGaamOCaaqabaGccqGHPiYXcaWGlbWaaSbaaSqaaiaa dohaaeqaaOGaaGypaiabgwGiglaaysW7caaMe8UaeyiaIiIaaGjcVl aadkhacqGHiiIZdaqdaaqaaiaaigdacaaISaGaamOBaaaacaaMe8Ua aGjbVlabgcGiIiaayIW7caWGZbGaeyicI48aa0aaaeaacaaIXaGaaG ilaiaad6gaaaGaaiixaiaaiUhacaWGYbGaaGyFaiaaiMcaaaa@59FF@

( ( G i ) i 1,n ¯ i=1 n N τ 0 [ K i ]: G r G s =r 1,n ¯ s 1,n ¯ \{r}). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4TaaG ikaiabgoGiKiaayIW7caaIOaGaam4ramaaBaaaleaacaWGPbaabeaa kiaaiMcadaWgaaWcbaGaamyAaiabgIGiopaanaaabaGaaGymaiaaiY cacaWGUbaaaaqabaGccqGHiiIZdaqeWbqabSqaaiaadMgacaaI9aGa aGymaaqaaiaad6gaa0Gaey4dIunakiaayIW7caWHobWaa0baaSqaai abes8a0bqaaiaaicdaaaGccaaIBbGaam4samaaBaaaleaacaWGPbaa beaakiaai2facaaI6aGaam4ramaaBaaaleaacaWGYbaabeaakiabgM IihlaadEeadaWgaaWcbaGaam4CaaqabaGccaaI9aGaeyybIySaaGjb VlaaysW7cqGHaiIicaaMi8UaamOCaiabgIGiopaanaaabaGaaGymai aaiYcacaWGUbaaaiaaysW7caaMe8UaeyiaIiIaaGjcVlaadohacqGH iiIZdaqdaaqaaiaaigdacaaISaGaamOBaaaacaGGCbGaaG4Eaiaadk hacaaI9bGaaGykaiaai6caaaa@78A9@

Непрерывные и замкнутые отображения.

Фиксируем в настоящем пункте непустые множества X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaaaa@38E4@  и Y, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaiaaiY caaaa@399B@  а также топологии τ 1 (top)[X] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiaaigdaaeqaaOGaeyicI4SaaGikaiaabshacaqGVbGaaeiC aiaaiMcacaaIBbGaamiwaiaai2faaaa@432B@  и τ 2 (top)[Y]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiaaikdaaeqaaOGaeyicI4SaaGikaiaabshacaqGVbGaaeiC aiaaiMcacaaIBbGaamywaiaai2facaaIUaaaaa@43E5@  В виде

C(X, τ 1 ,Y, τ 2 ) = Δ {f Y X | f 1 [ τ 2 ] τ 1 } MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaaiI cacaWGybGaaGilaiabes8a0naaBaaaleaacaaIXaaabeaakiaaiYca caWGzbGaaGilaiabes8a0naaBaaaleaacaaIYaaabeaakiaaiMcada WfGaqaaiaai2daaSqabeaacqGHuoaraaGccaaI7bGaamOzaiabgIGi olaadMfadaahaaWcbeqaaiaadIfaaaGccaGG8bGaamOzamaaCaaale qabaGaeyOeI0IaaGymaaaakiaaiUfacqaHepaDdaWgaaWcbaGaaGOm aaqabaGccaaIDbGaeyOGIWSaeqiXdq3aaSbaaSqaaiaaigdaaeqaaO GaaGyFaaaa@596B@

имеем множество всех непрерывных в смысле ТП (X, τ 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI facaaISaGaeqiXdq3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaaa@3DB5@  и (Y, τ 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadM facaaISaGaeqiXdq3aaSbaaSqaaiaaikdaaeqaaOGaaGykaaaa@3DB7@  функций из Y X . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaCa aaleqabaGaamiwaaaakiaai6caaaa@3AB1@  Множество всех замкнутых отображений из (X, τ 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI facaaISaGaeqiXdq3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaaa@3DB5@  в (Y, τ 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadM facaaISaGaeqiXdq3aaSbaaSqaaiaaikdaaeqaaOGaaGykaaaa@3DB7@  есть

C cl (X, τ 1 ,Y, τ 2 ) = Δ {fC(X, τ 1 ,Y, τ 2 )| f 1 [ C X [ τ 1 ]] C Y [ τ 2 ]}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaqGJbGaaeiBaaqabaGccaaIOaGaamiwaiaaiYcacqaHepaD daWgaaWcbaGaaGymaaqabaGccaaISaGaamywaiaaiYcacqaHepaDda WgaaWcbaGaaGOmaaqabaGccaaIPaWaaCbiaeaacaaI9aaaleqabaGa eyiLdqeaaOGaaG4EaiaadAgacqGHiiIZcaWGdbGaaGikaiaadIfaca aISaGaeqiXdq3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadMfacaaI SaGaeqiXdq3aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaacYhacaWGMb WaaWbaaSqabeaacaaIXaaaaOGaaG4waiaahoeadaWgaaWcbaGaamiw aaqabaGccaaIBbGaeqiXdq3aaSbaaSqaaiaaigdaaeqaaOGaaGyxai aai2facqGHckcZcaWHdbWaaSbaaSqaaiaadMfaaeqaaOGaaG4waiab es8a0naaBaaaleaacaaIYaaabeaakiaai2facaaI9bGaaGOlaaaa@6C1D@

Наконец, почти совершенные отображения [23, с. 287] из (X, τ 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI facaaISaGaeqiXdq3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaaa@3DB5@  в (Y, τ 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadM facaaISaGaeqiXdq3aaSbaaSqaaiaaikdaaeqaaOGaaGykaaaa@3DB7@  образуют множество C ap (X, τ 1 ,Y, τ 2 ) = Δ {f C cl (X, τ 1 ,Y, τ 2 )| f 1 ({y})( τ 1 comp)[X]yY}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWHHbGaaCiCaaqabaGccaaIOaGaamiwaiaaiYcacqaHepaD daWgaaWcbaGaaGymaaqabaGccaaISaGaamywaiaaiYcacqaHepaDda WgaaWcbaGaaGOmaaqabaGccaaIPaWaaCbiaeaacaaI9aaaleqabaGa eyiLdqeaaOGaaG4EaiaadAgacqGHiiIZcaWGdbWaaSbaaSqaaiaabo gacaqGSbaabeaakiaaiIcacaWGybGaaGilaiabes8a0naaBaaaleaa caaIXaaabeaakiaaiYcacaWGzbGaaGilaiabes8a0naaBaaaleaaca aIYaaabeaakiaaiMcacaGG8bGaamOzamaaCaaaleqabaGaeyOeI0Ia aGymaaaakiaaiIcacaaI7bGaamyEaiaai2hacaaIPaGaeyicI4SaaG ikaiabes8a0naaBaaaleaacaaIXaaabeaakiabgkHiTiaabogacaqG VbGaaeyBaiaabchacaaIPaGaaG4waiaadIfacaaIDbGaaGjbVlaays W7cqGHaiIicaaMi8UaamyEaiabgIGiolaadMfacaaI9bGaaGOlaaaa @78D1@

Замыкание.

Если (H,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI eacaaISaGaeqiXdqNaaGykaaaa@3CB4@  есть ТП, т. е. H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaaaa@38D4@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  множество и τ(top)[H], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaey icI4SaaGikaiaabshacaqGVbGaaeiCaiaaiMcacaaIBbGaamisaiaa i2facaaISaaaaa@42E0@  а AP(H), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae83d XdLaaGikaiaadIeacaaIPaGaaGilaaaa@4898@  то

cl(A,τ) = Δ {hH|GAG N τ 0 (h)}={hH|SAS N τ (h)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabY gacaaIOaGaamyqaiaaiYcacqaHepaDcaaIPaWaaCbiaeaacaaI9aaa leqabaGaeyiLdqeaaOGaaG4EaiaadIgacqGHiiIZcaWGibGaaiiFai aadEeacqGHPiYXcaWGbbGaeyiyIKRaeyybIySaaGjbVlaaysW7cqGH aiIicaaMi8Uaam4raiabgIGiolaad6eadaqhaaWcbaGaeqiXdqhaba GaaGimaaaakiaaiIcacaWGObGaaGykaiaai2hacaaI9aGaaG4Eaiaa dIgacqGHiiIZcaWGibGaaiiFaiaadofacqGHPiYXcaWGbbGaeyiyIK RaeyybIySaaGjbVlaaysW7cqGHaiIicaaMi8Uaam4uaiabgIGiolaa d6eadaWgaaWcbaGaeqiXdqhabeaakiaaiIcacaWGObGaaGykaiaai2 haaaa@75E7@

= F[ C H [τ]](A) F[ C H [τ]](A), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaaua fabeWcbaGaamOraiabgIGiolaaiUfacaWHdbWaaSbaaeaacaWGibaa beaacaaIBbGaeqiXdqNaaGyxaiaai2facaaIOaGaamyqaiaaiMcaae qaniablMIijbGccaWGgbGaeyicI4SaaG4waiaahoeadaWgaaWcbaGa amisaaqabaGccaaIBbGaeqiXdqNaaGyxaiaai2facaaIOaGaamyqai aaiMcacaaISaaaaa@526E@

где [ C H [τ]](A)P'( C H [τ]). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaho eadaWgaaWcbaGaamisaaqabaGccaaIBbGaeqiXdqNaaGyxaiaai2fa caaIOaGaamyqaiaaiMcacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySL gzG0uy0Hgip5wzaGqbaiab=9q8qjaaiEcacaaIOaGaaC4qamaaBaaa leaacaWGibaabeaakiaaiUfacqaHepaDcaaIDbGaaGykaiaai6caaa a@566F@

3. Множества притяжения

В настоящем разделе мы обращаемся к проблеме о достижимости в ТП при ограничениях асимптотического характера (ОАХ). Решение данной задачи естественно связать с множеством притяжения (МП), которое по сути является регуляризованным вариантом образа множества. Конкретный вариант данной проблемы можно связать с исследованием области достижимости (ОД) управляемой системы (см. 4, c. 116], [6, раздел 4.2]).

Фиксируем непустое множество E, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiaaiY caaaa@3987@  точки которого называем обычными решениями или обычными управлениями в зависимости от контекста; п/м E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraaaa@38D1@  могут выступать в качестве способов задания ограничений. Мы допускаем использование в этом качестве и непустых подсемейств P(E) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFpepucaaIOaGaamyr aiaaiMcaaaa@4595@ ; среди последних будем выделять направленные подсемейства. В виде

β[E] = Δ {EP'(P(E))| Σ 1 E Σ 2 E Σ 3 E: Σ 3 Σ 1 Σ 2 } MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaaG 4waiaadweacaaIDbWaaCbiaeaacaaI9aaaleqabaGaeyiLdqeaaOGa aG4Eamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8 hmHuKaeyicI4Sae83dXdLaaG4jaiaaiIcacqWFpepucaaIOaGaamyr aiaaiMcacaaIPaGaaiiFaiaaysW7cqGHaiIicqqHJoWudaWgaaWcba GaaGymaaqabaGccqGHiiIZcqWFWesrcaaMe8UaeyiaIiIaeu4Odm1a aSbaaSqaaiaaikdaaeqaaOGaeyicI4Sae8hmHuKaaGjbVlabgoGiKi abfo6atnaaBaaaleaacaaIZaaabeaakiabgIGiolab=btifjaaiQda caaMe8Uaeu4Odm1aaSbaaSqaaiaaiodaaeqaaOGaeyOGIWSaeu4Odm 1aaSbaaSqaaiaaigdaaeqaaOGaeyykICSaeu4Odm1aaSbaaSqaaiaa ikdaaeqaaOGaaGyFaaaa@798B@ (3.1)

имеем семейство всех направленных (двойственно к вложению) подсемейств P(E). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFpepucaaIOaGaamyr aiaaiMcacaaIUaaaaa@464D@  Заметим, что β 0 [E] = Δ {Bβ[E]|B} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaaicdaaeqaaOGaaG4waiaadweacaaIDbWaaCbiaeaacaaI 9aaaleqabaGaeyiLdqeaaOGaaG4Eamrr1ngBPrwtHrhAXaqeguuDJX wAKbstHrhAG8KBLbacfaGae8hlHiKaeyicI4SaeqOSdiMaaG4waiaa dweacaaIDbGaaiiFaiabgwGiglabgMGiplab=Xsicjaai2haaaa@5727@  есть семейство всех баз фильтров п/м E; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiaaiU daaaa@3996@  данное семейство играет важную роль в построениях общей топологии (см. [21, гл. I]). Если (X,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI facaaISaGaeqiXdqNaaGykaaaa@3CC4@  есть ТП, X, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiabgc Mi5kabgwGiglaaiYcaaaa@3CDA@   f X E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI GiolaadIfadaahaaWcbeqaaiaadweaaaaaaa@3C4A@  и Eβ[E], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrcqGHiiIZcqaH YoGycaaIBbGaamyraiaai2facaaISaaaaa@491D@  то полагаем, что

(AS)[E;X;τ;f;E] = Δ ΣE cl( f 1 (Σ),τ); MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaabg eacaqGtbGaaGykaiaaiUfacaWGfbGaaG4oaiaadIfacaaI7aGaeqiX dqNaaG4oaiaadAgacaaI7aWefv3ySLgznfgDOfdaryqr1ngBPrginf gDObYtUvgaiuaacqWFWesrcaaIDbWaaCbiaeaacaaI9aaaleqabaGa eyiLdqeaaOWaaqbuaeqaleaacqqHJoWucqGHiiIZcqWFWesraeqani ablMIijbGccaqGJbGaaeiBaiaaiIcacaWGMbWaaWbaaSqabeaacaaI XaaaaOGaaGikaiabfo6atjaaiMcacaaISaGaeqiXdqNaaGykaiaaiU daaaa@6279@ (3.2)

мы называем (3.2) МП при ОАХ в виде направленного семейства E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesraaa@42AC@  и целевом отображении f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa@38F2@  (заметим, что МП рассматривались [24, (2.3)] и для случая произвольных непустых подсемейств P(E), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFpepucaaIOaGaamyr aiaaiMcacaaISaaaaa@464B@  но мы будем ограничиваться вариантом (3.2) для Eβ[E], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrcqGHiiIZcqaH YoGycaaIBbGaamyraiaai2facaaISaaaaa@491D@  имея в виду простую связь [24, (2.2),(2.3)] с более общими построениями (см. также [24, предложение 1])). В связи с выбором целевого отображения f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa@38F2@  в (3.2) напомним одно полезное множество, использовавшееся в [25]: для произвольного ТП (X,τ),X, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI facaaISaGaeqiXdqNaaGykaiaaiYcacaWGybGaeyiyIKRaeyybIySa aGilaaaa@424D@  

F c 0 [E;X;τ] = Δ {f X E | f 1 (E) (τcomp) 0 [X]}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOramaaDa aaleaacaWHJbaabaGaaGimaaaakiaaiUfacaWGfbGaaG4oaiaadIfa caaI7aGaeqiXdqNaaGyxamaaxacabaGaaGypaaWcbeqaaiabgs5aeb aakiaaiUhacaWGMbGaeyicI4SaamiwamaaCaaaleqabaGaamyraaaa kiaacYhacaWGMbWaaWbaaSqabeaacaaIXaaaaOGaaGikaiaadweaca aIPaGaeyicI4SaaGikaiabes8a0jabgkHiTiaabogacaqGVbGaaeyB aiaabchacaaIPaWaaWbaaSqabeaacaaIWaaaaOGaaG4waiaadIfaca aIDbGaaGyFaiaaiYcaaaa@5D01@ (3.3)

где (τcomp) 0 [X] = Δ {HP(X)|K(τcomp)[X]:HK}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabes 8a0jabgkHiTiaabogacaqGVbGaaeyBaiaabchacaaIPaWaaWbaaSqa beaacaaIWaaaaOGaaG4waiaadIfacaaIDbWaaCbiaeaacaaI9aaale qabaGaeyiLdqeaaOGaaG4EaiaadIeacqGHiiIZtuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=9q8qjaaiIcacaWGybGaaG ykaiaacYhacqGHdicjcaaMi8Uaam4saiabgIGiolaaiIcacqaHepaD cqGHsislcaqGJbGaae4Baiaab2gacaqGWbGaaGykaiaaiUfacaWGyb GaaGyxaiaaiQdacaWGibGaeyOGIWSaam4saiaai2hacaaIUaaaaa@6D3C@  Последнее понятие содержательно при условии отделимости (X,τ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI facaaISaGaeqiXdqNaaGykaiaai6caaaa@3D7C@  А именно: для непустого множества X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaaaa@38E4@  и топологии τ (top) 0 [X] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaey icI4SaaGikaiaabshacaqGVbGaaeiCaiaaiMcadaWgaaWcbaGaaGim aaqabaGccaaIBbGaamiwaiaai2faaaa@432A@  (см. (2.4))

(τcomp) 0 [X]={HP(X)|cl(H,τ)(τcomp)[X]}P'(P(X)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabes 8a0jabgkHiTiaabogacaqGVbGaaeyBaiaabchacaaIPaWaaWbaaSqa beaacaaIWaaaaOGaaG4waiaadIfacaaIDbGaaGypaiaaiUhacaWGib GaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa cqWFpepucaaIOaGaamiwaiaaiMcacaGG8bGaae4yaiaabYgacaaIOa GaamisaiaaiYcacqaHepaDcaaIPaGaeyicI4SaaGikaiabes8a0jab gkHiTiaabogacaqGVbGaaeyBaiaabchacaaIPaGaaG4waiaadIfaca aIDbGaaGyFaiabgIGiolab=9q8qjaaiEcacaaIOaGae83dXdLaaGik aiaadIfacaaIPaGaaGykaiaai6caaaa@73F7@ (3.4)

Из (3.2) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ ( 3.4) имеем, конечно, свойство: для непустого множества X, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiaaiY caaaa@399A@   τ (top) 0 [X] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaey icI4SaaGikaiaabshacaqGVbGaaeiCaiaaiMcadaWgaaWcbaGaaGim aaqabaGccaaIBbGaamiwaiaai2faaaa@432A@  (т. е. для хаусдорфова ТП (X,τ),X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI facaaISaGaeqiXdqNaaGykaiaaiYcacaWGybGaeyiyIKRaeyybIyma aa@4197@  ), f F c 0 [E;X;τ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI GiolaahAeadaqhaaWcbaGaaC4yaaqaaiaaicdaaaGccaaIBbGaamyr aiaaiUdacaWGybGaaG4oaiabes8a0jaai2faaaa@43E4@  и Eβ[E] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrcqGHiiIZcqaH YoGycaaIBbGaamyraiaai2faaaa@4867@  

(AS)[E;X;τ;f;E](τcomp)[X] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaabg eacaqGtbGaaGykaiaaiUfacaWGfbGaaG4oaiaadIfacaaI7aGaeqiX dqNaaG4oaiaadAgacaaI7aWefv3ySLgznfgDOfdaryqr1ngBPrginf gDObYtUvgaiuaacqWFWesrcaaIDbGaeyicI4SaaGikaiabes8a0jab gkHiTiaabogacaqGVbGaaeyBaiaabchacaaIPaGaaG4waiaadIfaca aIDbaaaa@5AE1@ (3.5)

(в частности, (AS)[E;X;τ;f;E] C X [τ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaabg eacaqGtbGaaGykaiaaiUfacaWGfbGaaG4oaiaadIfacaaI7aGaeqiX dqNaaG4oaiaadAgacaaI7aWefv3ySLgznfgDOfdaryqr1ngBPrginf gDObYtUvgaiuaacqWFWesrcaaIDbGaeyicI4SaaC4qamaaBaaaleaa caWGybaabeaakiaaiUfacqaHepaDcaaIDbaaaa@55D6@  ). В связи с (3.3) отметим полезную связь с понятием компактификатора [26] (здесь и ниже MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSigI8gaaa@3941@  используется для обозначения композиции [23, c. 18] функций).

Предложение 3.1. Если K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@38D7@  и X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaaaa@38E4@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  непустые множества, τ 1 (ctop)[K], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiaaigdaaeqaaOGaeyicI4SaaGikaiaahogacqGHsislcaqG 0bGaae4BaiaabchacaaIPaGaaG4waiaadUeacaaIDbGaaGilaaaa@45AD@   τ 2 (top)[X], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiaaikdaaeqaaOGaeyicI4SaaGikaiaabshacaqGVbGaaeiC aiaaiMcacaaIBbGaamiwaiaai2facaaISaaaaa@43E2@   m K E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgI GiolaadUeadaahaaWcbeqaaiaadweaaaaaaa@3C44@  и gC(K, τ 1 ,X, τ 2 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgI GiolaadoeacaaIOaGaam4saiaaiYcacqaHepaDdaWgaaWcbaGaaGym aaqabaGccaaISaGaamiwaiaaiYcacqaHepaDdaWgaaWcbaGaaGOmaa qabaGccaaIPaGaaGilaaaa@4696@  то

gm F c 0 [E;X; τ 2 ]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiablI HiVjaad2gacqGHiiIZcaWHgbWaa0baaSqaaiaahogaaeaacaaIWaaa aOGaaG4waiaadweacaaI7aGaamiwaiaaiUdacqaHepaDdaWgaaWcba GaaGOmaaqabaGccaaIDbGaaGOlaaaa@47BB@ (3.6)

Доказательство. Фиксируем E, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiaaiY cacaaMb8oaaa@3B11@   X, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiaaiY cacaaMb8oaaa@3B24@   τ 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiaaigdaaeqaaOGaaGilaiaaygW7aaa@3CFD@   τ 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiaaikdaaeqaaOGaaGilaiaaygW7aaa@3CFE@   m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaaaa@38F9@  и g MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@38F3@  в соответствии с условиями. Тогда g 1 (K)( τ 2 comp)[X] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaCa aaleqabaGaaGymaaaakiaaiIcacaWGlbGaaGykaiabgIGiolaaiIca cqaHepaDdaWgaaWcbaGaaGOmaaqabaGccqGHsislcaqGJbGaae4Bai aab2gacaqGWbGaaGykaiaaiUfacaWGybGaaGyxaaaa@490B@  (см. [23, c. 199]) и (gm) 1 (E) g 1 (K). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadE gacqWIyiYBcaWGTbGaaGykamaaCaaaleqabaGaaGymaaaakiaaiIca caWGfbGaaGykaiabgkOimlaadEgadaahaaWcbeqaaiaaigdaaaGcca aIOaGaam4saiaaiMcacaaIUaaaaa@466C@  Тогда (gm) 1 (E) ( τ 2 comp) 0 [X]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadE gacqWIyiYBcaWGTbGaaGykamaaCaaaleqabaGaaGymaaaakiaaiIca caWGfbGaaGykaiabgIGiolaaiIcacqaHepaDdaWgaaWcbaGaaGOmaa qabaGccqGHsislcaqGJbGaae4Baiaab2gacaqGWbGaaGykamaaCaaa leqabaGaaGimaaaakiaaiUfacaWGybGaaGyxaiaai6caaaa@4E3F@  Из (3.3) получаем нужное свойство (3.6).

