About complex operator functions of a complex operator variable

Cover Page

Cite item

Full Text

Abstract

We consider a family of complex operator functions whose domain and range of values are included in the real Banach algebra of bounded linear complex operators acting in