Предложение 3.2. Если (X,τ),X, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI facaaISaGaeqiXdqNaaGykaiaaiYcacaWGybGaeyiyIKRaeyybIySa aGilaaaa@424D@  есть T 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIYaaabeaaaaa@39C8@  -пространство (т. е. τ (top) 0 [X] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaey icI4SaaGikaiaabshacaqGVbGaaeiCaiaaiMcadaWgaaWcbaGaaGim aaqabaGccaaIBbGaamiwaiaai2faaaa@432A@  ) и f F c 0 [E;X;τ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI GiolaahAeadaqhaaWcbaGaaC4yaaqaaiaaicdaaaGccaaIBbGaamyr aiaaiUdacaWGybGaaG4oaiabes8a0jaai2facaaISaaaaa@449A@  то

N τ 0 [(AS)[E;X;τ;f;E]]= ΣE N τ 0 [cl( f 1 (Σ),τ)]Eβ[E]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOtamaaDa aaleaacqaHepaDaeaacaaIWaaaaOGaaG4waiaaiIcacaqGbbGaae4u aiaaiMcacaaIBbGaamyraiaaiUdacaWGybGaaG4oaiabes8a0jaaiU dacaWGMbGaaG4oamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacfaGae8hmHuKaaGyxaiaai2facaaI9aWaambuaeqaleaacqqHJo WucqGHiiIZcqWFWesraeqaniablQIivbGccaWHobWaa0baaSqaaiab es8a0bqaaiaaicdaaaGccaaIBbGaae4yaiaabYgacaaIOaGaamOzam aaCaaaleqabaGaaGymaaaakiaaiIcacqqHJoWucaaIPaGaaGilaiab es8a0jaaiMcacaaIDbGaaGjbVlaaysW7cqGHaiIicaaMi8Uae8hmHu KaeyicI4SaeqOSdiMaaG4waiaadweacaaIDbGaaGOlaaaa@77C1@ (3.7)

Доказательство. Будем использовать (2.7). При этом согласно (3.3) для некоторого K(τcomp)[X] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFkc=scqGHiiIZcaaI OaGaeqiXdqNaeyOeI0Iaae4yaiaab+gacaqGTbGaaeiCaiaaiMcaca aIBbGaamiwaiaai2faaaa@4FF3@  

f 1 (E)K. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCa aaleqabaGaaGymaaaakiaaiIcacaWGfbGaaGykaiabgkOimprr1ngB PrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NIWVKaaGOlaa aa@4AB4@ (3.8)

Тогда (см. (1.2)) τ | K (ctop)[K] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaaG iFamaaBaaaleaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3B aGqbaiab=Pi8lbqabaGccqGHiiIZcaaIOaGaaC4yaiabgkHiTiaabs hacaqGVbGaaeiCaiaaiMcacaaIBbGae8NIWVKaaGyxaaaa@52A9@  и (K,τ | K ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NIWVKaaGil aiabes8a0jaaiYhadaWgaaWcbaGae8NIWVeabeaakiaaiMcaaaa@4B5A@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  непустой (см. (3.8)) компакт. При этом, в частности, K C X [τ]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFkc=scqGHiiIZcaWH dbWaaSbaaSqaaiaadIfaaeqaaOGaaG4waiabes8a0jaai2facaaIUa aaaa@4BA0@  Пусть Eβ[E]; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrcqGHiiIZcqaH YoGycaaIBbGaamyraiaai2facaaI7aaaaa@492C@  тогда (см. (3.8))

cl( f 1 (Σ),τ)KΣE. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabY gacaaIOaGaamOzamaaCaaaleqabaGaaGymaaaakiaaiIcacqqHJoWu caaIPaGaaGilaiabes8a0jaaiMcacqGHckcZtuuDJXwAK1uy0HMmae Hbfv3ySLgzG0uy0HgiuD3BaGqbaiab=Pi8ljaaysW7caaMe8Uaeyia IiIaaGjcVlabfo6atjabgIGioprr1ngBPrwtHrhAXaqehuuDJXwAKb stHrhAG8KBLbacgaGae4hmHuKaaGOlaaaa@644C@

Как следствие получаем, что

cl( f 1 (Σ),τ) C K [τ | K ]ΣE. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabY gacaaIOaGaamOzamaaCaaaleqabaGaaGymaaaakiaaiIcacqqHJoWu caaIPaGaaGilaiabes8a0jaaiMcacqGHiiIZcaWHdbWaaSbaaSqaam rr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NIWVea beaakiaaiUfacqaHepaDcaaI8bWaaSbaaSqaaiab=Pi8lbqabaGcca aIDbGaaGjbVlaaysW7cqGHaiIicaaMi8Uaeu4OdmLaeyicI48efv3y SLgznfgDOfdarCqr1ngBPrginfgDObYtUvgaiyaacqGFWesrcaaIUa aaaa@6BED@

В итоге получаем очевидное свойство

F = Δ {cl( f 1 (Σ),τ):ΣE}P'( C K [τ | K ]). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrdaWfGaqaaiaa i2daaSqabeaacqGHuoaraaGccaaI7bGaae4yaiaabYgacaaIOaGaam OzamaaCaaaleqabaGaaGymaaaakiaaiIcacqqHJoWucaaIPaGaaGil aiabes8a0jaaiMcacaaI6aGaeu4OdmLaeyicI4Sae8hmHuKaaGyFai abgIGiolab=9q8qjaaiEcacaaIOaGaaC4qamaaBaaaleaatuuDJXwA K1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+Pi8lbqabaGcca aIBbGaeqiXdqNaaGiFamaaBaaaleaacqGFkc=saeqaaOGaaGyxaiaa iMcacaaIUaaaaa@70CA@ (3.9)

Теперь воспользуемся свойством (7): имеем равенство

N τ | K 0 [ ΣE cl( f 1 (Σ),τ)]= KFin(F) N τ | K 0 [ FK F]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOtamaaDa aaleaacqaHepaDcaaI8bWaaSbaaeaatuuDJXwAK1uy0HMmaeHbfv3y SLgzG0uy0HgiuD3BaGqbaiab=Pi8lbqabaaabaGaaGimaaaakiaaiU fadaafqbqabSqaaiabfo6atjabgIGioprr1ngBPrwtHrhAXaqehuuD JXwAKbstHrhAG8KBLbacgaGae4hmHueabeqdcqWIPissaOGaae4yai aabYgacaaIOaGaamOzamaaCaaaleqabaGaaGymaaaakiaaiIcacqqH JoWucaaIPaGaaGilaiabes8a0jaaiMcacaaIDbGaaGypamaatafabe WcbaGae4NcXVKaeyicI4SaaeOraiaabMgacaqGUbGaaGikaiab+fti gjaaiMcaaeqaniablQIivbGccaWHobWaa0baaSqaaiabes8a0jaaiY hadaWgaaqaaiab=Pi8lbqabaaabaGaaGimaaaakiaaiUfadaafqbqa bSqaaiaadAeacqGHiiIZcqGFke=saeqaniablMIijbGccaWGgbGaaG yxaiaai6caaaa@7F64@

С учетом (3.2) получаем, как следствие, что (AS)[E;X;τ;f;E]P(K) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaabg eacaqGtbGaaGykaiaaiUfacaWGfbGaaG4oaiaadIfacaaI7aGaeqiX dqNaaG4oaiaadAgacaaI7aWefv3ySLgznfgDOfdaryqr1ngBPrginf gDObYtUvgaiuaacqWFWesrcaaIDbGaeyicI4Sae83dXdLaaGikamrr 1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4NIWVKaaG ykaaaa@5F8E@  и

N τ | K 0 [(AS)[E;X;τ;f;E]]= KFin(F) N τ | K 0 [ FK F]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOtamaaDa aaleaacqaHepaDcaaI8bWaaSbaaeaatuuDJXwAK1uy0HMmaeHbfv3y SLgzG0uy0HgiuD3BaGqbaiab=Pi8lbqabaaabaGaaGimaaaakiaaiU facaaIOaGaaeyqaiaabofacaaIPaGaaG4waiaadweacaaI7aGaamiw aiaaiUdacqaHepaDcaaI7aGaamOzaiaaiUdatuuDJXwAK1uy0Hwmae Xbfv3ySLgzG0uy0Hgip5wzaGGbaiab+btifjaai2facaaIDbGaaGyp amaatafabeWcbaGae4NcXVKaeyicI4SaaeOraiaabMgacaqGUbGaaG ikaiab+ftigjaaiMcaaeqaniablQIivbGccaWHobWaa0baaSqaaiab es8a0jaaiYhadaWgaaqaaiab=Pi8lbqabaaabaGaaGimaaaakiaaiU fadaafqbqabSqaaiaadAeacqGHiiIZcqGFke=saeqaniablMIijbGc caWGgbGaaGyxaiaai6caaaa@7C64@ (3.10)

Пусть G N τ 0 [(AS)[E;X;τ;f;E]]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFgc=rcqGHiiIZcaWH obWaa0baaSqaaiabes8a0bqaaiaaicdaaaGccaaIBbGaaGikaiaabg eacaqGtbGaaGykaiaaiUfacaWGfbGaaG4oaiaadIfacaaI7aGaeqiX dqNaaG4oaiaadAgacaaI7aWefv3ySLgznfgDOfdarCqr1ngBPrginf gDObYtUvgaiyaacqGFWesrcaaIDbGaaGyxaiaai6caaaa@625D@  Тогда GK N τ | K 0 [(AS)[E;X;τ;f;E]] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFgc=rcqGHPiYXcqWF kc=scqGHiiIZcaWHobWaa0baaSqaaiabes8a0jaaiYhadaWgaaqaai ab=Pi8lbqabaaabaGaaGimaaaakiaaiUfacaaIOaGaaeyqaiaabofa caaIPaGaaG4waiaadweacaaI7aGaamiwaiaaiUdacqaHepaDcaaI7a GaamOzaiaaiUdatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wz aGGbaiab+btifjaai2facaaIDbaaaa@68FE@  и, согласно (3.9), (3.10) для некоторых n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xf H4eaaa@452A@  и ( Σ i ) i 1,n ¯ E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabfo 6atnaaBaaaleaacaWGPbaabeaakiaaiMcadaWgaaWcbaGaamyAaiab gIGiopaanaaabaGaaGymaiaaiYcacaWGUbaaaaqabaGccqGHiiIZtu uDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=btifnaa CaaaleqabaGaamOBaaaaaaa@4E7A@  

GK N τ | K 0 [ i=1 n cl( f 1 ( Σ i ),τ)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFgc=rcqGHPiYXcqWF kc=scqGHiiIZcaWHobWaa0baaSqaaiabes8a0jaaiYhadaWgaaqaai ab=Pi8lbqabaaabaGaaGimaaaakiaaiUfadaafWbqabSqaaiaadMga caaI9aGaaGymaaqaaiaad6gaa0GaeSykIKeakiaabogacaqGSbGaaG ikaiaadAgadaahaaWcbeqaaiaaigdaaaGccaaIOaGaeu4Odm1aaSba aSqaaiaadMgaaeqaaOGaaGykaiaaiYcacqaHepaDcaaIPaGaaGyxai aai6caaaa@63AE@ (3.11)

При этом (см. (3.1)) рассуждением по индукции устанавливается, что для некоторого ΞE MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaey icI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWF Wesraaa@45B4@  

Ξ i=1 n Σ i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaey OGIW8aaqbCaeqaleaacaWGPbGaaGypaiaaigdaaeaacaWGUbaaniab lMIijbGccqqHJoWudaWgaaWcbaGaamyAaaqabaaaaa@435A@

(см. [13, (3.3.16)]). Тогда, как следствие, cl( f 1 (Ξ),τ) i=1 n cl( f 1 ( Σ i ),τ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabY gacaaIOaGaamOzamaaCaaaleqabaGaaGymaaaakiaaiIcacqqHEoaw caaIPaGaaGilaiabes8a0jaaiMcacqGHckcZdaafWbqabSqaaiaadM gacaaI9aGaaGymaaqaaiaad6gaa0GaeSykIKeakiaabogacaqGSbGa aGikaiaadAgadaahaaWcbeqaaiaaigdaaaGccaaIOaGaeu4Odm1aaS baaSqaaiaadMgaaeqaaOGaaGykaiaaiYcacqaHepaDcaaIPaGaaGil aaaa@5608@  а потому (см. (3.11)) cl( f 1 (Ξ),τ)GKG MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabY gacaaIOaGaamOzamaaCaaaleqabaGaaGymaaaakiaaiIcacqqHEoaw caaIPaGaaGilaiabes8a0jaaiMcacqGHckcZtuuDJXwAK1uy0HMmae Hbfv3ySLgzG0uy0HgiuD3BaGqbaiab=zi8hjabgMIihlab=Pi8ljab gkOimlab=zi8hbaa@5889@ ; это означает, что G N τ 0 [cl( f 1 (Ξ),τ)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFgc=rcqGHiiIZcaWH obWaa0baaSqaaiabes8a0bqaaiaaicdaaaGccaaIBbGaae4yaiaabY gacaaIOaGaamOzamaaCaaaleqabaGaaGymaaaakiaaiIcacqqHEoaw caaIPaGaaGilaiabes8a0jaaiMcacaaIDbaaaa@5544@  и, тем более,

G ΣE N τ 0 [cl( f 1 (Σ),τ)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFgc=rcqGHiiIZdaWe qbqabSqaaiabfo6atjabgIGioprr1ngBPrwtHrhAXaqehuuDJXwAKb stHrhAG8KBLbacgaGae4hmHueabeqdcqWIQisvaOGaaCOtamaaDaaa leaacqaHepaDaeaacaaIWaaaaOGaaG4waiaabogacaqGSbGaaGikai aadAgadaahaaWcbeqaaiaaigdaaaGccaaIOaGaeu4OdmLaaGykaiaa iYcacqaHepaDcaaIPaGaaGyxaiaai6caaaa@6569@

Поскольку выбор G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFgc=raaa@43EC@  был произвольным, установлено вложение

N τ 0 [(AS)[E;X;τ;f;E]] ΣE N τ 0 [cl( f 1 (Σ),τ)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOtamaaDa aaleaacqaHepaDaeaacaaIWaaaaOGaaG4waiaaiIcacaqGbbGaae4u aiaaiMcacaaIBbGaamyraiaaiUdacaWGybGaaG4oaiabes8a0jaaiU dacaWGMbGaaG4oamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacfaGae8hmHuKaaGyxaiaai2facqGHckcZdaWeqbqabSqaaiabfo 6atjabgIGiolab=btifbqab0GaeSOkIufakiaah6eadaqhaaWcbaGa eqiXdqhabaGaaGimaaaakiaaiUfacaqGJbGaaeiBaiaaiIcacaWGMb WaaWbaaSqabeaacaaIXaaaaOGaaGikaiabfo6atjaaiMcacaaISaGa eqiXdqNaaGykaiaai2facaaIUaaaaa@6CA5@ (3.12)

С другой стороны, в силу (3.2) имеем свойство

N τ 0 [cl( f 1 ( Σ ˜ ),τ)] N τ 0 [(AS)[E;X;τ;f;E]] Σ ˜ E. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOtamaaDa aaleaacqaHepaDaeaacaaIWaaaaOGaaG4waiaabogacaqGSbGaaGik aiaadAgadaahaaWcbeqaaiaaigdaaaGccaaIOaGafu4OdmLbaGaaca aIPaGaaGilaiabes8a0jaaiMcacaaIDbGaeyOGIWSaaCOtamaaDaaa leaacqaHepaDaeaacaaIWaaaaOGaaG4waiaaiIcacaqGbbGaae4uai aaiMcacaaIBbGaamyraiaaiUdacaWGybGaaG4oaiabes8a0jaaiUda caWGMbGaaG4oamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLb acfaGae8hmHuKaaGyxaiaai2facaaMe8UaaGjbVlabgcGiIiqbfo6a tzaaiaGaeyicI4Sae8hmHuKaaGOlaaaa@6EEE@

Последнее свойство доставляет вложение, противоположное (3.12), и, следовательно, равенство

N τ 0 [(AS)[E;X;τ;f;E]]= ΣE N τ 0 [cl( f 1 (Σ),τ)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOtamaaDa aaleaacqaHepaDaeaacaaIWaaaaOGaaG4waiaaiIcacaqGbbGaae4u aiaaiMcacaaIBbGaamyraiaaiUdacaWGybGaaG4oaiabes8a0jaaiU dacaWGMbGaaG4oamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacfaGae8hmHuKaaGyxaiaai2facaaI9aWaambuaeqaleaacqqHJo WucqGHiiIZcqWFWesraeqaniablQIivbGccaWHobWaa0baaSqaaiab es8a0bqaaiaaicdaaaGccaaIBbGaae4yaiaabYgacaaIOaGaamOzam aaCaaaleqabaGaaGymaaaakiaaiIcacqqHJoWucaaIPaGaaGilaiab es8a0jaaiMcacaaIDbGaaGOlaaaa@6B70@

Поскольку выбор E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesraaa@42AC@  был произвольным, (3.7) установлено.

Из (2.1) и предложения 3.2 легко следует свойство: если (X,τ),X, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI facaaISaGaeqiXdqNaaGykaiaaiYcacaWGybGaeyiyIKRaeyybIySa aGilaaaa@424D@  есть T 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIYaaabeaaaaa@39C8@  -пространство, f F c 0 [E;X;τ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI GiolaahAeadaqhaaWcbaGaaC4yaaqaaiaaicdaaaGccaaIBbGaamyr aiaaiUdacaWGybGaaG4oaiabes8a0jaai2faaaa@43E4@  и Eβ[E], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrcqGHiiIZcqaH YoGycaaIBbGaamyraiaai2facaaISaaaaa@491D@  то

N τ [(AS)[E;X;τ;f;E]]= ΣE N τ [cl( f 1 (Σ),τ)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOtamaaBa aaleaacqaHepaDaeqaaOGaaG4waiaaiIcacaqGbbGaae4uaiaaiMca caaIBbGaamyraiaaiUdacaWGybGaaG4oaiabes8a0jaaiUdacaWGMb GaaG4oamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8hmHuKaaGyxaiaai2facaaI9aWaambuaeqaleaacqqHJoWucqGHii IZcqWFWesraeqaniablQIivbGccaWHobWaaSbaaSqaaiabes8a0bqa baGccaaIBbGaae4yaiaabYgacaaIOaGaamOzamaaCaaaleqabaGaaG ymaaaakiaaiIcacqqHJoWucaaIPaGaaGilaiabes8a0jaaiMcacaaI DbGaaGOlaaaa@69FA@ (3.13)

С учетом (3.2) и (3.13) получаем, конечно, что для всяких T 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIYaaabeaaaaa@39C8@  -пространства (X,τ),X, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI facaaISaGaeqiXdqNaaGykaiaaiYcacaWGybGaeyiyIKRaeyybIySa aGilaaaa@424D@   f F c 0 [E;X;τ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI GiolaahAeadaqhaaWcbaGaaC4yaaqaaiaaicdaaaGccaaIBbGaamyr aiaaiUdacaWGybGaaG4oaiabes8a0jaai2facaaISaaaaa@449A@   Eβ[E] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrcqGHiiIZcqaH YoGycaaIBbGaamyraiaai2faaaa@4867@  и H N τ [(AS)[E;X;τ;f;E]] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiabgI Giolaah6eadaWgaaWcbaGaeqiXdqhabeaakiaaiUfacaaIOaGaaeyq aiaabofacaaIPaGaaG4waiaadweacaaI7aGaamiwaiaaiUdacqaHep aDcaaI7aGaamOzaiaaiUdatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy 0Hgip5wzaGqbaiab=btifjaai2facaaIDbaaaa@55D1@  непременно

ΣE:(AS)[E;X;τ;f;E]cl( f 1 (Σ),τ)H; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4aIqIaaG jcVlabfo6atjabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhA G8KBLbacfaGae8hmHuKaaGOoaiaaiIcacaqGbbGaae4uaiaaiMcaca aIBbGaamyraiaaiUdacaWGybGaaG4oaiabes8a0jaaiUdacaWGMbGa aG4oaiab=btifjaai2facqGHckcZcaqGJbGaaeiBaiaaiIcacaWGMb WaaWbaaSqabeaacaaIXaaaaOGaaGikaiabfo6atjaaiMcacaaISaGa eqiXdqNaaGykaiabgkOimlaadIeacaaI7aaaaa@6634@ (3.14)

при этом N τ 0 [(AS)[E;X;τ;f;E]] N τ [(AS)[E;X;τ;f;E]]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOtamaaDa aaleaacqaHepaDaeaacaaIWaaaaOGaaG4waiaaiIcacaqGbbGaae4u aiaaiMcacaaIBbGaamyraiaaiUdacaWGybGaaG4oaiabes8a0jaaiU dacaWGMbGaaG4oamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacfaGae8hmHuKaaGyxaiaai2facqGHckcZcaWHobWaaSbaaSqaai abes8a0bqabaGccaaIBbGaaGikaiaabgeacaqGtbGaaGykaiaaiUfa caWGfbGaaG4oaiaadIfacaaI7aGaeqiXdqNaaG4oaiaadAgacaaI7a Gae8hmHuKaaGyxaiaai2facaaIUaaaaa@68DE@  В (3.14) мы имеем свойство реализуемости МП с точностью до любой наперед выбранной окрестности в классе замыканий образов множеств из семейства E; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrcaaI7aaaaa@4371@  имеется в виду реализация в виде вилки.

Теорема 3.1. Если (X,τ),X, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI facaaISaGaeqiXdqNaaGykaiaaiYcacaWGybGaeyiyIKRaeyybIySa aGilaaaa@424D@  есть T 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIYaaabeaaaaa@39C8@  -пространство ( X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaaaa@38E4@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  непустое множество и τ (top) 0 [X] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaey icI4SaaGikaiaabshacaqGVbGaaeiCaiaaiMcadaWgaaWcbaGaaGim aaqabaGccaaIBbGaamiwaiaai2faaaa@432A@  ), f F c 0 [E;X;τ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI GiolaahAeadaqhaaWcbaGaaC4yaaqaaiaaicdaaaGccaaIBbGaamyr aiaaiUdacaWGybGaaG4oaiabes8a0jaai2facaaISaaaaa@449A@   E 1 β[E] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrdaWgaaWcbaGa aGymaaqabaGccqGHiiIZcqaHYoGycaaIBbGaamyraiaai2faaaa@4958@  и E 2 β[E], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrdaWgaaWcbaGa aGOmaaqabaGccqGHiiIZcqaHYoGycaaIBbGaamyraiaai2facaaISa aaaa@4A0F@  то

((AS)[E;X;τ;f; E 1 ](AS)[E;X;τ;f; E 2 ]=)( Σ 1 E 1 Σ 2 E 2 G 1 N τ 0 [cl( f 1 ( Σ 1 ),τ)] G 2 N τ 0 [cl( f 1 ( Σ 2 ),τ)]: G 1 G 2 =). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeGabiqaaa qaaiaaiIcacaaIOaGaaeyqaiaabofacaaIPaGaaG4waiaadweacaaI 7aGaamiwaiaaiUdacqaHepaDcaaI7aGaamOzaiaaiUdatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=btifnaaBaaaleaa caaIXaaabeaakiaai2facqGHPiYXcaaIOaGaaeyqaiaabofacaaIPa GaaG4waiaadweacaaI7aGaamiwaiaaiUdacqaHepaDcaaI7aGaamOz aiaaiUdacqWFWesrdaWgaaWcbaGaaGOmaaqabaGccaaIDbGaaGypai abgwGiglaaiMcacqGHuhY2caaIOaGaey4aIqIaaGjcVlabfo6atnaa BaaaleaacaaIXaaabeaakiabgIGiolab=btifnaaBaaaleaacaaIXa aabeaakiaaysW7caaMe8Uaey4aIqIaaGjcVlabfo6atnaaBaaaleaa caaIYaaabeaakiabgIGiolab=btifnaaBaaaleaacaaIYaaabeaaaO qaaiabgoGiKiaayIW7caWGhbWaaSbaaSqaaiaaigdaaeqaaOGaeyic I4SaaCOtamaaDaaaleaacqaHepaDaeaacaaIWaaaaOGaaG4waiaabo gacaqGSbGaaGikaiaadAgadaahaaWcbeqaaiaaigdaaaGccaaIOaGa eu4Odm1aaSbaaSqaaiaaigdaaeqaaOGaaGykaiaaiYcacqaHepaDca aIPaGaaGyxaiaaysW7caaMe8Uaey4aIqIaaGjcVlaadEeadaWgaaWc baGaaGOmaaqabaGccqGHiiIZcaWHobWaa0baaSqaaiabes8a0bqaai aaicdaaaGccaaIBbGaae4yaiaabYgacaaIOaGaamOzamaaCaaaleqa baGaaGymaaaakiaaiIcacqqHJoWudaWgaaWcbaGaaGOmaaqabaGcca aIPaGaaGilaiabes8a0jaaiMcacaaIDbGaaGOoaiaadEeadaWgaaWc baGaaGymaaqabaGccqGHPiYXcaWGhbWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiabgwGiglaaiMcacaaIUaaaaaaa@B3E3@ (3.15)

Доказательство. Пусть (X,τ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI facaaISaGaeqiXdqNaaGykaiaaiYcaaaa@3D7A@   f, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiY caaaa@39A8@   E 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrdaWgaaWcbaGa aGymaaqabaaaaa@4393@  и E 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrdaWgaaWcbaGa aGOmaaqabaaaaa@4394@  удовлетворяют условиям предложения. Тогда, в частности, f X E ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI GiolaadIfadaahaaWcbeqaaiaadweaaaGccaaI7aaaaa@3D19@  при этом

(cl( f 1 (Σ),τ)P(X)Σ E 1 )&(cl( f 1 ( Σ ˜ ),τ)P(X) Σ ˜ E 2 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaabo gacaqGSbGaaGikaiaadAgadaahaaWcbeqaaiaaigdaaaGccaaIOaGa eu4OdmLaaGykaiaaiYcacqaHepaDcaaIPaGaeyicI48efv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFpepucaaIOaGaamiw aiaaiMcacaaMe8UaaGjbVlabgcGiIiaayIW7cqqHJoWucqGHiiIZcq WFWesrdaWgaaWcbaGaaGymaaqabaGccaaIPaGaaGOjaiaaiIcacaqG JbGaaeiBaiaaiIcacaWGMbWaaWbaaSqabeaacaaIXaaaaOGaaGikai qbfo6atzaaiaGaaGykaiaaiYcacqaHepaDcaaIPaGaeyicI4Sae83d XdLaaGikaiaadIfacaaIPaGaaGjbVlaaysW7cqGHaiIicaaMi8Uafu 4OdmLbaGaacqGHiiIZcqWFWesrdaWgaaWcbaGaaGOmaaqabaGccaaI PaGaaGOlaaaa@7B2C@

Справедливы (см. (3.2), (3.5)) следующие равенства

((AS)[E;X;τ;f; E 1 ]= Σ E 1 cl( f 1 (Σ),τ)(τcomp)[X]) &((AS)[E;X;τ;f; E 2 ]= Σ E 2 cl( f 1 (Σ),τ)(τcomp)[X]). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeGabiqaaa qaaiaaiIcacaaIOaGaaeyqaiaabofacaaIPaGaaG4waiaadweacaaI 7aGaamiwaiaaiUdacqaHepaDcaaI7aGaamOzaiaaiUdatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=btifnaaBaaaleaa caaIXaaabeaakiaai2facaaI9aWaaqbuaeqaleaacqqHJoWucqGHii IZcqWFWesrdaWgaaqaaiaaigdaaeqaaaqab0GaeSykIKeakiaaboga caqGSbGaaGikaiaadAgadaahaaWcbeqaaiaaigdaaaGccaaIOaGaeu 4OdmLaaGykaiaaiYcacqaHepaDcaaIPaGaeyicI4SaaGikaiabes8a 0jabgkHiTiaabogacaqGVbGaaeyBaiaabchacaaIPaGaaG4waiaadI facaaIDbGaaGykaaqaaiaaiAcacaaIOaGaaGikaiaabgeacaqGtbGa aGykaiaaiUfacaWGfbGaaG4oaiaadIfacaaI7aGaeqiXdqNaaG4oai aadAgacaaI7aGae8hmHu0aaSbaaSqaaiaaikdaaeqaaOGaaGyxaiaa i2dadaafqbqabSqaaiabfo6atjabgIGiolab=btifnaaBaaabaGaaG OmaaqabaaabeqdcqWIPissaOGaae4yaiaabYgacaaIOaGaamOzamaa CaaaleqabaGaaGymaaaakiaaiIcacqqHJoWucaaIPaGaaGilaiabes 8a0jaaiMcacqGHiiIZcaaIOaGaeqiXdqNaeyOeI0Iaae4yaiaab+ga caqGTbGaaeiCaiaaiMcacaaIBbGaamiwaiaai2facaaIPaGaaGOlaa aaaaa@9E3D@ (3.16)

С учетом предложения 3.2 получаем, что (см. (3.16))

N τ 0 [(AS)[E;X;τ;f; E 1 ]]= Σ E 1 N τ 0 [cl( f 1 (Σ),τ)], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOtamaaDa aaleaacqaHepaDaeaacaaIWaaaaOGaaG4waiaaiIcacaqGbbGaae4u aiaaiMcacaaIBbGaamyraiaaiUdacaWGybGaaG4oaiabes8a0jaaiU dacaWGMbGaaG4oamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacfaGae8hmHu0aaSbaaSqaaiaaigdaaeqaaOGaaGyxaiaai2faca aI9aWaambuaeqaleaacqqHJoWucqGHiiIZcqWFWesrdaWgaaqaaiaa igdaaeqaaaqab0GaeSOkIufakiaah6eadaqhaaWcbaGaeqiXdqhaba GaaGimaaaakiaaiUfacaqGJbGaaeiBaiaaiIcacaWGMbWaaWbaaSqa beaacaaIXaaaaOGaaGikaiabfo6atjaaiMcacaaISaGaeqiXdqNaaG ykaiaai2facaaISaaaaa@6D3B@ (3.17)

N τ 0 [(AS)[E;X;τ;f; E 2 ]]= Σ E 2 N τ 0 [cl( f 1 (Σ),τ)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOtamaaDa aaleaacqaHepaDaeaacaaIWaaaaOGaaG4waiaaiIcacaqGbbGaae4u aiaaiMcacaaIBbGaamyraiaaiUdacaWGybGaaG4oaiabes8a0jaaiU dacaWGMbGaaG4oamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacfaGae8hmHu0aaSbaaSqaaiaaikdaaeqaaOGaaGyxaiaai2faca aI9aWaambuaeqaleaacqqHJoWucqGHiiIZcqWFWesrdaWgaaqaaiaa ikdaaeqaaaqab0GaeSOkIufakiaah6eadaqhaaWcbaGaeqiXdqhaba GaaGimaaaakiaaiUfacaqGJbGaaeiBaiaaiIcacaWGMbWaaWbaaSqa beaacaaIXaaaaOGaaGikaiabfo6atjaaiMcacaaISaGaeqiXdqNaaG ykaiaai2facaaIUaaaaa@6D3F@ (3.18)

Далее, из (2.8) и (3.16) вытекает импликация

((AS)[E;X;τ;f; E 1 ](AS)[E;X;τ;f; E 2 ]=) ( G 1 N τ 0 [(AS)[E;X;τ;f; E 1 ]] G 2 N τ 0 [(AS)[E;X;τ;f; E 2 ]]: G 1 G 2 =). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaa qaaiaaiIcacaaIOaGaaeyqaiaabofacaaIPaGaaG4waiaadweacaaI 7aGaamiwaiaaiUdacqaHepaDcaaI7aGaamOzaiaaiUdatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=btifnaaBaaaleaa caaIXaaabeaakiaai2facqGHPiYXcaaIOaGaaeyqaiaabofacaaIPa GaaG4waiaadweacaaI7aGaamiwaiaaiUdacqaHepaDcaaI7aGaamOz aiaaiUdacqWFWesrdaWgaaWcbaGaaGOmaaqabaGccaaIDbGaaGypai abgwGiglaaiMcacaaMe8UaeyO0H4nabaGaaGikaiabgoGiKiaayIW7 caWGhbWaaSbaaSqaaiaaigdaaeqaaOGaeyicI4SaaCOtamaaDaaale aacqaHepaDaeaacaaIWaaaaOGaaG4waiaaiIcacaqGbbGaae4uaiaa iMcacaaIBbGaamyraiaaiUdacaWGybGaaG4oaiabes8a0jaaiUdaca WGMbGaaG4oaiab=btifnaaBaaaleaacaaIXaaabeaakiaai2facaaI DbGaaGjbVlaaysW7cqGHdicjcaaMi8Uaam4ramaaBaaaleaacaaIYa aabeaakiabgIGiolaah6eadaqhaaWcbaGaeqiXdqhabaGaaGimaaaa kiaaiUfacaaIOaGaaeyqaiaabofacaaIPaGaaG4waiaadweacaaI7a GaamiwaiaaiUdacqaHepaDcaaI7aGaamOzaiaaiUdacqWFWesrdaWg aaWcbaGaaGOmaaqabaGccaaIDbGaaGyxaiaaiQdacaWGhbWaaSbaaS qaaiaaigdaaeqaaOGaeyykICSaam4ramaaBaaaleaacaaIYaaabeaa kiaai2dacqGHfiIXcaaIPaGaaGOlaaaaaaa@A729@ (3.19)

Пусть истинна посылка импликации (3.19). Тогда для некоторых

( G 1 N τ 0 [(AS)[E;X;τ;f; E 1 ]])&( G 2 N τ 0 [(AS)[E;X;τ;f; E 2 ]]) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NHWF0aaSba aSqaaiaaigdaaeqaaOGaeyicI4SaaCOtamaaDaaaleaacqaHepaDae aacaaIWaaaaOGaaG4waiaaiIcacaqGbbGaae4uaiaaiMcacaaIBbGa amyraiaaiUdacaWGybGaaG4oaiabes8a0jaaiUdacaWGMbGaaG4oam rr1ngBPrwtHrhAXaqehuuDJXwAKbstHrhAG8KBLbacgaGae4hmHu0a aSbaaSqaaiaaigdaaeqaaOGaaGyxaiaai2facaaIPaGaaGOjaiaaiI cacqWFgc=rdaWgaaWcbaGaaGOmaaqabaGccqGHiiIZcaWHobWaa0ba aSqaaiabes8a0bqaaiaaicdaaaGccaaIBbGaaGikaiaabgeacaqGtb GaaGykaiaaiUfacaWGfbGaaG4oaiaadIfacaaI7aGaeqiXdqNaaG4o aiaadAgacaaI7aGae4hmHu0aaSbaaSqaaiaaikdaaeqaaOGaaGyxai aai2facaaIPaaaaa@7F54@ (3.20)

имеем равенство G 1 G 2 =. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFgc=rdaWgaaWcbaGa aGymaaqabaGccqGHPiYXcqWFgc=rdaWgaaWcbaGaaGOmaaqabaGcca aI9aGaeyybIySaaGOlaaaa@4CA7@  В силу (3.17), (3.18) и (3.20) имеем, что для некоторых Σ E 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafu4OdmLbau aacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqb aiab=btifnaaBaaaleaacaaIXaaabeaaaaa@46A7@  и Σ E 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafu4OdmLbau GbauaacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz aGqbaiab=btifnaaBaaaleaacaaIYaaabeaaaaa@46B3@  

( G 1 N τ 0 [cl( f 1 ( Σ ),τ)])&( G 2 N τ 0 [cl( f 1 ( Σ ),τ)]). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NHWF0aaSba aSqaaiaaigdaaeqaaOGaeyicI4SaaCOtamaaDaaaleaacqaHepaDae aacaaIWaaaaOGaaG4waiaabogacaqGSbGaaGikaiaadAgadaahaaWc beqaaiaaigdaaaGccaaIOaGafu4OdmLbauaacaaIPaGaaGilaiabes 8a0jaaiMcacaaIDbGaaGykaiaaiAcacaaIOaGae8NHWF0aaSbaaSqa aiaaikdaaeqaaOGaeyicI4SaaCOtamaaDaaaleaacqaHepaDaeaaca aIWaaaaOGaaG4waiaabogacaqGSbGaaGikaiaadAgadaahaaWcbeqa aiaaigdaaaGccaaIOaGafu4OdmLbauGbauaacaaIPaGaaGilaiabes 8a0jaaiMcacaaIDbGaaGykaiaai6caaaa@6F16@

Итак, установлена следующая импликация

((AS)[E;X;τ;f; E 1 ](AS)[E;X;τ;f; E 2 ]=) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaiI cacaqGbbGaae4uaiaaiMcacaaIBbGaamyraiaaiUdacaWGybGaaG4o aiabes8a0jaaiUdacaWGMbGaaG4oamrr1ngBPrwtHrhAXaqeguuDJX wAKbstHrhAG8KBLbacfaGae8hmHu0aaSbaaSqaaiaaigdaaeqaaOGa aGyxaiabgMIihlaaiIcacaqGbbGaae4uaiaaiMcacaaIBbGaamyrai aaiUdacaWGybGaaG4oaiabes8a0jaaiUdacaWGMbGaaG4oaiab=bti fnaaBaaaleaacaaIYaaabeaakiaai2facaaI9aGaeyybIySaaGykai aaysW7cqGHshI3aaa@6743@

( Σ 1 E 1 Σ 2 E 2 G 1 N τ 0 [cl( f 1 ( Σ 1 ),τ)] G 2 N τ 0 [cl( f 1 ( Σ 2 ),τ)]: G 1 G 2 =). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabgo GiKiaayIW7cqqHJoWudaWgaaWcbaGaaGymaaqabaGccqGHiiIZtuuD JXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=btifnaaBa aaleaacaaIXaaabeaakiaaysW7caaMe8Uaey4aIqIaaGjcVlabfo6a tnaaBaaaleaacaaIYaaabeaakiabgIGiolab=btifnaaBaaaleaaca aIYaaabeaakiaaysW7caaMe8Uaey4aIqIaaGjcVlaadEeadaWgaaWc baGaaGymaaqabaGccqGHiiIZcaWHobWaa0baaSqaaiabes8a0bqaai aaicdaaaGccaaIBbGaae4yaiaabYgacaaIOaGaamOzamaaCaaaleqa baGaaGymaaaakiaaiIcacqqHJoWudaWgaaWcbaGaaGymaaqabaGcca aIPaGaaGilaiabes8a0jaaiMcacaaIDbGaaGjbVlaaysW7cqGHdicj caaMi8Uaam4ramaaBaaaleaacaaIYaaabeaakiabgIGiolaah6eada qhaaWcbaGaeqiXdqhabaGaaGimaaaakiaaiUfacaqGJbGaaeiBaiaa iIcacaWGMbWaaWbaaSqabeaacaaIXaaaaOGaaGikaiabfo6atnaaBa aaleaacaaIYaaabeaakiaaiMcacaaISaGaeqiXdqNaaGykaiaai2fa caaI6aGaam4ramaaBaaaleaacaaIXaaabeaakiabgMIihlaadEeada WgaaWcbaGaaGOmaaqabaGccaaI9aGaeyybIySaaGykaiaai6caaaa@92CB@

С учетом (3.16) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ ( 3.18) легко устанавливается (см. определение раздела 2) противоположная импликация, чем и завершается обоснование (3.15).

Предложение 3.3. Если X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaaaa@38E4@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  непустое множество и τ (top) 0 [X], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaey icI4SaaGikaiaabshacaqGVbGaaeiCaiaaiMcadaWgaaWcbaGaaGim aaqabaGccaaIBbGaamiwaiaai2facaaISaaaaa@43E0@   f F c 0 [E;X;τ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI GiolaahAeadaqhaaWcbaGaaC4yaaqaaiaaicdaaaGccaaIBbGaamyr aiaaiUdacaWGybGaaG4oaiabes8a0jaai2facaaISaaaaa@449A@   E 1 β[E] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrdaWgaaWcbaGa aGymaaqabaGccqGHiiIZcqaHYoGycaaIBbGaamyraiaai2faaaa@4958@  и E 2 β[E], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrdaWgaaWcbaGa aGOmaaqabaGccqGHiiIZcqaHYoGycaaIBbGaamyraiaai2facaaISa aaaa@4A0F@  то

((AS)[E;X;τ;f; E 1 ](AS)[E;X;τ;f; E 2 ]=) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaiI cacaqGbbGaae4uaiaaiMcacaaIBbGaamyraiaaiUdacaWGybGaaG4o aiabes8a0jaaiUdacaWGMbGaaG4oamrr1ngBPrwtHrhAXaqeguuDJX wAKbstHrhAG8KBLbacfaGae8hmHu0aaSbaaSqaaiaaigdaaeqaaOGa aGyxaiabgMIihlaaiIcacaqGbbGaae4uaiaaiMcacaaIBbGaamyrai aaiUdacaWGybGaaG4oaiabes8a0jaaiUdacaWGMbGaaG4oaiab=bti fnaaBaaaleaacaaIYaaabeaakiaai2facaaI9aGaeyybIySaaGykai aaysW7cqGHuhY2aaa@6742@

( Σ 1 E 1 Σ 2 E 2 :cl( f 1 ( Σ 1 ),τ)cl( f 1 ( Σ 2 ),τ)=). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabgo GiKiaayIW7cqqHJoWudaWgaaWcbaGaaGymaaqabaGccqGHiiIZtuuD JXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=btifnaaBa aaleaacaaIXaaabeaakiaaysW7caaMe8Uaey4aIqIaaGjcVlabfo6a tnaaBaaaleaacaaIYaaabeaakiabgIGiolab=btifnaaBaaaleaaca aIYaaabeaakiaaiQdacaqGJbGaaeiBaiaaiIcacaWGMbWaaWbaaSqa beaacaaIXaaaaOGaaGikaiabfo6atnaaBaaaleaacaaIXaaabeaaki aaiMcacaaISaGaeqiXdqNaaGykaiabgMIihlaabogacaqGSbGaaGik aiaadAgadaahaaWcbeqaaiaaigdaaaGccaaIOaGaeu4Odm1aaSbaaS qaaiaaikdaaeqaaOGaaGykaiaaiYcacqaHepaDcaaIPaGaaGypaiab gwGiglaaiMcacaaIUaaaaa@731B@

Доказательство получается комбинацией (3.2) и теоремы 3.1 Итак, в случае хаусдорфова ТП (X,τ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI facaaISaGaeqiXdqNaaGykaiaaiYcaaaa@3D7A@   X, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiabgc Mi5kabgwGiglaaiYcaaaa@3CDA@  при f F c 0 [E;X;τ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI GiolaahAeadaqhaaWcbaGaaC4yaaqaaiaaicdaaaGccaaIBbGaamyr aiaaiUdacaWGybGaaG4oaiabes8a0jaai2facaaISaaaaa@449A@   E 1 β[E] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrdaWgaaWcbaGa aGymaaqabaGccqGHiiIZcqaHYoGycaaIBbGaamyraiaai2faaaa@4958@  и E 2 β[E] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrdaWgaaWcbaGa aGOmaaqabaGccqGHiiIZcqaHYoGycaaIBbGaamyraiaai2faaaa@4959@  эквивалентны следующие три утверждения:

1) (AS)[E;X;τ;f; E 1 ](AS)[E;X;τ;f; E 2 ]=; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaabg eacaqGtbGaaGykaiaaiUfacaWGfbGaaG4oaiaadIfacaaI7aGaeqiX dqNaaG4oaiaadAgacaaI7aWefv3ySLgznfgDOfdaryqr1ngBPrginf gDObYtUvgaiuaacqWFWesrdaWgaaWcbaGaaGymaaqabaGccaaIDbGa eyykICSaaGikaiaabgeacaqGtbGaaGykaiaaiUfacaWGfbGaaG4oai aadIfacaaI7aGaeqiXdqNaaG4oaiaadAgacaaI7aGae8hmHu0aaSba aSqaaiaaikdaaeqaaOGaaGyxaiaai2dacqGHfiIXcaaI7aaaaa@62B9@

2) Σ 1 E 1 Σ 2 E 2 G 1 N τ 0 [cl( f 1 ( Σ 1 ),τ)] G 2 N τ 0 [cl( f 1 ( Σ 2 ),τ)]: G 1 G 2 =; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4aIqIaaG jcVlabfo6atnaaBaaaleaacaaIXaaabeaakiabgIGioprr1ngBPrwt HrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8hmHu0aaSbaaSqaai aaigdaaeqaaOGaaGjbVlaaysW7cqGHdicjcaaMi8Uaeu4Odm1aaSba aSqaaiaaikdaaeqaaOGaeyicI4Sae8hmHu0aaSbaaSqaaiaaikdaae qaaOGaaGjbVlaaysW7cqGHdicjcaaMi8Uaam4ramaaBaaaleaacaaI XaaabeaakiabgIGiolaah6eadaqhaaWcbaGaeqiXdqhabaGaaGimaa aakiaaiUfacaqGJbGaaeiBaiaaiIcacaWGMbWaaWbaaSqabeaacaaI XaaaaOGaaGikaiabfo6atnaaBaaaleaacaaIXaaabeaakiaaiMcaca aISaGaeqiXdqNaaGykaiaai2facaaMe8UaaGjbVlabgoGiKiaayIW7 caWGhbWaaSbaaSqaaiaaikdaaeqaaOGaeyicI4SaaCOtamaaDaaale aacqaHepaDaeaacaaIWaaaaOGaaG4waiaabogacaqGSbGaaGikaiaa dAgadaahaaWcbeqaaiaaigdaaaGccaaIOaGaeu4Odm1aaSbaaSqaai aaikdaaeqaaOGaaGykaiaaiYcacqaHepaDcaaIPaGaaGyxaiaaiQda caWGhbWaaSbaaSqaaiaaigdaaeqaaOGaeyykICSaam4ramaaBaaale aacaaIYaaabeaakiaai2dacqGHfiIXcaaI7aaaaa@9173@

3) Σ E 1 Σ E 2 :cl( f 1 ( Σ ),τ)cl( f 1 ( Σ ),τ)=. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4aIqIaaG jcVlqbfo6atzaafaGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrgi nfgDObYtUvgaiuaacqWFWesrdaWgaaWcbaGaaGymaaqabaGccaaMe8 UaaGjbVlabgoGiKiaayIW7cuqHJoWugaqbgaqbaiabgIGiolab=bti fnaaBaaaleaacaaIYaaabeaakiaaiQdacaqGJbGaaeiBaiaaiIcaca WGMbWaaWbaaSqabeaacaaIXaaaaOGaaGikaiqbfo6atzaafaGaaGyk aiaaiYcacqaHepaDcaaIPaGaeyykICSaae4yaiaabYgacaaIOaGaam OzamaaCaaaleqabaGaaGymaaaakiaaiIcacuqHJoWugaqbgaqbaiaa iMcacaaISaGaeqiXdqNaaGykaiaai2dacqGHfiIXcaaIUaaaaa@6E36@

В заключении раздела отметим полезное свойство [27, раздел 2]: если (X,τ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI facaaISaGaeqiXdqNaaGykaiaaiYcaaaa@3D7A@   X, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiabgc Mi5kabgwGiglaaiYcaaaa@3CDA@  и (K,t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadU eacaaISaGaaCiDaiaaiMcacaaISaaaaa@3CA5@   K, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiabgc Mi5kabgwGiglaaiYcaaaa@3CCD@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  два ТП, m K E , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgI GiolaadUeadaahaaWcbeqaaiaadweaaaGccaaISaaaaa@3D04@   g C ap (K,t,X,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgI GiolaadoeadaWgaaWcbaGaaCyyaiaahchaaeqaaOGaaGikaiaadUea caaISaGaaCiDaiaaiYcacaWGybGaaGilaiabes8a0jaaiMcaaaa@454E@  и Eβ[E], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrcqGHiiIZcqaH YoGycaaIBbGaamyraiaai2facaaISaaaaa@491D@  то

(AS)[E;X;τ;gm;E]= g 1 ((AS)[E;K;t;m;E]); MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaabg eacaqGtbGaaGykaiaaiUfacaWGfbGaaG4oaiaadIfacaaI7aGaeqiX dqNaaG4oaiaadEgacaaMi8UaeSigI8MaaGjcVlaad2gacaaI7aWefv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrcaaI DbGaaGypaiaadEgadaahaaWcbeqaaiaaigdaaaGccaaIOaGaaGikai aabgeacaqGtbGaaGykaiaaiUfacaWGfbGaaG4oaiaadUeacaaI7aGa aCiDaiaaiUdacaWGTbGaaG4oaiab=btifjaai2facaaIPaGaaG4oaa aa@6583@ (3.21)

отметим в этой связи [28, (2.3), предложение 2.1]. В связи с (3.21) отметим следующий вариант условий, при которых данное равенство справедливо: (X,τ),X, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI facaaISaGaeqiXdqNaaGykaiaaiYcacaWGybGaeyiyIKRaeyybIySa aGilaaaa@424D@  есть T 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@39C7@  -пространство ( X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaaaa@38E4@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  непустое множество и τ(Dtop)[X] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaey icI4SaaGikamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbac faGae83aXtKaeyOeI0IaaeiDaiaab+gacaqGWbGaaGykaiaaiUfaca WGybGaaGyxaaaa@4E6E@  ), (K,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadU eacaaISaGaaCiDaiaaiMcaaaa@3BEF@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  компактное ТП (т. е. t(ctop)[K] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiDaiabgI GiolaaiIcacaWHJbGaeyOeI0IaaeiDaiaab+gacaqGWbGaaGykaiaa iUfacaWGlbGaaGyxaaaa@433E@  ), g C cl (K,t,X,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgI GiolaadoeadaWgaaWcbaGaae4yaiaabYgaaeqaaOGaaGikaiaadUea caaISaGaaCiDaiaaiYcacaWGybGaaGilaiabes8a0jaaiMcaaaa@4540@  и Eβ[E]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrcqGHiiIZcqaH YoGycaaIBbGaamyraiaai2facaaIUaaaaa@491F@

4. Множества притяжения в пространстве ультрафильтров с топологией стоуновского типа

Всюду в настоящем разделе фиксируем LΠ[E], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcqGHiiIZcqqH GoaucaaIBbGaamyraiaai2facaaISaaaaa@48E3@  получая в виде (E,L) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw eacaaISaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa cqWFsectcaaIPaaaaa@457A@  ИП с полуалгеброй множеств (в качестве L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectaaa@4295@  может, конечно, использоваться алгебра или σ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdmhaaa@39CA@  -алгебра п/м E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraaaa@38D1@  ). Напомним, что (см. (1.5)), в частности, L π ˜ 0 [E]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcqGHiiIZcuaH apaCgaacamaaCaaaleqabaGaaGimaaaakiaaiUfacaWGfbGaaGyxai aai6caaaa@4A24@  В виде

F * (L) = Δ {FP'(L)|(F)&(ABFAFBF) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaahaaWcbeqa aiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPrginfgDOb YtUvgaiyaacqGFsectcaaIPaWaaCbiaeaacaaI9aaaleqabaGaeyiL dqeaaOGaaG4Eaiab+ftigjabgIGiolab+9q8qjaaiEcacaaIOaGae4 NeHWKaaGykaiaacYhacaaIOaGaeyybIySaeyycI8Sae4xmHyKaaGyk aiaaiAcacaaIOaGaamyqaiabgMIihlaadkeacqGHiiIZcqGFXeIrca aMe8UaeyiaIiIaamyqaiabgIGiolab+ftigjaaysW7cqGHaiIicaWG cbGaeyicI4Sae4xmHyKaaGykaaaa@75C3@ (4.1)

&(FFLL:(FL)(LF))} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOjaiaaiI cacqGHaiIicaWGgbGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrgi nfgDObYtUvgaiuaacqWFXeIrcaaMe8UaeyiaIiIaaGjcVlaadYeacq GHiiIZcqWFsectcaaI6aGaaGikaiaadAeacqGHckcZcaWGmbGaaGyk aiabgkDiElaaiIcacaWGmbGaeyicI4Sae8xmHyKaaGykaiaaiMcaca aI9baaaa@5D25@

имеем множество всех фильтров ИП (E,L). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw eacaaISaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa cqWFsectcaaIPaGaaGOlaaaa@4632@  Тогда [29, раздел 3]

F 0 * (L) = Δ {U F * (L)|F F * (L)(UF)(U=F)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGa aGimaaqaaiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPr ginfgDObYtUvgaiyaacqGFsectcaaIPaWaaCbiaeaacaaI9aaaleqa baGaeyiLdqeaaOGaaG4Eaiab+rr8vjabgIGiolab=vi8gnaaCaaale qabaGaaGOkaaaakiaaiIcacqGFsectcaaIPaGaaiiFaiaaysW7cqGH aiIicaaMi8Uae4xmHyKaeyicI4Sae8xHWB0aaWbaaSqabeaacaaIQa aaaOGaaGikaiab+jrimjaaiMcacaaMe8UaaGjbVlaaiIcacqGFueFv cqGHckcZcqGFXeIrcaaIPaGaeyO0H4TaaGikaiab+rr8vjaai2dacq GFXeIrcaaIPaGaaGyFaaaa@7D1E@

={U F * (L)|LL(LUUU)(LU)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaaiU hatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=rr8 vjabgIGioprr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacga Gae4xHWB0aaWbaaSqabeaacaaIQaaaaOGaaGikaiab=jrimjaaiMca caGG8bGaeyiaIiIaamitaiabgIGiolab=jrimjaaysW7caaMe8UaaG ikaiaadYeacqGHPiYXcaWGvbGaeyiyIKRaeyybIySaaGjbVlaaysW7 cqGHaiIicaWGvbGaeyicI4Sae8hfXxLaaGykaiabgkDiElaaiIcaca WGmbGaeyicI4Sae8hfXxLaaGykaiaai2haaaa@774D@ (4.2)

={U(Cen)[L]|V(Cen)[L](UV)(U=V)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaaiU hatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=rr8 vjabgIGiolaaiIcacaqGdbGaaeyzaiaab6gacaaIPaGaaG4waiab=j rimjaai2facaGG8bGaeyiaIiIae8xfXBLaeyicI4SaaGikaiaaboea caqGLbGaaeOBaiaaiMcacaaIBbGae8NeHWKaaGyxaiaaysW7caaMe8 UaaGikaiab=rr8vjabgkOimlab=vr8wjaaiMcacqGHshI3caaIOaGa e8hfXxLaaGypaiab=vr8wjaaiMcacaaI9baaaa@6D28@

есть множество всех ультрафильтров (у/ф) ИП (E,L), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw eacaaISaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa cqWFsectcaaIPaGaaGilaaaa@4630@  совпадающее с множеством всех максимальных центрированных подсемейств L. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcaaIUaaaaa@434D@  В силу отделимости L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectaaa@4295@  имеем (см. [30, (5.9)]), что

(Ltriv)[x] = Δ {LL|xL} F 0 * (L)xE; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8NeHWKaeyOe I0IaaeiDaiaabkhacaqGPbGaaeODaiaaiMcacaaIBbGaamiEaiaai2 fadaWfGaqaaiaai2daaSqabeaacqGHuoaraaGccaaI7bGaamitaiab gIGiolab=jrimjaacYhacaWG4bGaeyicI4Saamitaiaai2hacqGHii IZtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+vi8 gnaaDaaaleaacaaIWaaabaGaaGOkaaaakiaaiIcacqWFsectcaaIPa GaaGjbVlaaysW7cqGHaiIicaaMi8UaamiEaiabgIGiolaadweacaaI 7aaaaa@72BA@ (4.3)

в (4.3) введены тривиальные у/ф ИП (E,L). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw eacaaISaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa cqWFsectcaaIPaGaaGOlaaaa@4632@  Далее, при LL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8Ne HWeaaa@44EA@  вводим множество

Φ L (L) = Δ {U F 0 * (L)|LU}={U F 0 * (L)|LUUU}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8NeHWeabeaakiaaiIcacaWGmbGaaGykamaaxacabaGaaGypaaWcbe qaaiabgs5aebaakiaaiUhacqWFueFvcqGHiiIZtuuDJXwAK1uy0HMm aeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+vi8gnaaDaaaleaacaaIWa aabaGaaGOkaaaakiaaiIcacqWFsectcaaIPaGaaiiFaiaadYeacqGH iiIZcqWFueFvcaaI9bGaaGypaiaaiUhacqWFueFvcqGHiiIZcqGFfc VrdaqhaaWcbaGaaGimaaqaaiaaiQcaaaGccaaIOaGae8NeHWKaaGyk aiaacYhacaWGmbGaeyykICSaamyvaiabgcMi5kabgwGiglaaysW7ca aMe8UaeyiaIiIaamyvaiabgIGiolab=rr8vjaai2hacaaIUaaaaa@807C@ (4.4)

Тогда 29, раздел 3] семейство (UF)[E;L] = Δ { Φ L (L):LL}π[ F 0 * (L)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8hLWxLae8xH WBKaaGykaiaaiUfacaWGfbGaaG4oamrr1ngBPrwtHrhAXaqehuuDJX wAKbstHrhAG8KBLbacgaGae4NeHWKaaGyxamaaxacabaGaaGypaaWc beqaaiabgs5aebaakiaaiUhacaaMe8UaeuOPdy0aaSbaaSqaaiab+j rimbqabaGccaaIOaGaamitaiaaiMcacaaI6aGaaGjbVlaadYeacqGH iiIZcqGFsectcaaI9bGaeyicI4SaeqiWdaNaaG4waiab=vi8gnaaDa aaleaacaaIWaaabaGaaGOkaaaakiaaiIcacqGFsectcaaIPaGaaGyx aaaa@719D@  является, в частности, (открытой) базой топологии

T L * [E] = Δ {GP( F 0 * (L))|UGLU: Φ L (L)G} (ctop) 0 [ F 0 * (L)]; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCivamaaDa aaleaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab =jrimbqaaiaaiQcaaaGccaaIBbGaamyraiaai2fadaWfGaqaaiaai2 daaSqabeaacqGHuoaraaGccaaI7bGaam4raiabgIGiolab=9q8qjaa iIcatuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+v i8gnaaDaaaleaacaaIWaaabaGaaGOkaaaakiaaiIcacqWFsectcaaI PaGaaGykaiaacYhacqGHaiIicqWFueFvcqGHiiIZcaWGhbGaaGjbVl aaysW7cqGHdicjcaaMi8UaamitaiabgIGiolab=rr8vjaaiQdacqqH MoGrdaWgaaWcbaGae8NeHWeabeaakiaaiIcacaWGmbGaaGykaiabgk OimlaadEeacaaI9bGaeyicI4SaaGikaiaahogacqGHsislcaqG0bGa ae4BaiaabchacaaIPaWaaSbaaSqaaiaaicdaaeqaaOGaaG4waiab+v i8gnaaDaaaleaacaaIWaaabaGaaGOkaaaakiaaiIcacqWFsectcaaI PaGaaGyxaiaaiUdaaaa@8A91@ (4.5)

в связи с (4.5) см. [28, замечание 5.1]. При этом см.[27, (2.9)]

(UF)[E;L] T L * [E] C F 0 * (L) [ T L * [E]]; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8hLWxLae8xH WBKaaGykaiaaiUfacaWGfbGaaG4oamrr1ngBPrwtHrhAXaqehuuDJX wAKbstHrhAG8KBLbacgaGae4NeHWKaaGyxaiabgkOimlaahsfadaqh aaWcbaGae4NeHWeabaGaaGOkaaaakiaaiUfacaWGfbGaaGyxaiabgM IihlaahoeadaWgaaWcbaGae8xHWB0aa0baaeaacaaIWaaabaGaaGOk aaaacaaIOaGae4NeHWKaaGykaaqabaGccaaIBbGaaCivamaaDaaale aacqGFsectaeaacaaIQaaaaOGaaG4waiaadweacaaIDbGaaGyxaiaa iUdaaaa@6DBE@ (4.6)

в силу (4.6) получаем, что компакт, определяемый в (4.5), является нульмерным. В силу (4.3) определено отображение

(Ltriv)[] = Δ ((Ltriv)[x]) xE F 0 * (L) E . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8NeHWKaeyOe I0IaaeiDaiaabkhacaqGPbGaaeODaiaaiMcacaaIBbGaeyyXICTaaG yxamaaxacabaGaaGypaaWcbeqaaiabgs5aebaakiaaiIcacaaIOaGa e8NeHWKaeyOeI0IaaeiDaiaabkhacaqGPbGaaeODaiaaiMcacaaIBb GaamiEaiaai2facaaIPaWaaSbaaSqaaiaadIhacqGHiiIZcaWGfbaa beaakiabgIGioprr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVb acgaGae4xHWB0aa0baaSqaaiaaicdaaeaacaaIQaaaaOGaaGikaiab =jrimjaaiMcadaahaaWcbeqaaiaadweaaaGccaaIUaaaaa@7154@ (4.7)

Предложение 4.1. Справедливо свойство

(Ltriv)[] F c 0 [E; F 0 * (L); T L * [E]]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8NeHWKaeyOe I0IaaeiDaiaabkhacaqGPbGaaeODaiaaiMcacaaIBbGaeyyXICTaaG yxaiabgIGiolaahAeadaqhaaWcbaGaaC4yaaqaaiaaicdaaaGccaaI BbGaamyraiaaiUdatuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD 3BaGGbaiab+vi8gnaaDaaaleaacaaIWaaabaGaaGOkaaaakiaaiIca cqWFsectcaaIPaGaaG4oaiaahsfadaqhaaWcbaGae8NeHWeabaGaaG OkaaaakiaaiUfacaWGfbGaaGyxaiaai2facaaIUaaaaa@6B2A@ (4.8)

Доказательство. В силу (4.7) имеем, что

(Ltriv)[ ] 1 (E)={(Ltriv)[x]:xE}P'( F 0 * (L)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8NeHWKaeyOe I0IaaeiDaiaabkhacaqGPbGaaeODaiaaiMcacaaIBbGaeyyXICTaaG yxamaaCaaaleqabaGaaGymaaaakiaaiIcacaWGfbGaaGykaiaai2da caaI7bGaaGikaiab=jrimjabgkHiTiaabshacaqGYbGaaeyAaiaabA hacaaIPaGaaG4waiaadIhacaaIDbGaaGOoaiaadIhacqGHiiIZcaWG fbGaaGyFaiabgIGiolab=9q8qjaaiEcacaaIOaWefv3ySLgznfgDOj darCqr1ngBPrginfgDObcv39gaiyaacqGFfcVrdaqhaaWcbaGaaGim aaqaaiaaiQcaaaGccaaIOaGae8NeHWKaaGykaiaaiMcacaaIUaaaaa@76DA@ (4.9)

Учтем (4.5). При этом (см. (4.5), (4.9))

(Ltriv)[ ] 1 (E) ( T L * [E]comp) 0 [ F 0 * (L)], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8NeHWKaeyOe I0IaaeiDaiaabkhacaqGPbGaaeODaiaaiMcacaaIBbGaeyyXICTaaG yxamaaCaaaleqabaGaaGymaaaakiaaiIcacaWGfbGaaGykaiabgIGi olaaiIcacaWHubWaa0baaSqaaiab=jrimbqaaiaaiQcaaaGccaaIBb Gaamyraiaai2facqGHsislcaqGJbGaae4Baiaab2gacaqGWbGaaGyk amaaCaaaleqabaGaaGimaaaakiaaiUfatuuDJXwAK1uy0HMmaeXbfv 3ySLgzG0uy0HgiuD3BaGGbaiab+vi8gnaaDaaaleaacaaIWaaabaGa aGOkaaaakiaaiIcacqWFsectcaaIPaGaaGyxaiaaiYcaaaa@7047@ (4.10)

а потому (см. (3.3), (4.9), (4.10)) имеем требуемое свойство (4.8).

Если EP'(L), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrcqGHiiIZcqWF pepucaaINaGaaGikaiab=jrimjaaiMcacaaISaaaaa@49D5@  то заключаем в силу (4.6), что

F 0 * (L|E) = Δ {U F 0 * (L)|EU}= ΣE Φ L (Σ) C F 0 * (L) [ T L * [E]]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGa aGimaaqaaiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPr ginfgDObYtUvgaiyaacqGFsectcaGG8bGae4hmHuKaaGykamaaxaca baGaaGypaaWcbeqaaiabgs5aebaakiaaiUhacqGFueFvcqGHiiIZcq WFfcVrdaqhaaWcbaGaaGimaaqaaiaaiQcaaaGccaaIOaGae4NeHWKa aGykaiaacYhacqGFWesrcqGHckcZcqGFueFvcaaI9bGaaGypamaaua fabeWcbaGaeu4OdmLaeyicI4Sae4hmHueabeqdcqWIPissaOGaeuOP dy0aaSbaaSqaaiab+jrimbqabaGccaaIOaGaeu4OdmLaaGykaiabgI GiolaahoeadaWgaaWcbaGae8xHWB0aa0baaeaacaaIWaaabaGaaGOk aaaacaaIOaGae4NeHWKaaGykaaqabaGccaaIBbGaaCivamaaDaaale aacqGFsectaeaacaaIQaaaaOGaaG4waiaadweacaaIDbGaaGyxaiaa i6caaaa@84A8@ (4.11)

Предложение 4.2. Если EP'(L) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrcqGHiiIZcqWF pepucaaINaGaaGikaiab=jrimjaaiMcaaaa@491F@  и ΣE, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4OdmLaey icI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWF WesrcaaISaaaaa@466A@  то

Φ L (Σ) N T L * [E] 0 [ F 0 * (L|E)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8NeHWeabeaakiaaiIcacqqHJoWucaaIPaGaeyicI4SaaCOtamaaDa aaleaacaWHubWaa0baaeaacqWFsectaeaacaaIQaaaaiaaiUfacaWG fbGaaGyxaaqaaiaaicdaaaGccaaIBbWefv3ySLgznfgDOjdarCqr1n gBPrginfgDObcv39gaiyaacqGFfcVrdaqhaaWcbaGaaGimaaqaaiaa iQcaaaGccaaIOaGae8NeHWKaaiiFaiab=btifjaaiMcacaaIDbGaaG Olaaaa@6458@ (4.12)

Доказательство. Фиксируем EP'(L) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrcqGHiiIZcqWF pepucaaINaGaaGikaiab=jrimjaaiMcaaaa@491F@  и ΣE. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4OdmLaey icI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWF WesrcaaIUaaaaa@466C@  Тогда Φ L (Σ)(UF)[E;L], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8NeHWeabeaakiaaiIcacqqHJoWucaaIPaGaeyicI4SaaGikamrr1n gBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4hLWxLae4xH WBKaaGykaiaaiUfacaWGfbGaaG4oaiab=jrimjaai2facaaISaaaaa@5D6D@  а потому (см. (4.6), (4.11))

Φ L (Σ) T L * [E]: F 0 * (L|E) Φ L (Σ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8NeHWeabeaakiaaiIcacqqHJoWucaaIPaGaeyicI4SaaCivamaaDa aaleaacqWFsectaeaacaaIQaaaaOGaaG4waiaadweacaaIDbGaaGOo amrr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4xHWB 0aa0baaSqaaiaaicdaaeaacaaIQaaaaOGaaGikaiab=jrimjaacYha cqWFWesrcaaIPaGaeyOGIWSaeuOPdy0aaSbaaSqaaiab=jrimbqaba GccaaIOaGaeu4OdmLaaGykaiaai6caaaa@6936@

Поэтому (см. раздел 2) справедливо (4.12).

Рассмотрим теперь важный частный случай, когда в качестве непустого подсемейства L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectaaa@4295@  используется фильтр. Итак, пусть F F * (L). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrcqGHiiIZtuuD JXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+vi8gnaaCa aaleqabaGaaGOkaaaakiaaiIcacqWFsectcaaIPaGaaGOlaaaa@5422@  Тогда в силу (4.11)

F 0 * (L|F)={U F 0 * (L)|FU}= FF Φ L (F) C F 0 * (L) [ T L * [E]] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGa aGimaaqaaiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPr ginfgDObYtUvgaiyaacqGFsectcaGG8bGae4xmHyKaaGykaiaai2da caaI7bGae4hfXxLaeyicI4Sae8xHWB0aa0baaSqaaiaaicdaaeaaca aIQaaaaOGaaGikaiab+jrimjaaiMcacaGG8bGae4xmHyKaeyOGIWSa e4hfXxLaaGyFaiaai2dadaafqbqabSqaaiaadAeacqGHiiIZcqGFXe IraeqaniablMIijbGccqqHMoGrdaWgaaWcbaGae4NeHWeabeaakiaa iIcacaWGgbGaaGykaiabgIGiolaahoeadaWgaaWcbaGae8xHWB0aa0 baaeaacaaIWaaabaGaaGOkaaaacaaIOaGae4NeHWKaaGykaaqabaGc caaIBbGaaCivamaaDaaaleaacqGFsectaeaacaaIQaaaaOGaaG4wai aadweacaaIDbGaaGyxaaaa@80CA@ (4.13)

есть семейство всех у/ф ИП (E,L), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw eacaaISaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa cqWFsectcaaIPaGaaGilaaaa@4630@  мажорирующих исходный фильтр F; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrcaaI7aaaaa@4373@  описание данного семейства (см. [1]) представляет теоретический интерес. Напомним, что [31, (1.20)]

Φ L (L)=cl((Ltriv)[ ] 1 (L), T L * [E])=cl({(Ltriv)[x]:xL}, T L * [E])LL. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8NeHWeabeaakiaaiIcacaWGmbGaaGykaiaai2dacaqGJbGaaeiBai aaiIcacaaIOaGae8NeHWKaeyOeI0IaaeiDaiaabkhacaqGPbGaaeOD aiaaiMcacaaIBbGaeyyXICTaaGyxamaaCaaaleqabaGaaGymaaaaki aaiIcacaWGmbGaaGykaiaaiYcacaWHubWaa0baaSqaaiab=jrimbqa aiaaiQcaaaGccaaIBbGaamyraiaai2facaaIPaGaaGypaiaabogaca qGSbGaaGikaiaaiUhacaaIOaGae8NeHWKaeyOeI0IaaeiDaiaabkha caqGPbGaaeODaiaaiMcacaaIBbGaamiEaiaai2facaaI6aGaamiEai abgIGiolaadYeacaaI9bGaaGilaiaahsfadaqhaaWcbaGae8NeHWea baGaaGOkaaaakiaaiUfacaWGfbGaaGyxaiaaiMcacaaMe8UaaGjbVl abgcGiIiaayIW7caWGmbGaeyicI4Sae8NeHWKaaGOlaaaa@82B0@ (4.14)

В связи с (4.4), (4.14) напомним, что (см. [1, (2.15)])

F 0 * (L|F) = Δ {U F 0 * (L)|FU}= FF Φ L (F)F F * (L). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGa aGimaaqaaiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPr ginfgDObYtUvgaiyaacqGFsectcaGG8bGae4xmHyKaaGykamaaxaca baGaaGypaaWcbeqaaiabgs5aebaakiaaiUhacqGFueFvcqGHiiIZcq WFfcVrdaqhaaWcbaGaaGimaaqaaiaaiQcaaaGccaaIOaGae4NeHWKa aGykaiaacYhacqGFXeIrcqGHckcZcqGFueFvcaaI9bGaaGypamaaua fabeWcbaGaamOraiabgIGiolab+ftigbqab0GaeSykIKeakiabfA6a gnaaBaaaleaacqGFsectaeqaaOGaaGikaiaadAeacaaIPaGaaGjbVl aaysW7cqGHaiIicaaMi8Uae4xmHyKaeyicI4Sae8xHWB0aaWbaaSqa beaacaaIQaaaaOGaaGikaiab+jrimjaaiMcacaaIUaaaaa@80FF@ (4.15)

Итак, в частности, при F F * (L) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrcqGHiiIZtuuD JXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+vi8gnaaCa aaleqabaGaaGOkaaaakiaaiIcacqWFsectcaaIPaaaaa@536A@  определено F 0 * (L|F), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGa aGimaaqaaiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPr ginfgDObYtUvgaiyaacqGFsectcaGG8bGae4xmHyKaaGykaiaaiYca aaa@5455@  которое может рассматриваться [1, (3.5)] как МП:

F 0 * (L|F)=(AS)[E; F 0 * (L); T L * [E];(Ltriv)[];F] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGa aGimaaqaaiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPr ginfgDObYtUvgaiyaacqGFsectcaGG8bGae4xmHyKaaGykaiaai2da caaIOaGaaeyqaiaabofacaaIPaGaaG4waiaadweacaaI7aGae8xHWB 0aa0baaSqaaiaaicdaaeaacaaIQaaaaOGaaGikaiab+jrimjaaiMca caaI7aGaaCivamaaDaaaleaacqGFsectaeaacaaIQaaaaOGaaG4wai aadweacaaIDbGaaG4oaiaaiIcacqGFsectcqGHsislcaqG0bGaaeOC aiaabMgacaqG2bGaaGykaiaaiUfacqGHflY1caaIDbGaaG4oaiab+f tigjaai2faaaa@7515@ (4.16)

на самом деле данное свойство реализуется и в более общем случае, но мы сейчас ограничимся (4.16), учитывая, что

F * (L)β[E], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaahaaWcbeqa aiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPrginfgDOb YtUvgaiyaacqGFsectcaaIPaGaeyOGIWSaeqOSdiMaaG4waiaadwea caaIDbGaaGilaaaa@57B2@ (4.17)

что позволяет использовать (3.2) (см. в этой связи (4.16)).

Предложение 4.3. Если F F * (L), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrcqGHiiIZtuuD JXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+vi8gnaaCa aaleqabaGaaGOkaaaakiaaiIcacqWFsectcaaIPaGaaGilaaaa@5420@  то справедливо равенство

N T L * [E] 0 [ F 0 * (L|F)]= FF N T L * [E] 0 [ Φ L (F)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOtamaaDa aaleaacaWHubWaa0baaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy 0Hgip5wzaGqbaiab=jrimbqaaiaaiQcaaaGaaG4waiaadweacaaIDb aabaGaaGimaaaakiaaiUfatuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy 0HgiuD3BaGGbaiab+vi8gnaaDaaaleaacaaIWaaabaGaaGOkaaaaki aaiIcacqWFsectcaGG8bGae8xmHyKaaGykaiaai2facaaI9aWaambu aeqaleaacaWGgbGaeyicI4Sae8xmHyeabeqdcqWIQisvaOGaaCOtam aaDaaaleaacaWHubWaa0baaeaacqWFsectaeaacaaIQaaaaiaaiUfa caWGfbGaaGyxaaqaaiaaicdaaaGccaaIBbGaeuOPdy0aaSbaaSqaai ab=jrimbqabaGccaaIOaGaamOraiaaiMcacaaIDbGaaGOlaaaa@70F0@ (4.18)

Доказательство. Требуемое равенство (4.18) легко извлекается из предложений 3.2, 4.1, а также из (4.14) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ ( 4.16), но мы все же рассмотрим соответствующее рассуждение. Итак, мы рассматриваем (3.2) в случае, когда

(X,τ)=( F 0 * (L), T L * [E]), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI facaaISaGaeqiXdqNaaGykaiaai2dacaaIOaWefv3ySLgznfgDOjda ryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGaaGimaa qaaiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPrginfgD ObYtUvgaiyaacqGFsectcaaIPaGaaGilaiaahsfadaqhaaWcbaGae4 NeHWeabaGaaGOkaaaakiaaiUfacaWGfbGaaGyxaiaaiMcacaaISaaa aa@5F39@

где LΠ[E], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcqGHiiIZcqqH GoaucaaIBbGaamyraiaai2facaaISaaaaa@48E3@   f=(Ltriv)[] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaai2 dacaaIOaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa cqWFsectcqGHsislcaqG0bGaaeOCaiaabMgacaqG2bGaaGykaiaaiU facqGHflY1caaIDbaaaa@4E80@  и E=F. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrcaaI9aGae8xm HyKaaGOlaaaa@4548@  Тогда с учетом предложения 3.2, (4.5), (4.14), (4.16) и (4.17) имеем, что

N T L * [E] 0 [ F 0 * (L|F)]= N T L * [E] 0 [(AS)[E; F 0 * (L); T L * [E];(Ltriv)[];F] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOtamaaDa aaleaacaWHubWaa0baaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy 0Hgip5wzaGqbaiab=jrimbqaaiaaiQcaaaGaaG4waiaadweacaaIDb aabaGaaGimaaaakiaaiUfatuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy 0HgiuD3BaGGbaiab+vi8gnaaDaaaleaacaaIWaaabaGaaGOkaaaaki aaiIcacqWFsectcaGG8bGae8xmHyKaaGykaiaai2facaaI9aGaaCOt amaaDaaaleaacaWHubWaa0baaeaacqWFsectaeaacaaIQaaaaiaaiU facaWGfbGaaGyxaaqaaiaaicdaaaGccaaIBbGaaGikaiaabgeacaqG tbGaaGykaiaaiUfacaWGfbGaaG4oaiab+vi8gnaaDaaaleaacaaIWa aabaGaaGOkaaaakiaaiIcacqWFsectcaaIPaGaaG4oaiaahsfadaqh aaWcbaGae8NeHWeabaGaaGOkaaaakiaaiUfacaWGfbGaaGyxaiaaiU dacaaIOaGae8NeHWKaeyOeI0IaaeiDaiaabkhacaqGPbGaaeODaiaa iMcacaaIBbGaeyyXICTaaGyxaiaaiUdacqWFXeIrcaaIDbaaaa@85F4@

= FF N T L * [E] 0 [cl((Ltriv)[ ] 1 (F), T L * [E])]= FF N T L * [E] 0 [ Φ L (F)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaata fabeWcbaGaamOraiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbst HrhAG8KBLbacfaGae8xmHyeabeqdcqWIQisvaOGaaCOtamaaDaaale aacaWHubWaa0baaeaacqWFsectaeaacaaIQaaaaiaaiUfacaWGfbGa aGyxaaqaaiaaicdaaaGccaaIBbGaae4yaiaabYgacaaIOaGaaGikai ab=jrimjabgkHiTiaabshacaqGYbGaaeyAaiaabAhacaaIPaGaaG4w aiabgwSixlaai2fadaahaaWcbeqaaiaaigdaaaGccaaIOaGaamOrai aaiMcacaaISaGaaCivamaaDaaaleaacqWFsectaeaacaaIQaaaaOGa aG4waiaadweacaaIDbGaaGykaiaai2facaaI9aWaambuaeqaleaaca WGgbGaeyicI4Sae8xmHyeabeqdcqWIQisvaOGaaCOtamaaDaaaleaa caWHubWaa0baaeaacqWFsectaeaacaaIQaaaaiaaiUfacaWGfbGaaG yxaaqaaiaaicdaaaGccaaIBbGaeuOPdy0aaSbaaSqaaiab=jrimbqa baGccaaIOaGaamOraiaaiMcacaaIDbGaaGOlaaaa@7C84@

Теперь из (3.14) следует, при упомянутой в последнем доказательстве конкретизации параметров, что F F * (L)H N T L * [E] [ F 0 * (L|F)]FF MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jcVprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8xm HyKaeyicI48efv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiy aacqGFfcVrdaahaaWcbeqaaiaaiQcaaaGccaaIOaGae8NeHWKaaGyk aiaaysW7caaMe8UaeyiaIiIaaGjcVlaadIeacqGHiiIZcaWHobWaaS baaSqaaiaahsfadaqhaaqaaiab=jrimbqaaiaaiQcaaaGaaG4waiaa dweacaaIDbaabeaakiaaiUfacqGFfcVrdaqhaaWcbaGaaGimaaqaai aaiQcaaaGccaaIOaGae8NeHWKaaiiFaiab=ftigjaaiMcacaaIDbGa aGjbVlaaysW7cqGHdicjcaaMi8UaamOraiabgIGiolab=ftigbaa@7713@ :

F 0 * (L|F) Φ L (F)H. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGa aGimaaqaaiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPr ginfgDObYtUvgaiyaacqGFsectcaGG8bGae4xmHyKaaGykaiabgkOi mlabfA6agnaaBaaaleaacqGFsectaeqaaOGaaGikaiaadAeacaaIPa GaeyOGIWSaamisaiaai6caaaa@5DFF@ (4.19)

Предложение 4.4. Если F 1 F * (L) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrdaWgaaWcbaGa aGymaaqabaGccqGHiiIZtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0H giuD3BaGGbaiab+vi8gnaaCaaaleqabaGaaGOkaaaakiaaiIcacqWF sectcaaIPaaaaa@545B@  и F 2 F * (L), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrdaWgaaWcbaGa aGOmaaqabaGccqGHiiIZtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0H giuD3BaGGbaiab+vi8gnaaCaaaleqabaGaaGOkaaaakiaaiIcacqWF sectcaaIPaGaaGilaaaa@5512@  то

( F 0 * (L| F 1 ) F 0 * (L| F 2 )=)( F 1 F 1 F 2 F 2 : F 1 F 2 =). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xHWB0aa0ba aSqaaiaaicdaaeaacaaIQaaaaOGaaGikamrr1ngBPrwtHrhAXaqehu uDJXwAKbstHrhAG8KBLbacgaGae4NeHWKaaiiFaiab+ftignaaBaaa leaacaaIXaaabeaakiaaiMcacqGHPiYXcqWFfcVrdaqhaaWcbaGaaG imaaqaaiaaiQcaaaGccaaIOaGae4NeHWKaaiiFaiab+ftignaaBaaa leaacaaIYaaabeaakiaaiMcacaaI9aGaeyybIySaaGykaiabgsDiBl aaiIcacqGHdicjcaaMi8UaamOramaaBaaaleaacaaIXaaabeaakiab gIGiolab+ftignaaBaaaleaacaaIXaaabeaakiaaysW7caaMe8Uaey 4aIqIaaGjcVlaadAeadaWgaaWcbaGaaGOmaaqabaGccqGHiiIZcqGF XeIrdaWgaaWcbaGaaGOmaaqabaGccaaI6aGaamOramaaBaaaleaaca aIXaaabeaakiabgMIihlaadAeadaWgaaWcbaGaaGOmaaqabaGccaaI 9aGaeyybIySaaGykaiaai6caaaa@8244@

Доказательство. Фиксируем F 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrdaWgaaWcbaGa aGymaaqabaaaaa@4395@  и F 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrdaWgaaWcbaGa aGOmaaqabaaaaa@4396@  в соответствии с условиями предложения. Тогда в силу (4.5), (4.14), (4.16), предложений 3.3 и 4.1 имеем эквивалентность

( F 0 * (L| F 1 ) F 0 * (L| F 2 )=)( F 1 F 1 F 2 F 2 : Φ L ( F 1 ) Φ L ( F 2 )=). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xHWB0aa0ba aSqaaiaaicdaaeaacaaIQaaaaOGaaGikamrr1ngBPrwtHrhAXaqehu uDJXwAKbstHrhAG8KBLbacgaGae4NeHWKaaiiFaiab+ftignaaBaaa leaacaaIXaaabeaakiaaiMcacqGHPiYXcqWFfcVrdaqhaaWcbaGaaG imaaqaaiaaiQcaaaGccaaIOaGae4NeHWKaaiiFaiab+ftignaaBaaa leaacaaIYaaabeaakiaaiMcacaaI9aGaeyybIySaaGykaiabgsDiBl aaiIcacqGHdicjcaaMi8UaamOramaaBaaaleaacaaIXaaabeaakiab gIGiolab+ftignaaBaaaleaacaaIXaaabeaakiaaysW7caaMe8Uaey 4aIqIaaGjcVlaadAeadaWgaaWcbaGaaGOmaaqabaGccqGHiiIZcqGF XeIrdaWgaaWcbaGaaGOmaaqabaGccaaI6aGaeuOPdy0aaSbaaSqaai ab+jrimbqabaGccaaIOaGaamOramaaBaaaleaacaaIXaaabeaakiaa iMcacqGHPiYXcqqHMoGrdaWgaaWcbaGae4NeHWeabeaakiaaiIcaca WGgbWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaai2dacqGHfiIXcaaI PaGaaGOlaaaa@8A74@ (4.20)

Вместе с тем, Φ L ( L 1 ) Φ L ( L 2 )= Φ L ( L 1 L 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8NeHWeabeaakiaaiIcacaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaG ykaiabgMIihlabfA6agnaaBaaaleaacqWFsectaeqaaOGaaGikaiaa dYeadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGypaiabfA6agnaaBa aaleaacqWFsectaeqaaOGaaGikaiaadYeadaWgaaWcbaGaaGymaaqa baGccqGHPiYXcaWGmbWaaSbaaSqaaiaaikdaaeqaaOGaaGykaaaa@58E9@  при L 1 L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIXaaabeaakiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwA KbstHrhAG8KBLbacfaGae8NeHWeaaa@45DB@  и L 2 L. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaakiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwA KbstHrhAG8KBLbacfaGae8NeHWKaaGOlaaaa@4694@  При этом Φ L ()=. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8NeHWeabeaakiaaiIcacqGHfiIXcaaIPaGaaGypaiabgwGiglaai6 caaaa@4A1B@  Пусть L 1 L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFlcptdaWgaaWcbaGa aGymaaqabaGccqGHiiIZtuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0H gip5wzaGGbaiab+jrimbaa@50FA@  и L 2 L. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFlcptdaWgaaWcbaGa aGOmaaqabaGccqGHiiIZtuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0H gip5wzaGGbaiab+jrimjaai6caaaa@51B3@  Тогда имеем, что

( L 1 L 2 =)( Φ L ( L 1 ) Φ L ( L 2 )=). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae83IWZ0aaSba aSqaaiaaigdaaeqaaOGaeyykICSae83IWZ0aaSbaaSqaaiaaikdaae qaaOGaaGypaiabgwGiglaaiMcacqGHshI3caaIOaGaeuOPdy0aaSba aSqaamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHrhAG8KBLbacgaGae4 NeHWeabeaakiaaiIcacqWFlcptdaWgaaWcbaGaaGymaaqabaGccaaI PaGaeyykICSaeuOPdy0aaSbaaSqaaiab+jrimbqabaGccaaIOaGae8 3IWZ0aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaai2dacqGHfiIXcaaI PaGaaGOlaaaa@6DF7@ (4.21)

Пусть, напротив, Φ L ( L 1 ) Φ L ( L 2 )=. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8NeHWeabeaakiaaiIcatuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0H giuD3BaGGbaiab+Ti8mnaaBaaaleaacaaIXaaabeaakiaaiMcacqGH PiYXcqqHMoGrdaWgaaWcbaGae8NeHWeabeaakiaaiIcacqGFlcptda WgaaWcbaGaaGOmaaqabaGccaaIPaGaaGypaiabgwGiglaai6caaaa@5E77@  Покажем, что выполнено L 1 L 2 =. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFlcptdaWgaaWcbaGa aGymaaqabaGccqGHPiYXcqWFlcptdaWgaaWcbaGaaGOmaaqabaGcca aI9aGaeyybIySaaGOlaaaa@4CBB@  В самом деле, допустим противное: пусть L 1 L 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFlcptdaWgaaWcbaGa aGymaaqabaGccqGHPiYXcqWFlcptdaWgaaWcbaGaaGOmaaqabaGccq GHGjsUcqGHfiIXcaaIUaaaaa@4DBB@  Выберем и зафиксируем x * L 1 L 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIQaaabeaakiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwA KbstHrhAGq1DVbacfaGae83IWZ0aaSbaaSqaaiaaigdaaeqaaOGaey ykICSae83IWZ0aaSbaaSqaaiaaikdaaeqaaOGaaGOlaaaa@4DE6@  Тогда V = Δ (Ltriv)[ x * ] F 0 * (L), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFveVvdaWfGaqaaiaa i2daaSqabeaacqGHuoaraaGccaaIOaGae8NeHWKaeyOeI0IaaeiDai aabkhacaqGPbGaaeODaiaaiMcacaaIBbGaamiEamaaBaaaleaacaaI Qaaabeaakiaai2facqGHiiIZtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0 uy0HgiuD3BaGGbaiab+vi8gnaaDaaaleaacaaIWaaabaGaaGOkaaaa kiaaiIcacqWFsectcaaIPaGaaGilaaaa@62F9@   L 1 V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFlcptdaWgaaWcbaGa aGymaaqabaGccqGHiiIZtuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0H gip5wzaGGbaiab+vr8wbaa@51D7@  и L 2 V, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFlcptdaWgaaWcbaGa aGOmaaqabaGccqGHiiIZtuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0H gip5wzaGGbaiab+vr8wjaaiYcaaaa@528E@  а потому (см. (4.4))

V Φ L ( L 1 ) Φ L ( L 2 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFveVvcqGHiiIZcqqH MoGrdaWgaaWcbaGae8NeHWeabeaakiaaiIcatuuDJXwAK1uy0HMmae Xbfv3ySLgzG0uy0HgiuD3BaGGbaiab+Ti8mnaaBaaaleaacaaIXaaa beaakiaaiMcacqGHPiYXcqqHMoGrdaWgaaWcbaGae8NeHWeabeaaki aaiIcacqGFlcptdaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGilaaaa @5F9A@

что противоречит предположению. Полученное противоречие доказывает импликацию

( Φ L ( L 1 ) Φ L ( L 2 )=)( L 1 L 2 =). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabfA 6agnaaBaaaleaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz aGqbaiab=jrimbqabaGccaaIOaWefv3ySLgznfgDOjdarCqr1ngBPr ginfgDObcv39gaiyaacqGFlcptdaWgaaWcbaGaaGymaaqabaGccaaI PaGaeyykICSaeuOPdy0aaSbaaSqaaiab=jrimbqabaGccaaIOaGae4 3IWZ0aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaai2dacqGHfiIXcaaI PaGaeyO0H4TaaGikaiab+Ti8mnaaBaaaleaacaaIXaaabeaakiabgM Iihlab+Ti8mnaaBaaaleaacaaIYaaabeaakiaai2dacqGHfiIXcaaI PaGaaGOlaaaa@6DF5@

С учетом (4.21) получаем эквивалентность ( Φ L ( L 1 ) Φ L ( L 2 )=)( L 1 L 2 =). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabfA 6agnaaBaaaleaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz aGqbaiab=jrimbqabaGccaaIOaWefv3ySLgznfgDOjdarCqr1ngBPr ginfgDObcv39gaiyaacqGFlcptdaWgaaWcbaGaaGymaaqabaGccaaI PaGaeyykICSaeuOPdy0aaSbaaSqaaiab=jrimbqabaGccaaIOaGae4 3IWZ0aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaai2dacqGHfiIXcaaI PaGaeyi1HSTaaGikaiab+Ti8mnaaBaaaleaacaaIXaaabeaakiabgM Iihlab+Ti8mnaaBaaaleaacaaIYaaabeaakiaai2dacqGHfiIXcaaI PaGaaGOlaaaa@6DF4@  Поскольку L 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFlcptdaWgaaWcbaGa aGymaaqabaaaaa@44DD@  и L 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFlcptdaWgaaWcbaGa aGOmaaqabaaaaa@44DE@  выбирались произвольно, имеем L 1 L L 2 L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jcVlaadYeadaWgaaWcbaGaaGymaaqabaGccqGHiiIZtuuDJXwAK1uy 0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=jrimjaaysW7caaMe8 UaeyiaIiIaaGjcVlaadYeadaWgaaWcbaGaaGOmaaqabaGccqGHiiIZ cqWFsectaaa@5202@  

( Φ L ( L 1 ) Φ L ( L 2 )=)( L 1 L 2 =). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabfA 6agnaaBaaaleaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz aGqbaiab=jrimbqabaGccaaIOaGaamitamaaBaaaleaacaaIXaaabe aakiaaiMcacqGHPiYXcqqHMoGrdaWgaaWcbaGae8NeHWeabeaakiaa iIcacaWGmbWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaai2dacqGHfi IXcaaIPaGaeyi1HSTaaGikaiaadYeadaWgaaWcbaGaaGymaaqabaGc cqGHPiYXcaWGmbWaaSbaaSqaaiaaikdaaeqaaOGaaGypaiabgwGigl aaiMcacaaIUaaaaa@5E67@ (4.22)

В частности, в (4.22) может использоваться случай, когда L 1 F 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIXaaabeaakiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwA KbstHrhAG8KBLbacfaGae8xmHy0aaSbaaSqaaiaaigdaaeqaaaaa@46DB@  и L 2 F 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaakiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwA KbstHrhAG8KBLbacfaGae8xmHy0aaSbaaSqaaiaaikdaaeqaaOGaaG Olaaaa@479F@  Из (4.20) и (4.22) имеем тогда эквивалентность

( F 0 * (L| F 1 ) F 0 * (L| F 2 )=)( F 1 F 1 F 2 F 2 : F 1 F 2 =). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xHWB0aa0ba aSqaaiaaicdaaeaacaaIQaaaaOGaaGikamrr1ngBPrwtHrhAXaqehu uDJXwAKbstHrhAG8KBLbacgaGae4NeHWKaaiiFaiab+ftignaaBaaa leaacaaIXaaabeaakiaaiMcacqGHPiYXcqWFfcVrdaqhaaWcbaGaaG imaaqaaiaaiQcaaaGccaaIOaGae4NeHWKaaiiFaiab+ftignaaBaaa leaacaaIYaaabeaakiaaiMcacaaI9aGaeyybIySaaGykaiabgsDiBl aaiIcacqGHdicjcaaMi8UaamOramaaBaaaleaacaaIXaaabeaakiab gIGiolab+ftignaaBaaaleaacaaIXaaabeaakiaaysW7caaMe8Uaey 4aIqIaaGjcVlaadAeadaWgaaWcbaGaaGOmaaqabaGccqGHiiIZcqGF XeIrdaWgaaWcbaGaaGOmaaqabaGccaaI6aGaamOramaaBaaaleaaca aIXaaabeaakiabgMIihlaadAeadaWgaaWcbaGaaGOmaaqabaGccaaI 9aGaeyybIySaaGykaiaai6caaaa@8244@

Предложение 4.5. Если F F * (L), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrcqGHiiIZtuuD JXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+vi8gnaaCa aaleqabaGaaGOkaaaakiaaiIcacqWFsectcaaIPaGaaGilaaaa@5420@  то семейство B F = Δ { Φ L (F):FF} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=fa8cnaaBaaaleaa tuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaGGbaiab+ftigb qabaGcdaWfGaqaaiaai2daaSqabeaacqGHuoaraaGccaaI7bGaeuOP dy0aaSbaaSqaaiab+jrimbqabaGccaaIOaGaamOraiaaiMcacaaI6a GaamOraiabgIGiolab+ftigjaai2haaaa@5CFD@  есть локальная база окрестностей множества F 0 * (L|F) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGa aGimaaqaaiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPr ginfgDObYtUvgaiyaacqGFsectcaGG8bGae4xmHyKaaGykaaaa@539F@ :

( B F N T L * [E] 0 [ F 0 * (L|F)])&( N T L * [E] [ F 0 * (L|F)]G B F :G). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFbaVqdaWg aaWcbaWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgaiyaacq GFXeIraeqaaOGaeyOGIWSaaCOtamaaDaaaleaacaWHubWaa0baaeaa cqGFsectaeaacaaIQaaaaiaaiUfacaWGfbGaaGyxaaqaaiaaicdaaa GccaaIBbWefv3ySLgznfgDOjdarGqr1ngBPrginfgDObcv39gaiCaa cqqFfcVrdaqhaaWcbaGaaGimaaqaaiaaiQcaaaGccaaIOaGae4NeHW KaaiiFaiab+ftigjaaiMcacaaIDbGaaGykaiaaiAcacaaIOaGaeyia IiIaaGjcVlab91qiijabgIGiolaah6eadaWgaaWcbaGaaCivamaaDa aabaGae4NeHWeabaGaaGOkaaaacaaIBbGaamyraiaai2faaeqaaOGa aG4waiab9vi8gnaaDaaaleaacaaIWaaabaGaaGOkaaaakiaaiIcacq GFsectcaGG8bGae4xmHyKaaGykaiaai2facaaMe8UaaGjbVlabgoGi KiaayIW7cqqFgc=rcqGHiiIZcqWFbaVqdaWgaaWcbaGae4xmHyeabe aakiaaiQdacqqFgc=rcqGHckcZcqqFnecscaaIPaGaaGOlaaaa@982B@ (4.23)

Доказательство. Фиксируем F F * (L) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrcqGHiiIZtuuD JXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+vi8gnaaCa aaleqabaGaaGOkaaaakiaaiIcacqWFsectcaaIPaaaaa@536A@  и рассмотрим семейство B F . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=fa8cnaaBaaaleaa tuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaGGbaiab+ftigb qabaGccaaIUaaaaa@5016@  C учетом предложения 4.2 имеем, что

B F N T L * [E] 0 [ F 0 * (L|F)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=fa8cnaaBaaaleaa tuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaGGbaiab+ftigb qabaGccqGHckcZcaWHobWaa0baaSqaaiaahsfadaqhaaqaaiab+jri mbqaaiaaiQcaaaGaaG4waiaadweacaaIDbaabaGaaGimaaaakiaaiU fatuuDJXwAK1uy0HMmaebcfv3ySLgzG0uy0HgiuD3BaGWbaiab9vi8 gnaaDaaaleaacaaIWaaabaGaaGOkaaaakiaaiIcacqGFsectcaGG8b Gae4xmHyKaaGykaiaai2facaaIUaaaaa@6D00@ (4.24)

Пусть ˜ N T L * [E] [ F 0 * (L|F)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacuWFnecsgaacaiabgIGi olaah6eadaWgaaWcbaGaaCivamaaDaaabaWefv3ySLgznfgDOfdarC qr1ngBPrginfgDObYtUvgaiyaacqGFsectaeaacaaIQaaaaiaaiUfa caWGfbGaaGyxaaqabaGccaaIBbGae8xHWB0aa0baaSqaaiaaicdaae aacaaIQaaaaOGaaGikaiab+jrimjaacYhacqGFXeIrcaaIPaGaaGyx aiaai6caaaa@5F0A@  С учетом (2.2) подберем

G ˜ N T L * [E] 0 [ F 0 * (L|F)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacuWFgc=rgaacaiabgIGi olaah6eadaqhaaWcbaGaaCivamaaDaaabaWefv3ySLgznfgDOfdarC qr1ngBPrginfgDObYtUvgaiyaacqGFsectaeaacaaIQaaaaiaaiUfa caWGfbGaaGyxaaqaaiaaicdaaaGccaaIBbGae8xHWB0aa0baaSqaai aaicdaaeaacaaIQaaaaOGaaGikaiab+jrimjaacYhacqGFXeIrcaaI PaGaaGyxaaaa@6054@

со свойством G ˜ ˜ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacuWFgc=rgaacaiabgkOi mlqb=1qiizaaiaGaaGOlaaaa@47B9@  С учетом (4.18) имеем для некоторого F ˜ F MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia GaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa cqWFXeIraaa@450C@  включение

G ˜ N T L * [E] 0 [ Φ L ( F ˜ )]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacuWFgc=rgaacaiabgIGi olaah6eadaqhaaWcbaGaaCivamaaDaaabaWefv3ySLgznfgDOfdarC qr1ngBPrginfgDObYtUvgaiyaacqGFsectaeaacaaIQaaaaiaaiUfa caWGfbGaaGyxaaqaaiaaicdaaaGccaaIBbGaeuOPdy0aaSbaaSqaai ab+jrimbqabaGccaaIOaGabmOrayaaiaGaaGykaiaai2facaaIUaaa aa@5D95@

Это означает, что Φ L ( F ˜ ) B F MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8NeHWeabeaakiaaiIcaceWGgbGbaGaacaaIPaGaeyicI48efv3ySL gzgjxyRrxDYbqehuuDJXwAKbIrYf2A0vNCaGGbaiab+fa8cnaaBaaa leaacqWFXeIraeqaaaaa@55CB@  и при этом Φ L ( F ˜ ) G ˜ ˜ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8NeHWeabeaakiaaiIcaceWGgbGbaGaacaaIPaGaeyOGIW8efv3ySL gznfgDOjdarCqr1ngBPrginfgDObcv39gaiyaacuGFgc=rgaacaiab gkOimlqb+1qiizaaiaGaaGOlaaaa@5832@  Итак, установлено, что G B F :G ˜ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4aIqIaaG jcVprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NH WFKaeyicI48efv3ySLgzgjxyRrxDYbqehuuDJXwAKbIrYf2A0vNCaG Gbaiab+fa8cnaaBaaaleaatuuDJXwAK1uy0Hwmaebcfv3ySLgzG0uy 0Hgip5wzaGWbaiab9ftigbqabaGccaaI6aGae8NHWFKaeyOGIWSaf8 xdHGKbaGaacaaIUaaaaa@65F3@  Поскольку выбор ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacuWFnecsgaacaaaa@42B4@  был произвольным, мы получаем, что

N T L * [E] [ F 0 * (L|F)]G B F :G. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jcVprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xd HGKaeyicI4SaaCOtamaaBaaaleaacaWHubWaa0baaeaatuuDJXwAK1 uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaGGbaiab+jrimbqaaiaaiQca aaGaaG4waiaadweacaaIDbaabeaakiaaiUfacqWFfcVrdaqhaaWcba GaaGimaaqaaiaaiQcaaaGccaaIOaGae4NeHWKaaiiFaiab+ftigjaa iMcacaaIDbGaaGjbVlaaysW7cqGHdicjcaaMi8Uae8NHWFKaeyicI4 8efv3ySLgzgjxyRrxDYbqeiuuDJXwAKbIrYf2A0vNCaGWbaiab9fa8 cnaaBaaaleaacqGFXeIraeqaaOGaaGOoaiab=zi8hjabgkOimlab=1 qiijaai6caaaa@7E6C@

С учетом (4.24) получаем теперь свойство (4.23).

В заключении раздела отметим один полезный частный случай. А именно: полагаем до конца настоящего раздела, что L=P(E). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcaaI9aGae83d XdLaaGikaiaadweacaaIPaGaaGOlaaaa@4818@  Тогда в виде элементов F * (L) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaahaaWcbeqa aiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPrginfgDOb YtUvgaiyaacqGFsectcaaIPaaaaa@50C9@  имеем фильтры семейства всех п/м E, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiaaiY caaaa@3987@  что соответствует [21, гл. I]; у/ф из F 0 * (L) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGa aGimaaqaaiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPr ginfgDObYtUvgaiyaacqGFsectcaaIPaaaaa@5183@  будем называть сейчас стоун-чеховскими. Пусть τ(top)[E] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaey icI4SaaGikaiaabshacaqGVbGaaeiCaiaaiMcacaaIBbGaamyraiaa i2faaaa@4227@  и xE. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaadweacaaIUaaaaa@3C0A@  Тогда в нашем случае

N τ (x) F * (L), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacqaHepaDaeqaaOGaaGikaiaadIhacaaIPaGaeyicI48efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaahaa WcbeqaaiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPrgi nfgDObYtUvgaiyaacqGFsectcaaIPaGaaGilaaaa@5833@ (4.25)

причем N τ (x)(Ltriv)[x]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacqaHepaDaeqaaOGaaGikaiaadIhacaaIPaGaeyOGIWSaaGik amrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8NeHW KaeyOeI0IaaeiDaiaabkhacaqGPbGaaeODaiaaiMcacaaIBbGaamiE aiaai2facaaIUaaaaa@5365@  Стоун-чеховские у/ф из F 0 * (L| N τ (x)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGa aGimaaqaaiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPr ginfgDObYtUvgaiyaacqGFsectcaGG8bGaamOtamaaBaaaleaacqaH epaDaeqaaOGaaGikaiaadIhacaaIPaGaaGykaaaa@57B3@  представляют интерес, т. к. они являются по сути дела усовершенствованными вариантами (4.25). Заметим, что в рассматриваемом случае LΠ[E], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcqGHiiIZcqqH GoaucaaIBbGaamyraiaai2facaaISaaaaa@48E3@  а потому предложения 4.3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ 4.5 содержат полезную информацию о таких у/ф. Заметим, что в терминах фильтров из F * (L) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaahaaWcbeqa aiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPrginfgDOb YtUvgaiyaacqGFsectcaaIPaaaaa@50C9@  в рассматриваемом случае вводится [21, гл. I] общее определение сходимости в ТП. При этом (см. (4.3), (4.13))

(Ltriv)[x] F 0 * (L| N τ (x)), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8NeHWKaeyOe I0IaaeiDaiaabkhacaqGPbGaaeODaiaaiMcacaaIBbGaamiEaiaai2 facqGHiiIZtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGb aiab+vi8gnaaDaaaleaacaaIWaaabaGaaGOkaaaakiaaiIcacqWFse ctcaGG8bGaamOtamaaBaaaleaacqaHepaDaeqaaOGaaGikaiaadIha caaIPaGaaGykaiaaiYcaaaa@63DD@

так что мы имеем простой вариант у/ф, мажорирующего фильтр окрестностей точки x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@3904@  в ТП (E,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw eacaaISaGaeqiXdqNaaGykaaaa@3CB1@  (см. (4.25)).

5. Топология волмэновского типа

Пусть далее Lπ[E] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcqGHiiIZcqaH apaCcaaIBbGaamyraiaai2faaaa@486C@  (рассматриваем случай произвольной π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdahaaa@39C4@  -системы; он является более общим в сравнении с ИП предыдущего раздела). Исследуем вопросы окрестностной реализации МП в случае оснащения множества у/ф топологией волмэновского типа. Для ее введения полагаем, что

F C [L|H] = Δ {U F 0 * (L)|UU:UH}HP(E). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGa aC4qaaqaamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHrhAG8KBLbacga Gae4NBMGoaaOGaaG4waiab+jrimjaacYhacaWGibGaaGyxamaaxaca baGaaGypaaWcbeqaaiabgs5aebaakiaaiUhacqGFueFvcqGHiiIZcq WFfcVrdaqhaaWcbaGaaGimaaqaaiaaiQcaaaGccaaIOaGae4NeHWKa aGykaiaacYhacqGHdicjcaaMi8UaamyvaiabgIGiolab+rr8vjaaiQ dacaWGvbGaeyOGIWSaamisaiaai2hacaaMe8UaaGjbVlabgcGiIiaa yIW7caWGibGaeyicI4Sae43dXdLaaGikaiaadweacaaIPaGaaGOlaa aa@7BE1@

Мы сохраняем определения (4.1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ (4.4), (4.7), (4.11) для рассматриваемого более общего случая Lπ[E] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcqGHiiIZcqaH apaCcaaIBbGaamyraiaai2faaaa@486C@  (см. в этой связи [31, раздел 2]). Получаем, что

F C [L] = Δ { F C [L|C]:C C E [L]}P'(P( F 0 * (L))); MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gnaaDaaaleaa caWHdbaabaWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgaiy aacqGFUzc6aaGccaaIBbGae4NeHWKaaGyxamaaxacabaGaaGypaaWc beqaaiabgs5aebaakiaaiUhatuuDJXwAK1uy0HMmaebcfv3ySLgzG0 uy0HgiuD3BaGWbaiab9vi8gnaaDaaaleaacaWHdbaabaGae4NBMGoa aOGaaG4waiab+jrimjaacYhacaWGdbGaaGyxaiaaiQdacaWGdbGaey icI4SaaC4qamaaBaaaleaacaWGfbaabeaakiaaiUfacqGFsectcaaI DbGaaGyFaiabgIGiolab+9q8qjaaiEcacaaIOaGae43dXdLaaGikai ab9vi8gnaaDaaaleaacaaIWaaabaGaaGOkaaaakiaaiIcacqGFsect caaIPaGaaGykaiaaiMcacaaI7aaaaa@8354@ (5.1)

легко видеть,что семейство (5.1) есть открытая предбаза, порождающая [32, (2.8)] топологию

T L 0 E(ctop)[ F 0 * (L)](Dtop)[ F 0 * (L)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCivamaaDa aaleaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab =jrimbqaaiaaicdaaaGccqGHPms4caWGfbGaeyOkJeVaeyicI4SaaG ikaiaahogacqGHsislcaqG0bGaae4BaiaabchacaaIPaGaaG4wamrr 1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4xHWB0aa0 baaSqaaiaaicdaaeaacaaIQaaaaOGaaGikaiab=jrimjaaiMcacaaI DbGaeyykICSaaGikaiab=nq8ejabgkHiTiaabshacaqGVbGaaeiCai aaiMcacaaIBbGae4xHWB0aa0baaSqaaiaaicdaaeaacaaIQaaaaOGa aGikaiab=jrimjaaiMcacaaIDbGaaGOlaaaa@7366@ (5.2)

Итак, T L 0 E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCivamaaDa aaleaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab =jrimbqaaiaaicdaaaGccqGHPms4caWGfbGaeyOkJepaaa@48B0@  есть слабейшая топология F 0 * (L), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGa aGimaaqaaiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPr ginfgDObYtUvgaiyaacqGFsectcaaIPaGaaGilaaaa@5239@  содержащая семейство (5.1);

F C [L] T L 0 E. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gnaaDaaaleaa caWHdbaabaWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgaiy aacqGFUzc6aaGccaaIBbGae4NeHWKaaGyxaiabgkOimlaahsfadaqh aaWcbaGae4NeHWeabaGaaGimaaaakiabgMYiHlaadweacqGHQms8ca aIUaaaaa@5DB8@ (5.3)

В виде ( F 0 * (L), T L 0 E) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xHWB0aa0ba aSqaaiaaicdaaeaacaaIQaaaaOGaaGikamrr1ngBPrwtHrhAXaqehu uDJXwAKbstHrhAG8KBLbacgaGae4NeHWKaaGykaiaaiYcacaWHubWa a0baaSqaaiab+jrimbqaaiaaicdaaaGccqGHPms4caWGfbGaeyOkJe VaaGykaaaa@5ABC@  имеем (непустое) компактное T 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@39C7@  -пространство. Напомним, что (см. [32, с. 80]) при LL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8Ne HWeaaa@44EA@  

F C [L|E\L]= F 0 * (L)\ Φ L (L), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGa aC4qaaqaamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHrhAG8KBLbacga Gae4NBMGoaaOGaaG4waiab+jrimjaacYhacaWGfbGaaiixaiaadYea caaIDbGaaGypaiab=vi8gnaaDaaaleaacaaIWaaabaGaaGOkaaaaki aaiIcacqGFsectcaaIPaGaaiixaiabfA6agnaaBaaaleaacqGFsect aeqaaOGaaGikaiaadYeacaaIPaGaaGilaaaa@6456@

а потому Φ L (L)= F 0 * (L)\ F C [L|E\L] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8NeHWeabeaakiaaiIcacaWGmbGaaGykaiaai2datuuDJXwAK1uy0H MmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+vi8gnaaDaaaleaacaaI WaaabaGaaGOkaaaakiaaiIcacqWFsectcaaIPaGaaiixaiab+vi8gn aaDaaaleaacaWHdbaabaGae8NBMGoaaOGaaG4waiab=jrimjaacYha caWGfbGaaiixaiaadYeacaaIDbaaaa@63A2@  и, как следствие (см. (5.3)),

Φ L (L) C F 0 * (L) [ T L 0 E]; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8NeHWeabeaakiaaiIcacaWGmbGaaGykaiabgIGiolaahoeadaWgaa WcbaWefv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiyaacqGF fcVrdaqhaaqaaiaaicdaaeaacaaIQaaaaiaaiIcacqWFsectcaaIPa aabeaakiaaiUfacaWHubWaa0baaSqaaiab=jrimbqaaiaaicdaaaGc cqGHPms4caWGfbGaeyOkJeVaaGyxaiaaiUdaaaa@628E@ (5.4)

в самом деле E\L C E [L], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiaacY facaWGmbGaeyicI4SaaC4qamaaBaaaleaacaWGfbaabeaakiaaiUfa tuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=jrimj aai2facaaISaaaaa@4AE2@  а потому

F C [L|E\L] F C [L] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGa aC4qaaqaamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHrhAG8KBLbacga Gae4NBMGoaaOGaaG4waiab+jrimjaacYhacaWGfbGaaiixaiaadYea caaIDbGaeyicI48efv3ySLgzgjxyRrxDYbqeiuuDJXwAKbIrYf2A0v NCaGWbaiab9va8gnaaDaaaleaacaWHdbaabaGae4NBMGoaaOGaaG4w aiab+jrimjaai2faaaa@6A9C@

и, следовательно (см. (5.3)),

F C [L|E\L] T L 0 E, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGa aC4qaaqaamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHrhAG8KBLbacga Gae4NBMGoaaOGaaG4waiab+jrimjaacYhacaWGfbGaaiixaiaadYea caaIDbGaeyicI4SaaCivamaaDaaaleaacqGFsectaeaacaaIWaaaaO GaeyykJeUaamyraiabgQYiXlaaiYcaaaa@601B@

откуда в силу (1.1) и вытекает (5.4). Если EP'(L), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrcqGHiiIZcqWF pepucaaINaGaaGikaiab=jrimjaaiMcacaaISaaaaa@49D5@  то согласно (5.4)

Φ L (Σ) C F 0 * (L) [ T L 0 E]ΣE. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8NeHWeabeaakiaaiIcacqqHJoWucaaIPaGaeyicI4SaaC4qamaaBa aaleaatuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab +vi8gnaaDaaabaGaaGimaaqaaiaaiQcaaaGaaGikaiab=jrimjaaiM caaeqaaOGaaG4waiaahsfadaqhaaWcbaGae8NeHWeabaGaaGimaaaa kiabgMYiHlaadweacqGHQms8caaIDbGaaGjbVlaaysW7cqGHaiIica aMi8Uaeu4OdmLaeyicI4Sae8hmHuKaaGOlaaaa@6CD2@ (5.5)

Заметим, что из (1.4) рассуждением по индукции следует, что при KFin(L) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFke=scqGHiiIZcaqG gbGaaeyAaiaab6gacaaIOaGae8NeHWKaaGykaaaa@49EF@  

LK LL; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqbuaeqale aacaWGmbGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYt UvgaiuaacqWFke=saeqaniablMIijbGccaWGmbGaeyicI4Sae8NeHW KaaG4oaaaa@4B82@ (5.6)

поэтому определено Φ L ( LK L)P( F 0 * (L)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8NeHWeabeaakiaaiIcadaafqbqabSqaaiaadYeacqGHiiIZcqWFke =saeqaniablMIijbGccaWGmbGaaGykaiabgIGiolab=9q8qjaaiIca tuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+vi8gn aaDaaaleaacaaIWaaabaGaaGOkaaaakiaaiIcacqWFsectcaaIPaGa aGykaiaai6caaaa@61B6@

Предложение 5.1. Если EP'(L), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrcqGHiiIZcqWF pepucaaINaGaaGikaiab=jrimjaaiMcacaaISaaaaa@49D5@  то

N T L 0 E 0 [ F 0 * (L|E)]= KFin(E) N T L 0 E 0 [ Φ L ( ΣK Σ)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOtamaaDa aaleaacaWHubWaa0baaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy 0Hgip5wzaGqbaiab=jrimbqaaiaaicdaaaGaeyykJeUaamyraiabgQ YiXdqaaiaaicdaaaGccaaIBbWefv3ySLgznfgDOjdarCqr1ngBPrgi nfgDObcv39gaiyaacqGFfcVrdaqhaaWcbaGaaGimaaqaaiaaiQcaaa GccaaIOaGae8NeHWKaaiiFaiab=btifjaaiMcacaaIDbGaaGypamaa tafabeWcbaGae8NcXVKaeyicI4SaaeOraiaabMgacaqGUbGaaGikai ab=btifjaaiMcaaeqaniablQIivbGccaWHobWaa0baaSqaaiaahsfa daqhaaqaaiab=jrimbqaaiaaicdaaaGaeyykJeUaamyraiabgQYiXd qaaiaaicdaaaGccaaIBbGaeuOPdy0aaSbaaSqaaiab=jrimbqabaGc caaIOaWaaqbuaeqaleaacqqHJoWucqGHiiIZcqWFke=saeqaniablM IijbGccqqHJoWucaaIPaGaaGyxaiaai6caaaa@80B0@ (5.7)

Доказательство. Фиксируем EP'(L). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrcqGHiiIZcqWF pepucaaINaGaaGikaiab=jrimjaaiMcacaaIUaaaaa@49D7@  Тогда Fin(E)Fin(L); MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOraiaabM gacaqGUbGaaGikamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacfaGae8hmHuKaaGykaiabgkOimlaabAeacaqGPbGaaeOBaiaaiI cacqWFsectcaaIPaGaaG4oaaaa@4E87@  при KFin(E) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFke=scqGHiiIZcaqG gbGaaeyAaiaab6gacaaIOaGae8hmHuKaaGykaaaa@4A06@  справедливо (5.6) и определено (см. (5.4))

Φ L ( ΣK Σ) C F 0 * (L) [ T L 0 E]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8NeHWeabeaakiaaiIcadaafqbqabSqaaiabfo6atjabgIGiolab=P q8lbqab0GaeSykIKeakiabfo6atjaaiMcacqGHiiIZcaWHdbWaaSba aSqaamrr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4 xHWB0aa0baaeaacaaIWaaabaGaaGOkaaaacaaIOaGae8NeHWKaaGyk aaqabaGccaaIBbGaaCivamaaDaaaleaacqWFsectaeaacaaIWaaaaO GaeyykJeUaamyraiabgQYiXlaai2facaaIUaaaaa@69BA@ (5.8)

Заметим здесь же, что согласно (5.5)

F = Δ { Φ L (Σ):ΣE}P'( C F 0 * (L) [ T L 0 E]). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrdaWfGaqaaiaa i2daaSqabeaacqGHuoaraaGccaaI7bGaeuOPdy0aaSbaaSqaaiab=j rimbqabaGccaaIOaGaeu4OdmLaaGykaiaaiQdacqqHJoWucqGHiiIZ cqWFWesrcaaI9bGaeyicI4Sae83dXdLaaG4jaiaaiIcacaWHdbWaaS baaSqaamrr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGa e4xHWB0aa0baaeaacaaIWaaabaGaaGOkaaaacaaIOaGae8NeHWKaaG ykaaqabaGccaaIBbGaaCivamaaDaaaleaacqWFsectaeaacaaIWaaa aOGaeyykJeUaamyraiabgQYiXlaai2facaaIPaGaaGOlaaaa@71B0@ (5.9)

Поэтому (см. (2.7), (5.2)) имеем следующую цепочку равенств

N T L 0 E 0 [ ΣE Φ L (Σ)]= N T L 0 E 0 [ FF F]= KFin(F) N T L 0 E 0 [ FK F]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOtamaaDa aaleaacaWHubWaa0baaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy 0Hgip5wzaGqbaiab=jrimbqaaiaaicdaaaGaeyykJeUaamyraiabgQ YiXdqaaiaaicdaaaGccaaIBbWaaqbuaeqaleaacqqHJoWucqGHiiIZ cqWFWesraeqaniablMIijbGccqqHMoGrdaWgaaWcbaGae8NeHWeabe aakiaaiIcacqqHJoWucaaIPaGaaGyxaiaai2dacaWHobWaa0baaSqa aiaahsfadaqhaaqaaiab=jrimbqaaiaaicdaaaGaeyykJeUaamyrai abgQYiXdqaaiaaicdaaaGccaaIBbWaaqbuaeqaleaatuuDJXwAK1uy 0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+vi8gjabgIGiolab=f tigbqab0GaeSykIKeakiab+vi8gjaai2facaaI9aWaambuaeqaleaa cqWFke=scqGHiiIZcaqGgbGaaeyAaiaab6gacaaIOaGae8xmHyKaaG ykaaqab0GaeSOkIufakiaah6eadaqhaaWcbaGaaCivamaaDaaabaGa e8NeHWeabaGaaGimaaaacqGHPms4caWGfbGaeyOkJepabaGaaGimaa aakiaaiUfadaafqbqabSqaaiab+vi8gjabgIGiolab=Pq8lbqab0Ga eSykIKeakiab+vi8gjaai2facaaIUaaaaa@9551@ (5.10)

С учетом (4.11) и (5.10) имеем, однако, равенство

N T L 0 E 0 [ F 0 * (L|E)]= KFin(F) N T L 0 E 0 [ FK F]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOtamaaDa aaleaacaWHubWaa0baaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy 0Hgip5wzaGqbaiab=jrimbqaaiaaicdaaaGaeyykJeUaamyraiabgQ YiXdqaaiaaicdaaaGccaaIBbWefv3ySLgznfgDOjdarCqr1ngBPrgi nfgDObcv39gaiyaacqGFfcVrdaqhaaWcbaGaaGimaaqaaiaaiQcaaa GccaaIOaGae8NeHWKaaiiFaiab=btifjaaiMcacaaIDbGaaGypamaa tafabeWcbaGae8NcXVKaeyicI4SaaeOraiaabMgacaqGUbGaaGikai ab=ftigjaaiMcaaeqaniablQIivbGccaWHobWaa0baaSqaaiaahsfa daqhaaqaaiab=jrimbqaaiaaicdaaaGaeyykJeUaamyraiabgQYiXd qaaiaaicdaaaGccaaIBbWaaqbuaeqaleaacqGFfcVrcqGHiiIZcqWF ke=saeqaniablMIijbGccqGFfcVrcaaIDbGaaGOlaaaa@7E0F@ (5.11)

В связи с рассмотрением множества в правой части (5.10) заметим, что (см. (4.1), (4.2), (4.4))

Φ L ( L 1 L 2 )= Φ L ( L 1 ) Φ L ( L 2 ) L 1 L L 2 L. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8NeHWeabeaakiaaiIcacaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaey ykICSaamitamaaBaaaleaacaaIYaaabeaakiaaiMcacaaI9aGaeuOP dy0aaSbaaSqaaiab=jrimbqabaGccaaIOaGaamitamaaBaaaleaaca aIXaaabeaakiaaiMcacqGHPiYXcqqHMoGrdaWgaaWcbaGae8NeHWea beaakiaaiIcacaWGmbWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaays W7caaMe8UaeyiaIiIaaGjcVlaadYeadaWgaaWcbaGaaGymaaqabaGc cqGHiiIZcqWFsectcaaMe8UaaGjbVlabgcGiIiaayIW7caWGmbWaaS baaSqaaiaaikdaaeqaaOGaeyicI4Sae8NeHWKaaGOlaaaa@6D2C@ (5.12)

Из (5.12) рассуждением по индукции следует (см. (5.6)), что

LK Φ L (L)= Φ L ( LK L)KFin(L). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqbuaeqale aacaWGmbGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYt UvgaiuaacqWFke=saeqaniablMIijbGccqqHMoGrdaWgaaWcbaGae8 NeHWeabeaakiaaiIcacaWGmbGaaGykaiaai2dacqqHMoGrdaWgaaWc baGae8NeHWeabeaakiaaiIcadaafqbqabSqaaiaadYeacqGHiiIZcq WFke=saeqaniablMIijbGccaWGmbGaaGykaiaaysW7caaMe8Uaeyia IiIaaGjcVlab=Pq8ljabgIGiolaabAeacaqGPbGaaeOBaiaaiIcacq WFsectcaaIPaGaaGOlaaaa@6663@

Как следствие получаем полезное свойство

Φ L ( LK L)= LK Φ L (L)KFin(E). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8NeHWeabeaakiaaiIcadaafqbqabSqaaiaadYeacqGHiiIZcqWFke =saeqaniablMIijbGccaWGmbGaaGykaiaai2dadaafqbqabSqaaiaa dYeacqGHiiIZcqWFke=saeqaniablMIijbGccqqHMoGrdaWgaaWcba Gae8NeHWeabeaakiaaiIcacaWGmbGaaGykaiaaysW7caaMe8Uaeyia IiIaaGjcVlab=Pq8ljabgIGiolaabAeacaqGPbGaaeOBaiaaiIcacq WFWesrcaaIPaGaaGOlaaaa@667A@ (5.13)

Сравним теперь множества

(A = Δ KFin(F) N T L 0 E 0 [ FK F])&(B = Δ KFin(E) N T L 0 E 0 [ Φ L ( LK L)]). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8hGWh0aaCbi aeaacaaI9aaaleqabaGaeyiLdqeaaOWaambuaeqaleaatuuDJXwAK1 uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaGGbaiab+Pq8ljabgIGiolaa bAeacaqGPbGaaeOBaiaaiIcacqGFXeIrcaaIPaaabeqdcqWIQisvaO GaaCOtamaaDaaaleaacaWHubWaa0baaeaacqGFsectaeaacaaIWaaa aiabgMYiHlaadweacqGHQms8aeaacaaIWaaaaOGaaG4wamaauafabe WcbaGae8xHWBKaeyicI4Sae4NcXVeabeqdcqWIPissaOGae8xHWBKa aGyxaiaaiMcacaaMe8UaaGOjaiaaysW7caaIOaGae8xGWl0aaCbiae aacaaI9aaaleqabaGaeyiLdqeaaOWaambuaeqaleaacqGFke=scqGH iiIZcaqGgbGaaeyAaiaab6gacaaIOaGae4hmHuKaaGykaaqab0GaeS OkIufakiaah6eadaqhaaWcbaGaaCivamaaDaaabaGae4NeHWeabaGa aGimaaaacqGHPms4caWGfbGaeyOkJepabaGaaGimaaaakiaaiUfacq qHMoGrdaWgaaWcbaGae4NeHWeabeaakiaaiIcadaafqbqabSqaaiaa dYeacqGHiiIZcqGFke=saeqaniablMIijbGccaWGmbGaaGykaiaai2 facaaIPaGaaGOlaaaa@99CE@ (5.14)

Пусть G A. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4rayaafa GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaa cqWFacFqcaaIUaaaaa@46F4@  Тогда для некоторого K'Fin(F) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFke=scaaINaGaeyic I4SaaeOraiaabMgacaqGUbGaaGikaiab=ftigjaaiMcaaaa@4AB9@  имеем включение

G N T L 0 E 0 [ FK' F]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4rayaafa GaeyicI4SaaCOtamaaDaaaleaacaWHubWaa0baaeaatuuDJXwAK1uy 0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=jrimbqaaiaaicdaaa GaeyykJeUaamyraiabgQYiXdqaaiaaicdaaaGccaaIBbWaaqbuaeqa leaatuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+v i8gjabgIGiolab=Pq8ljaaiEcaaeqaniablMIijbGccqGFfcVrcaaI DbGaaGOlaaaa@6319@

Это означает, что G T L 0 E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4rayaafa GaeyicI4SaaCivamaaDaaaleaatuuDJXwAK1uy0HwmaeHbfv3ySLgz G0uy0Hgip5wzaGqbaiab=jrimbqaaiaaicdaaaGccqGHPms4caWGfb GaeyOkJepaaa@4B0C@  и при этом

FK' F G . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqbuaeqale aatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=vi8 gjabgIGioprr1ngBPrwtHrhAXaqehuuDJXwAKbstHrhAG8KBLbacga Gae4NcXVKaaG4jaaqab0GaeSykIKeakiab=vi8gjabgkOimlqadEea gaqbaiaai6caaaa@58F4@ (5.15)

По выбору K' MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFke=scaaINaaaaa@440D@  имеем для некоторых p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xf H4eaaa@452C@  и ( F i ) i 1,p ¯ F p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xHWB0aaSba aSqaaiaadMgaaeqaaOGaaGykamaaBaaaleaacaWGPbGaeyicI48aa0 aaaeaacaaIXaGaaGilaiaadchaaaaabeaakiabgIGioprr1ngBPrwt HrhAXaqehuuDJXwAKbstHrhAG8KBLbacgaGae4xmHy0aaWbaaSqabe aacaWGWbaaaaaa@58E0@  равенство

K'={ F i :i 1,p ¯ }. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFke=scaaINaGaaGyp aiaaiUhatuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbai ab+vi8gnaaBaaaleaacaWGPbaabeaakiaaiQdacaWGPbGaeyicI48a a0aaaeaacaaIXaGaaGilaiaadchaaaGaaGyFaiaai6caaaa@5A4D@

С учетом (5.9) можно указать кортеж ( Σ i ) i 1,p ¯ E p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiqbfo 6atzaafaWaaSbaaSqaaiaadMgaaeqaaOGaaGykamaaBaaaleaacaWG PbGaeyicI48aa0aaaeaacaaIXaGaaGilaiaadchaaaaabeaakiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8hm Hu0aaWbaaSqabeaacaWGWbaaaaaa@4E8A@  со свойством

F j = Φ L ( Σ j )j 1,p ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaWgaaWcbaGa amOAaaqabaGccaaI9aGaeuOPdy0aaSbaaSqaamrr1ngBPrwtHrhAXa qehuuDJXwAKbstHrhAG8KBLbacgaGae4NeHWeabeaakiaaiIcacuqH JoWugaqbamaaBaaaleaacaWGQbaabeaakiaaiMcacaaMe8UaaGjbVl abgcGiIiaayIW7caWGQbGaeyicI48aa0aaaeaacaaIXaGaaGilaiaa dchaaaGaaGOlaaaa@614C@ (5.16)

При этом K ' = Δ { Σ i :i 1,p ¯ }Fin(E) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFke=sceaINaGbauaa daWfGaqaaiaai2daaSqabeaacqGHuoaraaGccaaI7bGafu4OdmLbau aadaWgaaWcbaGaamyAaaqabaGccaaI6aGaamyAaiabgIGiopaanaaa baGaaGymaiaaiYcacaWGWbaaaiaai2hacqGHiiIZcaqGgbGaaeyAai aab6gacaaIOaGae8hmHuKaaGykaaaa@57B1@  и согласно (5.13) и (5.16)

Φ L ( LK ' L)= Φ L ( i=1 p Σ i )= i=1 p Φ L ( Σ i )= i=1 p F i = FK' F. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8NeHWeabeaakiaaiIcadaafqbqabSqaaiaadYeacqGHiiIZcqWFke =sceaINaGbauaaaeqaniablMIijbGccaWGmbGaaGykaiaai2dacqqH MoGrdaWgaaWcbaGae8NeHWeabeaakiaaiIcadaafWbqabSqaaiaadM gacaaI9aGaaGymaaqaaiaadchaa0GaeSykIKeakiqbfo6atzaafaWa aSbaaSqaaiaadMgaaeqaaOGaaGykaiaai2dadaafWbqabSqaaiaadM gacaaI9aGaaGymaaqaaiaadchaa0GaeSykIKeakiabfA6agnaaBaaa leaacqWFsectaeqaaOGaaGikaiqbfo6atzaafaWaaSbaaSqaaiaadM gaaeqaaOGaaGykaiaai2dadaafWbqabSqaaiaadMgacaaI9aGaaGym aaqaaiaadchaa0GaeSykIKeatuuDJXwAK1uy0HMmaeXbfv3ySLgzG0 uy0HgiuD3BaGGbaOGae4xHWB0aaSbaaSqaaiaadMgaaeqaaOGaaGyp amaauafabeWcbaGae4xHWBKaeyicI4Sae8NcXVKaaG4jaaqab0GaeS ykIKeakiab+vi8gjaai6caaaa@8557@

С учетом (5.15) получаем, как следствие, что

Φ L ( LK ' L) G . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8NeHWeabeaakiaaiIcadaafqbqabSqaaiaadYeacqGHiiIZcqWFke =sceaINaGbauaaaeqaniablMIijbGccaWGmbGaaGykaiabgkOimlqa dEeagaqbaiaai6caaaa@5097@

Это означает, что справедливо включение

G N T L 0 E 0 [ Φ L ( LK ' L)]; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4rayaafa GaeyicI4SaaCOtamaaDaaaleaacaWHubWaa0baaeaatuuDJXwAK1uy 0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=jrimbqaaiaaicdaaa GaeyykJeUaamyraiabgQYiXdqaaiaaicdaaaGccaaIBbGaeuOPdy0a aSbaaSqaaiab=jrimbqabaGccaaIOaWaaqbuaeqaleaacaWGmbGaey icI4Sae8NcXVKabG4jayaafaaabeqdcqWIPissaOGaamitaiaaiMca caaIDbGaaG4oaaaa@5ACA@

тем более, G B, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4rayaafa GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaa cqWFbcVqcaaISaaaaa@46F4@  чем завершается проверка вложения

AB. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFacFqcqGHckcZcqWF bcVqcaaIUaaaaa@48CC@ (5.17)

 Выберем произвольно G 0 B, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaCa aaleqabaGaaGimaaaakiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwA KbstHrhAGq1DVbacfaGae8xGWlKaaGilaaaa@47D9@  после чего подберем (см. (5.14)) K 0 Fin(E) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFke=sdaahaaWcbeqa aiaaicdaaaGccqGHiiIZcaqGgbGaaeyAaiaab6gacaaIOaGae8hmHu KaaGykaaaa@4AF7@  со свойством

G 0 N T L 0 E 0 [ Φ L ( L K 0 L)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaCa aaleqabaGaaGimaaaakiabgIGiolaah6eadaqhaaWcbaGaaCivamaa DaaabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacq WFsectaeaacaaIWaaaaiabgMYiHlaadweacqGHQms8aeaacaaIWaaa aOGaaG4waiabfA6agnaaBaaaleaacqWFsectaeqaaOGaaGikamaaua fabeWcbaGaamitaiabgIGiolab=Pq8lnaaCaaabeqaaiaaicdaaaaa beqdcqWIPissaOGaamitaiaaiMcacaaIDbGaaGOlaaaa@5BC1@ (5.18)

Подберем q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xf H4eaaa@452D@  и ( Ξ i ) i 1,q ¯ E q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabf6 5aynaaBaaaleaacaWGPbaabeaakiaaiMcadaWgaaWcbaGaamyAaiab gIGiopaanaaabaGaaGymaiaaiYcacaWGXbaaaaqabaGccqGHiiIZtu uDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=btifnaa CaaaleqabaGaamyCaaaaaaa@4E80@  со свойством

K 0 ={ Ξ i :i 1,q ¯ }Fin(E). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFke=sdaahaaWcbeqa aiaaicdaaaGccaaI9aGaaG4Eaiabf65aynaaBaaaleaacaWGPbaabe aakiaaiQdacaWGPbGaeyicI48aa0aaaeaacaaIXaGaaGilaiaadgha aaGaaGyFaiabgIGiolaabAeacaqGPbGaaeOBaiaaiIcacqWFWesrca aIPaGaaGOlaaaa@56D8@ (5.19)

Из (5.9) вытекает c очевидностью, что

( Φ L ( Ξ i )) i 1,q ¯ F q , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabfA 6agnaaBaaaleaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz aGqbaiab=jrimbqabaGccaaIOaGaeuONdG1aaSbaaSqaaiaadMgaae qaaOGaaGykaiaaiMcadaWgaaWcbaGaamyAaiabgIGiopaanaaabaGa aGymaiaaiYcacaWGXbaaaaqabaGccqGHiiIZcqWFXeIrdaahaaWcbe qaaiaadghaaaGccaaISaaaaa@535B@

а потому реализуется следующее свойство

K 0 = Δ { Φ L ( Ξ i ):i 1,q ¯ }Fin(F). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFke=sdaWgaaWcbaGa aGimaaqabaGcdaWfGaqaaiaai2daaSqabeaacqGHuoaraaGccaaI7b GaeuOPdy0aaSbaaSqaaiab=jrimbqabaGccaaIOaGaeuONdG1aaSba aSqaaiaadMgaaeqaaOGaaGykaiaaiQdacaWGPbGaeyicI48aa0aaae aacaaIXaGaaGilaiaadghaaaGaaGyFaiabgIGiolaabAeacaqGPbGa aeOBaiaaiIcacqWFXeIrcaaIPaGaaGOlaaaa@5CAC@

При этом согласно (5.13) и (5.19)

Φ L ( L K 0 L)= L K 0 Φ L (L)= i=1 q Φ L ( Ξ i )= F K 0 F. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8NeHWeabeaakiaaiIcadaafqbqabSqaaiaadYeacqGHiiIZcqWFke =sdaahaaqabeaacaaIWaaaaaqab0GaeSykIKeakiaadYeacaaIPaGa aGypamaauafabeWcbaGaamitaiabgIGiolab=Pq8lnaaCaaabeqaai aaicdaaaaabeqdcqWIPissaOGaeuOPdy0aaSbaaSqaaiab=jrimbqa baGccaaIOaGaamitaiaaiMcacaaI9aWaaqbCaeqaleaacaWGPbGaaG ypaiaaigdaaeaacaWGXbaaniablMIijbGccqqHMoGrdaWgaaWcbaGa e8NeHWeabeaakiaaiIcacqqHEoawdaWgaaWcbaGaamyAaaqabaGcca aIPaGaaGypamaauafabeWcbaWefv3ySLgznfgDOjdarCqr1ngBPrgi nfgDObcv39gaiyaacqGFfcVrcqGHiiIZcqWFke=sdaWgaaqaaiaaic daaeqaaaqab0GaeSykIKeakiab+vi8gjaai6caaaa@7BC9@

Тогда в силу (5.18) получаем вложение F K 0 F G 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqbuaeqale aatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=vi8 gjabgIGioprr1ngBPrwtHrhAXaqehuuDJXwAKbstHrhAG8KBLbacga Gae4NcXV0aaSbaaeaacaaIWaaabeaaaeqaniablMIijbGccqWFfcVr cqGHckcZcaWGhbWaaWbaaSqabeaacaaIWaaaaOGaaGilaaaa@5A01@  а потому G 0 N T L 0 E 0 [ F K 0 F]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaCa aaleqabaGaaGimaaaakiabgIGiolaah6eadaqhaaWcbaGaaCivamaa DaaabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacq WFsectaeaacaaIWaaaaiabgMYiHlaadweacqGHQms8aeaacaaIWaaa aOGaaG4wamaauafabeWcbaWefv3ySLgznfgDOjdarCqr1ngBPrginf gDObcv39gaiyaacqGFfcVrcqGHiiIZcqWFke=sdaWgaaqaaiaaicda aeqaaaqab0GaeSykIKeakiab+vi8gjaai2facaaIUaaaaa@6428@  Тем более (см. (5.14)) G 0 A. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaCa aaleqabaGaaGimaaaakiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwA KbstHrhAGq1DVbacfaGae8hGWhKaaGOlaaaa@47D9@  Получили, что BA, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFbcVqcqGHckcZcqWF acFqcaaISaaaaa@48CA@  а потому (см. (5.17)) A=B. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFacFqcaaI9aGae8xG WlKaaGOlaaaa@4797@  С учетом (5.11) и (5.14) получаем теперь цепочку равенств

N T L 0 E 0 [ F 0 * (L|E)]=B= KFin(E) N T L 0 E 0 [ Φ L ( LK L)], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOtamaaDa aaleaacaWHubWaa0baaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy 0Hgip5wzaGqbaiab=jrimbqaaiaaicdaaaGaeyykJeUaamyraiabgQ YiXdqaaiaaicdaaaGccaaIBbWefv3ySLgznfgDOjdarCqr1ngBPrgi nfgDObcv39gaiyaacqGFfcVrdaqhaaWcbaGaaGimaaqaaiaaiQcaaa GccaaIOaGae8NeHWKaaiiFaiab=btifjaaiMcacaaIDbGaaGypaiab +fi8cjaai2dadaWeqbqabSqaaiab=Pq8ljabgIGiolaabAeacaqGPb GaaeOBaiaaiIcacqWFWesrcaaIPaaabeqdcqWIQisvaOGaaCOtamaa DaaaleaacaWHubWaa0baaeaacqWFsectaeaacaaIWaaaaiabgMYiHl aadweacqGHQms8aeaacaaIWaaaaOGaaG4waiabfA6agnaaBaaaleaa cqWFsectaeqaaOGaaGikamaauafabeWcbaGaamitaiabgIGiolab=P q8lbqab0GaeSykIKeakiaadYeacaaIPaGaaGyxaiaaiYcaaaa@8246@

означающую справедливость (5.7).

Следствие 5.1. Если семейство EP'(L) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrcqGHiiIZcqWF pepucaaINaGaaGikaiab=jrimjaaiMcaaaa@491F@  является направленным, т. е.

Σ 1 E Σ 2 E Σ 3 E: Σ 3 Σ 1 Σ 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jcVlabfo6atnaaBaaaleaacaaIXaaabeaakiabgIGioprr1ngBPrwt HrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8hmHuKaaGjbVlaays W7cqGHaiIicqqHJoWudaWgaaWcbaGaaGOmaaqabaGccqGHiiIZcqWF WesrcaaMe8UaaGjbVlabgoGiKiaayIW7cqqHJoWudaWgaaWcbaGaaG 4maaqabaGccqGHiiIZcqWFWesrcaaI6aGaeu4Odm1aaSbaaSqaaiaa iodaaeqaaOGaeyOGIWSaeu4Odm1aaSbaaSqaaiaaigdaaeqaaOGaey ykICSaeu4Odm1aaSbaaSqaaiaaikdaaeqaaOGaaGilaaaa@6911@  (5.20)

то справедливо равенство

N T L 0 E 0 [ F 0 * (L|E)]= ΣE N T L 0 E 0 [ Φ L (Σ)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOtamaaDa aaleaacaWHubWaa0baaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy 0Hgip5wzaGqbaiab=jrimbqaaiaaicdaaaGaeyykJeUaamyraiabgQ YiXdqaaiaaicdaaaGccaaIBbWefv3ySLgznfgDOjdarCqr1ngBPrgi nfgDObcv39gaiyaacqGFfcVrdaqhaaWcbaGaaGimaaqaaiaaiQcaaa GccaaIOaGae8NeHWKaaiiFaiab=btifjaaiMcacaaIDbGaaGypamaa tafabeWcbaGaeu4OdmLaeyicI4Sae8hmHueabeqdcqWIQisvaOGaaC OtamaaDaaaleaacaWHubWaa0baaeaacqWFsectaeaacaaIWaaaaiab gMYiHlaadweacqGHQms8aeaacaaIWaaaaOGaaG4waiabfA6agnaaBa aaleaacqWFsectaeqaaOGaaGikaiabfo6atjaaiMcacaaIDbGaaGOl aaaa@75D8@ (5.21)

Доказательство. Пусть EP'(L) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrcqGHiiIZcqWF pepucaaINaGaaGikaiab=jrimjaaiMcaaaa@491F@  и выполнено (5.20). Тогда рассуждением по индукции получаем, что m ( Σ i ) i 1,m ¯ E m Σ ˜ E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jcVlaad2gacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0Hgi uD3BaGqbaiab=vriojaaysW7caaMe8UaeyiaIiIaaGikaiabfo6atn aaBaaaleaacaWGPbaabeaakiaaiMcadaWgaaWcbaGaamyAaiabgIGi opaanaaabaGaaGymaiaaiYcacaWGTbaaaaqabaGccqGHiiIZtuuDJX wAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaGGbaiab+btifnaaCaaa leqabaGaamyBaaaakiaaysW7caaMe8Uaey4aIqIaaGjcVlqbfo6atz aaiaGaeyicI4Sae4hmHueaaa@6BA1@  

Σ ˜ i=1 m Σ i . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafu4OdmLbaG aacqGHckcZdaafWbqabSqaaiaadMgacaaI9aGaaGymaaqaaiaad2ga a0GaeSykIKeakiabfo6atnaaBaaaleaacaWGPbaabeaakiaai6caaa a@442A@ (5.22)

Из (5.22) вытекает очевидное следствие

KFin(E) Σ ˜ E: Σ ˜ ΣK Σ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jcVprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8Nc XVKaeyicI4SaaeOraiaabMgacaqGUbGaaGikaiab=btifjaaiMcaca aMe8UaaGjbVlabgoGiKiaayIW7cuqHJoWugaacaiabgIGiolab=bti fjaaiQdacuqHJoWugaacaiabgkOimpaauafabeWcbaGaeu4OdmLaey icI4Sae8NcXVeabeqdcqWIPissaOGaeu4OdmLaaGOlaaaa@632E@ (5.23)

Далее, из (4.1), (4.2), (4.4) вытекает, что L 1 L L 2 L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jcVlaadYeadaWgaaWcbaGaaGymaaqabaGccqGHiiIZtuuDJXwAK1uy 0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=jrimjaaysW7caaMe8 UaeyiaIiIaaGjcVlab=jrimnaaBaaaleaacaaIYaaabeaakiabgIGi olab=jrimbaa@5235@  

( L 1 L 2 )( Φ L ( L 1 ) Φ L ( L 2 )). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadY eadaWgaaWcbaGaaGymaaqabaGccqGHckcZcaWGmbWaaSbaaSqaaiaa ikdaaeqaaOGaaGykaiabgkDiElaaiIcacqqHMoGrdaWgaaWcbaWefv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectaeqa aOGaaGikaiaadYeadaWgaaWcbaGaaGymaaqabaGccaaIPaGaeyOGIW SaeuOPdy0aaSbaaSqaaiab=jrimbqabaGccaaIOaGaamitamaaBaaa leaacaaIYaaabeaakiaaiMcacaaIPaGaaGOlaaaa@5AA4@ (5.24)

В качестве L 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIXaaabeaaaaa@39BF@  и L 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaaaaa@39C0@  в (5.24) могут использоваться множества из E. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrcaaIUaaaaa@4364@  Возвращаясь к предложению 5.1, рассмотрим семейство в правой части (5.7), учитывая свойство (5.6). Итак, пусть

( A ˜ = Δ KFin(E) N T L 0 E 0 [ Φ L ( ΣK Σ)])&( B ˜ = Δ ΣE N T L 0 E 0 [ Φ L (Σ)]). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGaf8hGWhKbaGaa daWfGaqaaiaai2daaSqabeaacqGHuoaraaGcdaWeqbqabSqaamrr1n gBPrwtHrhAXaqehuuDJXwAKbstHrhAG8KBLbacgaGae4NcXVKaeyic I4SaaeOraiaabMgacaqGUbGaaGikaiab+btifjaaiMcaaeqaniablQ IivbGccaWHobWaa0baaSqaaiaahsfadaqhaaqaaiab+jrimbqaaiaa icdaaaGaeyykJeUaamyraiabgQYiXdqaaiaaicdaaaGccaaIBbGaeu OPdy0aaSbaaSqaaiab+jrimbqabaGccaaIOaWaaqbuaeqaleaacqqH JoWucqGHiiIZcqGFke=saeqaniablMIijbGccqqHJoWucaaIPaGaaG yxaiaaiMcacaaIMaGaaGikaiqb=fi8czaaiaWaaCbiaeaacaaI9aaa leqabaGaeyiLdqeaaOWaambuaeqaleaacqqHJoWucqGHiiIZcqGFWe sraeqaniablQIivbGccaWHobWaa0baaSqaaiaahsfadaqhaaqaaiab +jrimbqaaiaaicdaaaGaeyykJeUaamyraiabgQYiXdqaaiaaicdaaa GccaaIBbGaeuOPdy0aaSbaaSqaaiab+jrimbqabaGccaaIOaGaeu4O dmLaaGykaiaai2facaaIPaGaaGOlaaaa@9000@ (5.25)

При этом {Σ}Fin(E) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiabfo 6atjaai2hacqGHiiIZcaqGgbGaaeyAaiaab6gacaaIOaWefv3ySLgz nfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrcaaIPaaaaa@4BCB@  в случае ΣE. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4OdmLaey icI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWF WesrcaaIUaaaaa@466C@  Поэтому B ˜ A ˜ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacuWFbcVqgaacaiabgkOi mlqb=bi8bzaaiaGaaGOlaaaa@48EA@  Осталось установить вложение

A ˜ B ˜ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacuWFacFqgaacaiabgkOi mlqb=fi8czaaiaGaaGOlaaaa@48EA@ (5.26)

Выберем произвольно Γ A ˜ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdCKaey icI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacuWF acFqgaacaiaai6caaaa@4793@  Тогда для некоторого KFin(E) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Pa8ljabgIGiolaa bAeacaqGPbGaaeOBaiaaiIcatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0 uy0Hgip5wzaGGbaiab+btifjaaiMcaaaa@54C7@  

Γ N T L 0 E 0 [ Φ L ( ΣK Σ)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdCKaey icI4SaaCOtamaaDaaaleaacaWHubWaa0baaeaatuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=jrimbqaaiaaicdaaaGaey ykJeUaamyraiabgQYiXdqaaiaaicdaaaGccaaIBbGaeuOPdy0aaSba aSqaaiab=jrimbqabaGccaaIOaWaaqbuaeqaleaacqqHJoWucqGHii IZtuuDJXwAKzKCHTgD1jharCqr1ngBPrgigjxyRrxDYbacgaGae4Nc WVeabeqdcqWIPissaOGaeu4OdmLaaGykaiaai2facaaIUaaaaa@66B7@

Это означает, что Γ T L 0 E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdCKaey icI4SaaCivamaaDaaaleaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy 0Hgip5wzaGqbaiab=jrimbqaaiaaicdaaaGccqGHPms4caWGfbGaey OkJepaaa@4B9C@  и при этом

Φ L ( ΣK Σ)Γ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8NeHWeabeaakiaaiIcadaafqbqabSqaaiabfo6atjabgIGioprr1n gBPrMrYf2A0vNCaeXbfv3ySLgzGyKCHTgD1jhaiyaacqGFka=saeqa niablMIijbGccqqHJoWucaaIPaGaeyOGIWSaeu4KdCKaaGOlaaaa@5C91@ (5.27)

С учетом (5.23) подберем множество ΞE MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaey icI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWF Wesraaa@45B4@  со свойством

Ξ ΣK Σ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaey OGIW8aaqbuaeqaleaacqqHJoWucqGHiiIZtuuDJXwAKzKCHTgD1jha ryqr1ngBPrgigjxyRrxDYbacfaGae8NcWVeabeqdcqWIPissaOGaeu 4OdmLaaGOlaaaa@4F09@ (5.28)

Здесь ΞL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaey icI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWF sectaaa@459D@  и ΣK ΣL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqbuaeqale aacqqHJoWucqGHiiIZtuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxy RrxDYbacfaGae8NcWVeabeqdcqWIPissaOGaeu4OdmLaeyicI48efv 3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgaiyaacqGFsectaaa@56E4@  (см. (5.6)). Из (5.24) и (5.28) получаем поэтому, что

Φ L (Ξ) Φ L ( ΣK Σ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8NeHWeabeaakiaaiIcacqqHEoawcaaIPaGaeyOGIWSaeuOPdy0aaS baaSqaaiab=jrimbqabaGccaaIOaWaaqbuaeqaleaacqqHJoWucqGH iiIZtuuDJXwAKzKCHTgD1jharCqr1ngBPrgigjxyRrxDYbacgaGae4 NcWVeabeqdcqWIPissaOGaeu4OdmLaaGykaiaaiYcaaaa@60C4@

а тогда с учетом (5.27) получаем вложение

Φ L (Ξ)Γ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8NeHWeabeaakiaaiIcacqqHEoawcaaIPaGaeyOGIWSaeu4KdCKaaG ilaaaa@4B48@

что означает свойство Γ N T L 0 E 0 [ Φ L (Ξ)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdCKaey icI4SaaCOtamaaDaaaleaacaWHubWaa0baaeaatuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=jrimbqaaiaaicdaaaGaey ykJeUaamyraiabgQYiXdqaaiaaicdaaaGccaaIBbGaeuOPdy0aaSba aSqaaiab=jrimbqabaGccaaIOaGaeuONdGLaaGykaiaai2facaaIUa aaaa@5570@  По выбору Ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGfaaa@398B@  имеем из (5.25), что Γ B ˜ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdCKaey icI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacuWF bcVqgaacaiaaiYcaaaa@4793@  чем и завершается проверка (5.26), а следовательно, и равенства A ˜ = B ˜ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacuWFacFqgaacaiaai2da cuWFbcVqgaacaiaai6caaaa@47B5@  Из предложения 5.1 и (5.25) имеем, однако, равенство

N T L 0 E 0 [ F 0 * (L|E)]= A ˜ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOtamaaDa aaleaacaWHubWaa0baaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy 0Hgip5wzaGqbaiab=jrimbqaaiaaicdaaaGaeyykJeUaamyraiabgQ YiXdqaaiaaicdaaaGccaaIBbWefv3ySLgznfgDOjdarCqr1ngBPrgi nfgDObcv39gaiyaacqGFfcVrdaqhaaWcbaGaaGimaaqaaiaaiQcaaa GccaaIOaGae8NeHWKaaiiFaiab=btifjaaiMcacaaIDbGaaGypaiqb +bi8bzaaiaGaaGilaaaa@61FD@

а потому N T L 0 E 0 [ F 0 * (L|E)]= B ˜ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOtamaaDa aaleaacaWHubWaa0baaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy 0Hgip5wzaGqbaiab=jrimbqaaiaaicdaaaGaeyykJeUaamyraiabgQ YiXdqaaiaaicdaaaGccaaIBbWefv3ySLgznfgDOjdarCqr1ngBPrgi nfgDObcv39gaiyaacqGFfcVrdaqhaaWcbaGaaGimaaqaaiaaiQcaaa GccaaIOaGae8NeHWKaaiiFaiab=btifjaaiMcacaaIDbGaaGypaiqb +fi8czaaiaGaaGOlaaaa@6201@  С учетом второго определения в (79) получаем, как следствие, требуемое равенство (5.25).

Из (4.1) и следствия 5.1 получаем, конечно, свойство: F F * (L) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jcVprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8xm HyKaeyicI48efv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiy aacqGFfcVrdaahaaWcbeqaaiaaiQcaaaGccaaIOaGae8NeHWKaaGyk aaaa@55CB@  

N T L 0 E 0 [ F 0 * (L|F)]= FF N T L 0 E 0 [ Φ L (F)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOtamaaDa aaleaacaWHubWaa0baaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy 0Hgip5wzaGqbaiab=jrimbqaaiaaicdaaaGaeyykJeUaamyraiabgQ YiXdqaaiaaicdaaaGccaaIBbWefv3ySLgznfgDOjdarCqr1ngBPrgi nfgDObcv39gaiyaacqGFfcVrdaqhaaWcbaGaaGimaaqaaiaaiQcaaa GccaaIOaGae8NeHWKaaiiFaiab=ftigjaaiMcacaaIDbGaaGypamaa tafabeWcbaGaamOraiabgIGiolab=ftigbqab0GaeSOkIufakiaah6 eadaqhaaWcbaGaaCivamaaDaaabaGae8NeHWeabaGaaGimaaaacqGH Pms4caWGfbGaeyOkJepabaGaaGimaaaakiaaiUfacqqHMoGrdaWgaa WcbaGae8NeHWeabeaakiaaiIcacaWGgbGaaGykaiaai2facaaIUaaa aa@746A@ (5.29)

Из (5.29) вытекает, с очевидностью, что F F * (L)G N T L 0 E 0 [ F 0 * (L|E)]FF MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jcVprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8xm HyKaeyicI48efv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiy aacqGFfcVrdaahaaWcbeqaaiaaiQcaaaGccaaIOaGae8NeHWKaaGyk aiaaysW7caaMe8UaeyiaIiIaaGjcVlaadEeacqGHiiIZcaWHobWaa0 baaSqaaiaahsfadaqhaaqaaiab=jrimbqaaiaaicdaaaGaeyykJeUa amyraiabgQYiXdqaaiaaicdaaaGccaaIBbGae4xHWB0aa0baaSqaai aaicdaaeaacaaIQaaaaOGaaGikaiab=jrimjaacYhacqWFWesrcaaI PaGaaGyxaiaaysW7caaMe8Uaey4aIqIaaGjcVlaadAeacqGHiiIZcq WFXeIraaa@7988@ :

F 0 * (L|F) Φ L (F)G; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGa aGimaaqaaiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPr ginfgDObYtUvgaiyaacqGFsectcaGG8bGae4xmHyKaaGykaiabgkOi mlabfA6agnaaBaaaleaacqGFsectaeqaaOGaaGikaiaadAeacaaIPa GaeyOGIWSaam4raiaaiUdaaaa@5E0B@ (5.30)

в (5.30) имеем естественный аналог (4.19).

Замечане 5.1. Напомним, что (см. [27, теорема 7.1]) при L π ˜ 0 [E] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcqGHiiIZcuaH apaCgaacamaaCaaaleqabaGaaGimaaaakiaaiUfacaWGfbGaaGyxaa aa@496C@  и F F * (L) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrcqGHiiIZtuuD JXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+vi8gnaaCa aaleqabaGaaGOkaaaakiaaiIcacqWFsectcaaIPaaaaa@536A@  

(AS)[E; F 0 * (L); T L 0 E;(Ltriv)[];F]= F 0 * (L|F). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaabg eacaqGtbGaaGykaiaaiUfacaWGfbGaaG4oamrr1ngBPrwtHrhAYaqe guuDJXwAKbstHrhAGq1DVbacfaGae8xHWB0aa0baaSqaaiaaicdaae aacaaIQaaaaOGaaGikamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHrhA G8KBLbacgaGae4NeHWKaaGykaiaaiUdacaWHubWaa0baaSqaaiab+j rimbqaaiaaicdaaaGccqGHPms4caWGfbGaeyOkJeVaaG4oaiaaiIca cqGFsectcqGHsislcaqG0bGaaeOCaiaabMgacaqG2bGaaGykaiaaiU facqGHflY1caaIDbGaaG4oaiab+ftigjaai2facaaI9aGae8xHWB0a a0baaSqaaiaaicdaaeaacaaIQaaaaOGaaGikaiab+jrimjaacYhacq GFXeIrcaaIPaGaaGOlaaaa@778A@

Итак, в данном (весьма общем) случае F 0 * (L|F) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGa aGimaaqaaiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPr ginfgDObYtUvgaiyaacqGFsectcaGG8bGae4xmHyKaaGykaaaa@539F@  есть МП в пространстве у/ф отделимой π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdahaaa@39C4@  -системы в оснащении топологией волмэновского типа.

6. Некоторые добавления

Сейчас мы рассмотрим тот случай, когда при Lπ[E] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcqGHiiIZcqaH apaCcaaIBbGaamyraiaai2faaaa@486C@  в качестве непустого подсемейства L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectaaa@4295@  мы располагаем базой фильтра (БФ) широко понимаемого ИП (E,L). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw eacaaISaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa cqWFsectcaaIPaGaaGOlaaaa@4632@  Итак, пусть (см. раздел 3)

β L 0 [E] = Δ {B β 0 [E]|BL}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aa0 baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8NeHWeabaGaaGimaaaakiaaiUfacaWGfbGaaGyxamaaxacabaGaaG ypaaWcbeqaaiabgs5aebaakiaaiUhacqWFSeIqcqGHiiIZcqaHYoGy daWgaaWcbaGaaGimaaqabaGccaaIBbGaamyraiaai2facaGG8bGae8 hlHiKaeyOGIWSae8NeHWKaaGyFaiaai6caaaa@59D5@ (6.1)

В (6.1) введено множество всех БФ упомянутого типа; ясно, что

F 0 * (L) F * (L) β L 0 [E] β 0 [E]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGa aGimaaqaaiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPr ginfgDObYtUvgaiyaacqGFsectcaaIPaGaeyOGIWSae8xHWB0aaWba aSqabeaacaaIQaaaaOGaaGikaiab+jrimjaaiMcacqGHckcZcqaHYo GydaqhaaWcbaGae4NeHWeabaGaaGimaaaakiaaiUfacaWGfbGaaGyx aiabgkOimlabek7aInaaBaaaleaacaaIWaaabeaakiaaiUfacaWGfb GaaGyxaiaai6caaaa@6914@

Кроме того, отметим, что, как легко видеть, при B β L 0 [E] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFSeIqcqGHiiIZcqaH YoGydaqhaaWcbaGae8NeHWeabaGaaGimaaaakiaaiUfacaWGfbGaaG yxaaaa@4A55@  

(Efi)[B|L] = Δ {LL|BB:BL} F * (L) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw eacqGHsislcaWHMbGaaCyAaiaaiMcacaaIBbWefv3ySLgznfgDOfda ryqr1ngBPrginfgDObYtUvgaiuaacqWFSeIqcaGG8bGae8NeHWKaaG yxamaaxacabaGaaGypaaWcbeqaaiabgs5aebaakiaaiUhacaWGmbGa eyicI4Sae8NeHWKaaiiFaiaayIW7cqGHdicjcaaMi8UaamOqaiabgI Giolab=XsicjaaiQdacaWGcbGaeyOGIWSaamitaiaai2hacqGHiiIZ tuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+vi8gn aaCaaaleqabaGaaGOkaaaakiaaiIcacqWFsectcaaIPaaaaa@70C2@ (6.2)

(фильтр, порожденный базой). Заметим, что β L 0 [E]P'(L) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aa0 baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8NeHWeabaGaaGimaaaakiaaiUfacaWGfbGaaGyxaiabgkOimlab=9 q8qjaaiEcacaaIOaGae8NeHWKaaGykaaaa@4EA8@  и определено множество F 0 * (L|B)P'( F 0 * (L)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGa aGimaaqaaiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPr ginfgDObYtUvgaiyaacqGFsectcaGG8bGae4hlHiKaaGykaiabgIGi olab+9q8qjaaiEcacaaIOaGae8xHWB0aa0baaSqaaiaaicdaaeaaca aIQaaaaOGaaGikaiab+jrimjaaiMcacaaIPaaaaa@5F51@  при B β L 0 [E]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFSeIqcqGHiiIZcqaH YoGydaqhaaWcbaGae8NeHWeabaGaaGimaaaakiaaiUfacaWGfbGaaG yxaiaai6caaaa@4B0D@  Вполне очевидно следующее

Предложение. 6.1. Если B β L 0 [E], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFSeIqcqGHiiIZcqaH YoGydaqhaaWcbaGae8NeHWeabaGaaGimaaaakiaaiUfacaWGfbGaaG yxaiaaiYcaaaa@4B0B@  то

F 0 * (L|B)= F 0 * (L|(Efi)[B|L]). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGa aGimaaqaaiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPr ginfgDObYtUvgaiyaacqGFsectcaGG8bGae4hlHiKaaGykaiaai2da cqWFfcVrdaqhaaWcbaGaaGimaaqaaiaaiQcaaaGccaaIOaGae4NeHW KaaiiFaiaaiIcacaWGfbGaeyOeI0IaaCOzaiaahMgacaaIPaGaaG4w aiab+XsicjaacYhacqGFsectcaaIDbGaaGykaiaai6caaaa@6641@ (6.3)

Доказательство. Фиксируем B β L 0 [E]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFSeIqcqGHiiIZcqaH YoGydaqhaaWcbaGae8NeHWeabaGaaGimaaaakiaaiUfacaWGfbGaaG yxaiaai6caaaa@4B0D@  Из (6.1), (6.2) B(Efi)[B|L]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFSeIqcqGHckcZcaaI OaGaamyraiabgkHiTiaahAgacaWHPbGaaGykaiaaiUfacqWFSeIqca GG8bGae8NeHWKaaGyxaiaai6caaaa@4F3A@  Поэтому (см. (4.11), (4.13), (6.3)) имеем очевидное вложение

F 0 * (L|(Efi)[B|L]) F 0 * (L|B). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGa aGimaaqaaiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPr ginfgDObYtUvgaiyaacqGFsectcaGG8bGaaGikaiaadweacqGHsisl caWHMbGaaCyAaiaaiMcacaaIBbGae4hlHiKaaiiFaiab+jrimjaai2 facaaIPaGaeyOGIWSae8xHWB0aa0baaSqaaiaaicdaaeaacaaIQaaa aOGaaGikaiab+jrimjaacYhacqGFSeIqcaaIPaGaaGOlaaaa@6776@ (6.4)

Пусть U F 0 * (L|B). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=rb8vjabgIGioprr 1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4xHWB0aa0 baaSqaaiaaicdaaeaacaaIQaaaaOGaaGikamrr1ngBPrwtHrhAXaqe iuuDJXwAKbstHrhAG8KBLbachaGae0NeHWKaaiiFaiab9XsicjaaiM cacaaIUaaaaa@6272@  Тогда в силу (4.11) имеем, что U F 0 * (L) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=rb8vjabgIGioprr 1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4xHWB0aa0 baaSqaaiaaicdaaeaacaaIQaaaaOGaaGikamrr1ngBPrwtHrhAXaqe iuuDJXwAKbstHrhAG8KBLbachaGae0NeHWKaaGykaaaa@5FA8@  и при этом

BU. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFSeIqcqGHckcZtuuD JXwAKzKCHTgD1jharCqr1ngBPrgigjxyRrxDYbacgaGae4hfWxLaaG Olaaaa@51F9@ (6.5)

Тогда в силу (4.1), (4.2) и (6.5) имеем с очевидностью BBLL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jcVlaadkeacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGqbaiab=XsicjaaysW7caaMe8UaeyiaIiIaaGjcVlaadYeacq GHiiIZcqWFsectaaa@5025@  

(BL)(LU). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadk eacqGHckcZcaWGmbGaaGykaiabgkDiElaaiIcacaWGmbGaeyicI48e fv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=rb8vj aaiMcacaaIUaaaaa@506E@ (6.6)

Пусть V ˜ (Efi)[B|L]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia GaeyicI4SaaGikaiaadweacqGHsislcaWHMbGaaCyAaiaaiMcacaaI BbWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFSe IqcaGG8bGae8NeHWKaaGyxaiaai6caaaa@4E98@  Тогда в силу (6.2) V ˜ L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia GaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa cqWFsectaaa@4503@  и для некоторого B ˜ B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOqayaaia GaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa cqWFSeIqaaa@44FF@  имеет место вложение

B ˜ V ˜ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOqayaaia GaeyOGIWSabmOvayaaiaGaaGOlaaaa@3C7B@ (6.7)

Тогда из (6.6), (6.7) получаем, что V ˜ U. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia GaeyicI48efv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqb aiab=rb8vjaai6caaaa@47CC@  Тем самым установлено вложение

(Efi)[B|L]U, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw eacqGHsislcaWHMbGaaCyAaiaaiMcacaaIBbWefv3ySLgznfgDOfda ryqr1ngBPrginfgDObYtUvgaiuaacqWFSeIqcaGG8bGae8NeHWKaaG yxaiabgkOimprr1ngBPrMrYf2A0vNCaeXbfv3ySLgzGyKCHTgD1jha iyaacqGFuaFvcaaISaaaaa@5AC4@

откуда согласно (4.11) вытекает, что U F 0 * (L|(Efi)[B|L]). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=rb8vjabgIGioprr 1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4xHWB0aa0 baaSqaaiaaicdaaeaacaaIQaaaaOGaaGikamrr1ngBPrwtHrhAXaqe iuuDJXwAKbstHrhAG8KBLbachaGae0NeHWKaaiiFaiaaiIcacaWGfb GaeyOeI0IaaCOzaiaahMgacaaIPaGaaG4waiab9XsicjaacYhacqqF sectcaaIDbGaaGykaiaai6caaaa@6B3D@  Поскольку выбор U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=rb8vbaa@44A6@  был произвольным, установлено, что

F 0 * (L|B) F 0 * (L|(Efi)[B|L]). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGa aGimaaqaaiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPr ginfgDObYtUvgaiyaacqGFsectcaGG8bGae4hlHiKaaGykaiabgkOi mlab=vi8gnaaDaaaleaacaaIWaaabaGaaGOkaaaakiaaiIcacqGFse ctcaGG8bGaaGikaiaadweacqGHsislcaWHMbGaaCyAaiaaiMcacaaI BbGae4hlHiKaaiiFaiab+jrimjaai2facaaIPaGaaGOlaaaa@6776@

С учетом (6.4) получаем требуемое равенство (6.3).

Ниже мы отметим один из полезных вариантов использования предложения 6.1. Итак, пусть Mπ[E] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFZestcqGHiiIZcqaH apaCcaaIBbGaamyraiaai2faaaa@488E@  и при этом

ML. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFZestcqGHckcZcqWF sectcaaIUaaaaa@466F@ (6.8)

Итак, M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFZestaaa@42B7@  есть π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdahaaa@39C4@  -система, являющаяся подсемейством L. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcaaIUaaaaa@434D@  Отметим одно очевидное положение.

Предложение 6.2. Справедливо свойство F * (M) β L 0 [E]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaahaaWcbeqa aiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPrginfgDOb YtUvgaiyaacqGFZestcaaIPaGaeyOGIWSaeqOSdi2aa0baaSqaaiab +jrimbqaaiaaicdaaaGccaaIBbGaamyraiaai2facaaIUaaaaa@59CA@  

Доказательство. Пусть F F * (M). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrcqGHiiIZtuuD JXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+vi8gnaaCa aaleqabaGaaGOkaaaakiaaiIcacqWFZestcaaIPaGaaGOlaaaa@5444@  Тогда (см. (4.1)) FP'(M) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrcqGHiiIZcqWF pepucaaINaGaaGikaiab=ntinjaaiMcaaaa@4943@  и, в частности, FP'(L) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrcqGHiiIZcqWF pepucaaINaGaaGikaiab=jrimjaaiMcaaaa@4921@  согласно (6.8). Далее, из (4.1) имеем, что F MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyybIySaey ycI88efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWF XeIraaa@45AD@  и, кроме того,

ABFAFBF. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgM IihlaadkeacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGqbaiab=ftigjaaysW7caaMe8UaeyiaIiIaaGjcVlaadgeacq GHiiIZcqWFXeIrcaaMe8UaaGjbVlabgcGiIiaayIW7caWGcbGaeyic I4Sae8xmHyKaaGOlaaaa@59DA@ (6.9)

Тогда, в частности, FP'(P(E)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrcqGHiiIZcqWF pepucaaINaGaaGikaiab=9q8qjaaiIcacaWGfbGaaGykaiaaiMcaaa a@4C21@  и с учетом (3.1) и (6.9),

Fβ[E]:F. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrcqGHiiIZcqaH YoGycaaIBbGaamyraiaai2facaaI6aGaeyybIySaeyycI8Sae8xmHy KaaGOlaaaa@4E01@

Тогда F * (M) β 0 [E] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaahaaWcbeqa aiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPrginfgDOb YtUvgaiyaacqGFZestcaaIPaGaeyOGIWSaeqOSdi2aaSbaaSqaaiaa icdaaeqaaOGaaG4waiaadweacaaIDbaaaa@580E@  и, как следствие, имеет место F * (M) β L 0 [E] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaahaaWcbeqa aiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPrginfgDOb YtUvgaiyaacqGFZestcaaIPaGaeyOGIWSaeqOSdi2aa0baaSqaaiab +jrimbqaaiaaicdaaaGccaaIBbGaamyraiaai2faaaa@5912@ ; требуемое свойство установлено.

Из (6.2) и предложения 6 вытекает, что при F F * (M) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrcqGHiiIZtuuD JXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+vi8gnaaCa aaleqabaGaaGOkaaaakiaaiIcacqWFZestcaaIPaaaaa@538C@  определен фильтр

(Efi)[F|L] F * (L) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw eacqGHsislcaWHMbGaaCyAaiaaiMcacaaIBbWefv3ySLgznfgDOfda ryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrcaGG8bGae8NeHWKaaG yxaiabgIGioprr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbac gaGae4xHWB0aaWbaaSqabeaacaaIQaaaaOGaaGikaiab=jrimjaaiM caaaa@5C37@

и согласно предложению 6.1 F 0 * (L|F)= F 0 * (L|(Efi)[F|L]). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGa aGimaaqaaiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPr ginfgDObYtUvgaiyaacqGFsectcaGG8bGae4xmHyKaaGykaiaai2da cqWFfcVrdaqhaaWcbaGaaGimaaqaaiaaiQcaaaGccaaIOaGae4NeHW KaaiiFaiaaiIcacaWGfbGaeyOeI0IaaCOzaiaahMgacaaIPaGaaG4w aiab+ftigjaacYhacqGFsectcaaIDbGaaGykaiaai6caaaa@6653@  Учтем следствие 5.1. Однако, прежде заметим, что при F F * (M) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrcqGHiiIZtuuD JXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+vi8gnaaCa aaleqabaGaaGOkaaaakiaaiIcacqWFZestcaaIPaaaaa@538C@  имеем FP'(L), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrcqGHiiIZcqWF pepucaaINaGaaGikaiab=jrimjaaiMcacaaISaaaaa@49D7@  причем

Σ 1 F Σ 2 F Σ 3 F: Σ 3 Σ 1 Σ 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jcVlabfo6atnaaBaaaleaacaaIXaaabeaakiabgIGioprr1ngBPrwt HrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8xmHyKaaGjbVlaays W7cqGHaiIicaaMi8Uaeu4Odm1aaSbaaSqaaiaaikdaaeqaaOGaeyic I4Sae8xmHyKaaGjbVlaaysW7cqGHdicjcaaMi8Uaeu4Odm1aaSbaaS qaaiaaiodaaeqaaOGaeyicI4Sae8xmHyKaaGOoaiabfo6atnaaBaaa leaacaaIZaaabeaakiabgkOimlabfo6atnaaBaaaleaacaaIXaaabe aakiabgMIihlabfo6atnaaBaaaleaacaaIYaaabeaakiaai6caaaa@6AAA@ (6.10)

Замечание 6.1. Проверим данное (очевидное) свойство, фиксируя F F * (M). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrcqGHiiIZtuuD JXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+vi8gnaaCa aaleqabaGaaGOkaaaakiaaiIcacqWFZestcaaIPaGaaGOlaaaa@5444@  Тогда в силу предложения 6.2 F β L 0 [E], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrcqGHiiIZcqaH YoGydaqhaaWcbaGae8NeHWeabaGaaGimaaaakiaaiUfacaWGfbGaaG yxaiaaiYcaaaa@4B14@  т. е. F β 0 [E] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrcqGHiiIZcqaH YoGydaWgaaWcbaGaaGimaaqabaGccaaIBbGaamyraiaai2faaaa@4959@  и при этом FL. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrcqGHckcZcqWF sectcaaIUaaaaa@4666@  Далее, из определений раздела 3 следует, что Fβ[E], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrcqGHiiIZcqaH YoGycaaIBbGaamyraiaai2facaaISaaaaa@491F@  а тогда FP'(P(E)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrcqGHiiIZcqWF pepucaaINaGaaGikaiab=9q8qjaaiIcacaWGfbGaaGykaiaaiMcaaa a@4C21@  и справедливо (6.10). Поскольку F, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrcqGHGjsUcqGH fiIXcaaISaaaaa@46A4@  то FP'(L); MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrcqGHiiIZcqWF pepucaaINaGaaGikaiab=jrimjaaiMcacaaI7aaaaa@49E6@  итак, требуемое свойство установлено.

Теперь согласно следствию 5.1 имеем (см. (6.10)), что

N T L 0 E 0 [ F 0 * (L|F)]= FF N T L 0 E 0 [ Φ L (F)]F F * (M). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOtamaaDa aaleaacaWHubWaa0baaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy 0Hgip5wzaGqbaiab=jrimbqaaiaaicdaaaGaeyykJeUaamyraiabgQ YiXdqaaiaaicdaaaGccaaIBbWefv3ySLgznfgDOjdarCqr1ngBPrgi nfgDObcv39gaiyaacqGFfcVrdaqhaaWcbaGaaGimaaqaaiaaiQcaaa GccaaIOaGae8NeHWKaaiiFaiab=ftigjaaiMcacaaIDbGaaGypamaa tafabeWcbaGaamOraiabgIGiolab=ftigbqab0GaeSOkIufakiaah6 eadaqhaaWcbaGaaCivamaaDaaabaGae8NeHWeabaGaaGimaaaacqGH Pms4caWGfbGaeyOkJepabaGaaGimaaaakiaaiUfacqqHMoGrdaWgaa WcbaGae8NeHWeabeaakiaaiIcacaWGgbGaaGykaiaai2facaaMe8Ua aGjbVlabgcGiIiaayIW7cqWFXeIrcqGHiiIZcqGFfcVrdaahaaWcbe qaaiaaiQcaaaGccaaIOaGae83mH0KaaGykaiaai6caaaa@823B@ (6.11)

Напомним (4.11) в связи с (6.10): при F F * (M) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrcqGHiiIZtuuD JXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+vi8gnaaCa aaleqabaGaaGOkaaaakiaaiIcacqWFZestcaaIPaaaaa@538C@  справедливо равенство

F 0 * (L|F)= FF Φ L (F). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGa aGimaaqaaiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPr ginfgDObYtUvgaiyaacqGFsectcaGG8bGae4xmHyKaaGykaiaai2da daafqbqabSqaaiaadAeacqGHiiIZcqGFXeIraeqaniablMIijbGccq qHMoGrdaWgaaWcbaGae4NeHWeabeaakiaaiIcacaWGgbGaaGykaiaa i6caaaa@5F1F@

Тогда из (6.11) получаем, что F F * (M)G N T L 0 E 0 [ F 0 * (L|F)] F ˜ F MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jcVprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8xm HyKaeyicI48efv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiy aacqGFfcVrdaahaaWcbeqaaiaaiQcaaaGccaaIOaGae83mH0KaaGyk aiaaysW7caaMe8UaeyiaIiIae4NHWFKaeyicI4SaaCOtamaaDaaale aacaWHubWaa0baaeaacqWFsectaeaacaaIWaaaaiabgMYiHlaadwea cqGHQms8aeaacaaIWaaaaOGaaG4waiab+vi8gnaaDaaaleaacaaIWa aabaGaaGOkaaaakiaaiIcacqWFsectcaGG8bGae8xmHyKaaGykaiaa i2facaaMe8UaaGjbVlabgoGiKiaayIW7ceWGgbGbaGaacqGHiiIZcq WFXeIraaa@799F@ :

F 0 * (L|F) Φ L ( F ˜ )G; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGa aGimaaqaaiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPr ginfgDObYtUvgaiyaacqGFsectcaGG8bGae4xmHyKaaGykaiabgkOi mlabfA6agnaaBaaaleaacqGFsectaeqaaOGaaGikaiqadAeagaacai aaiMcacqGHckcZcqWFgc=rcaaI7aaaaa@5F90@

итак, для общего случая широко понимаемого ИП (E,L) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw eacaaISaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa cqWFsectcaaIPaaaaa@457A@  мы получили «волмэновский» вариант реализации множества F 0 * (L|F) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaqhaaWcbaGa aGimaaqaaiaaiQcaaaGccaaIOaWefv3ySLgznfgDOfdarCqr1ngBPr ginfgDObYtUvgaiyaacqGFsectcaGG8bGae4xmHyKaaGykaaaa@539F@  (см. замечание 5.1) в классе множеств Φ L (F), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8NeHWeabeaakiaaiIcacaWGgbGaaGykaiaaiYcaaaa@472B@   FF, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8xm HyKaaGilaaaa@45B3@  с точностью до любой наперед выбранной окрестности.

×

About the authors

Aleksandr G. Chentsov

N. N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences; Ural Federal University named after the first President of Russia B. N. Yeltsin

Author for correspondence.
Email: chentsov@imm.uran.ru
ORCID iD: 0000-0001-6568-0703

Doctor of Physics and Mathematics, Corresponding Member of the Russian Academy of Sciences, Chief Researcher, Professor

Russian Federation, 16 S. Kovalevskaya St., Yekaterinburg 620108; 19 Mira St., Yekaterinburg 620002

References

  1. А. Г. Ченцов, “О топологических свойствах множества притяжения в пространстве ультрафильтров”, Вестник российских университетов. Математика, 23:143 (2023), 335–356. [A. G. Chentsov, “About topological properties of attraction set in ultrafilter space”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 28:143 (2023), 335–356 (In Russian)].
  2. А. Г. Ченцов, А. П. Бакланов, “Об одной задаче асимптотического анализа, связанной с построением области достижимости”, Оптимальное управление, Сборник статей. К 105-летию со дня рождения академика Льва Семеновича Понтрягина, Труды МИАН, 291, МАИК «Наука/Интерпериодика», М., 2015, 292–311; англ. пер.:A. G. Chentsov, A. P. Baklanov, “On an asymptotic analysis problem related to the construction of an attainability domain”, Proc. Steklov Inst. Math., 291 (2015), 279–298.
  3. А. Г. Ченцов, А. П. Бакланов, “Об одной задаче, связанной с асимптотической достижимостью в среднем”, Доклады РАН, 459:6 (2014), 672–676; англ. пер.:A. G. Chentsov, A. P. Baklanov, “A problem related to asymptotic attainability in the mean”, Dokl. Math., 90 (2014), 762–765.
  4. Н. Н. Красовский, Теория управления движением, Наука, М., 1986. [N. N. Krasovsky, Motion Control Theory, Nauka Publ., M., 1986 (In Russian)].
  5. Н. Н. Красовский, Игровые задачи о встрече движений, Наука, М., 1970. [N. N. Krasovsky, Game Problems About Meeting of Movements, Nauka Publ., Moscow, 1970 (In Russian)].
  6. А. И. Панасюк, В. И. Панасюк, Асимптотическая магистральная оптимизация управляемых систем, Наука и техника, Минск, 1986. [A. I. Panasyuk, V. I. Panasyuk, Asymptotic Turnpike Optimization of Control Systems, Science and Technology Publ., Minsk, 1986 (In Russian)].
  7. Дж. Варга, Оптимальное управление дифференциальными и функциональными уравнения ми, Наука, М., 1977, 624 с. [J. Varga, Optimal Control of Differential and Functional Equations, Nauka Publ., Moscow, 1977 (In Russian), 624 pp.]
  8. A. G. Chentsov, S. I. Morina, Extensions and Relaxations, Mathematics and Its Applications, 542, Springer Dordrecht, Boston; London, 2002.
  9. Р. В. Гамкрелидзе, Основы оптимального управления, Издательство Тбилисского университета, Тбилиси, 1975. [R. V. Gamkrelidze, Fundamentals of Optimal Control, Tbilisi University Publishing House, Tbilisi, 1975 (In Russian)].
  10. Н. Н. Красовский, А. И. Субботин, “Альтернатива для игровой задачи сближения”, Прикладная математика и механика, 34:6 (1970), 1005–1022; англ. пер.:N. N. Krasovskii, A. I. Subbotin, “An alternative for the game problem of convergence”, Journal of Applied Mathematics and Mechanics, 34:6 (1970), 948–965.
  11. Н. Н. Красовский, А. И. Субботин, Позиционные дифференциальные игры, Наука, М., 1974. [N. N. Krasovsky, A. I. Subbotin, Positional Differential Games, Nauka Publ., Moscow, 1974 (In Russian)].
  12. А. И. Субботин, А. Г. Ченцов, Оптимизация гарантии в задачах управления, Наука, М., 1981. [A. I. Subbotin, A. G. Chentsov, Optimization of Guarantee in Control Problems, Nauka Publ., Moscow, 1981 (In Russian)].
  13. A. G. Chentsov, Asymptotic Attainability, Kluwer Academic Publishers, Dordrecht–Boston–London, 1997.
  14. A. G. Chentsov, Finitely Additive Measures and Relaxations of Extremal Problems, Plenum, New York, 1996.
  15. А. Г. Ченцов, “Ультрафильтры измеримых пространств как обобщенные решения в абстрактных задачах о достижимости”, Тр. ИММ УрО РАН, 17, № 1, 2011, 268–293; ан гл. пер.A. G. Chentsov, “Ultrafilters of measurable spaces as generalized solutions in abstract attainability problems”, Proc. Steklov Inst. Math. (Suppl.), 275:suppl. 1 (2011), 12–39.
  16. А. Г. Ченцов, “Фильтры и ультрафильтры в конструкциях множеств притяжения”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 2011, № 1, 113–142. [A. G. Chentsov, “Filters and ultrafilters in the constructions of attraction sets”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011, № 1, 113–142 (In Russian)].
  17. К. Куратовский, А. Мостовский, Теория множеств, Мир, М., 1970. [K. Kuratovsky, A. Mostovsky, Set Theory, Mir Publ., Moscow, 1970 (In Russian)].
  18. А. Г. Ченцов, Элементы конечно-аддитивной теории меры. I, УГТУ-УПИ, Екатеринбург, 2008, 388 с. [A. G. Chentsov, Elements of Finitely Additive Measure Theory. I, USTU-UPI, Ekaterinburg, 2008 (In Russian), 388 pp.]
  19. А. В. Булинский, А. Н. Ширяев, Теория случайных процессов, Физматлит, М., 2005. [A. V. Bulinsky, A. N. Shiryaev, Theory of Random Processes, Fizmatlit Publ., Moscow, 2005 (In Russian)].
  20. Ж. Невё, Математические основы теории вероятностей, Мир, М., 1969. [J. Neve, Mathematical Foundations of Probability Theory, Mir Publ., Moscow, 1969 (In Russian)].
  21. Н. Бурбаки, Общая топология. Основные структуры, Наука, М., 1968, 279 с. [N. Bourbaki, General Topology. Basic Structures, Nauka Publ., Moscow, 1968 (In Russian), 279 pp.]
  22. Р. А. Александрян, Э. А. Мирзаханян, Общая топология, Высшая школа, М., 1979. [R. A. Alexandryan, E. A. Mirzakhanyan, General Topology, Higher School Publ., Moscow, 1979 (In Russian)].
  23. Р. Энгелькинг, Общая топология, Мир, М., 1986. [R. Engelking, General Topology, Mir Publ., Moscow, 1986 (In Russian)].
  24. А. Г. Ченцов, “Замкнутые отображения и построение моделей расширения”, Тр. ИММ УрО РАН, 29, 2023, 274–295; англ. пер.:A. G. Chentsov, “Closed mappings and construction of extension models”, Proc. Steklov Inst. Math. (Suppl.), 323:suppl. 1 (2023), 56–77.
  25. А. G. Chentsov, E. G. Pytkeev, “Constraints of asymptotic nature and attainability problems”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 29:4 (2019), 569–582. [A. G. Chentsov, E. G. Pytkeev, “Constraints of asymptotic nature and attainability problems”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:4 (2019), 569–582 (In Russian)].
  26. А. Г. Ченцов, “Компактификаторы в конструкциях расширений задач о достижимости с ограничениями асимптотического характера”, Тр. ИММ УрО РАН, 22, № 1, 2016, 294–309; англ. пер.:A. G. Chentsov, “Compactifiers in extension constructions for reachability problems with constraints of asymptotic nature”, Proc. Steklov Inst. Math. (Suppl.), 296:suppl. 1 (2017), 102– 118.
  27. А. Г. Ченцов, “Ультрафильтры и максимальные сцепленные системы: основные свойства и топологические конструкции”, Известия института математики и информатики УдГУ, 52 (2018), 86–102. [A. G. Chentsov, “Ultrafilters and maximal linked systems: basic properties and topological constructions”, Izv. IMI UdGU, 52 (2018), 86–102 (In Russian)].
  28. А. Г. Ченцов, “Ярусные отображения и преобразования на основе ультрафильтров”, Тр. ИММ УрО РАН, 18, № 4, 2012, 298–314. [A. G. Chentsov, “Tier mappings and ultrafilter-based transformations”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 4, 2012, 298–314 (In Russian)].
  29. А. Г. Ченцов, “Битопологические пространства ультрафильтров и максимальных сцепленных систем”, Выпуск посвящен 70-летнему юбилею Александра Георгиевича Ченцова, Тр. ИММ УрО РАН, 24, 2018, 257–272; англ. пер.:A. G. Chentsov, “Bitopological spaces of ultrafilters and maximal linked systems”, Proc. Steklov Inst. Math. (Suppl.), 305:suppl. 1 (2019), S24–S39.
  30. А. Г. Ченцов, “Некоторые свойства ультрафильтров, связанные с конструкциями расширений”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 1 (2014), 87–101. [A. G. Chentsov, “Some ultrafilter properties connected with extension constructions”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, № 1, 87–101 (In Russian)].
  31. А. Г. Ченцов, “К вопросу о реализации элементов притяжения в абстрактных задачах о достижимости”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 25:2 (2015), 212–229. [A. G. Chentsov, “To question about realization of attraction elements in abstract attainability problems”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:2 (2015), 212–229 (In Russian)].
  32. А. Г. Ченцов, “О суперкомпактности пространства ультрафильтров с топологией волмэновского типа”, Известия института математики и информатики УдГУ, 54 (2019), 74–101. [A. G. Chentsov, “On the supercompactness of ultrafilter space with the topology of Wallman type”, Izv. IMI UdGU, 54 (2019), 74–101 (In Russian)].

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».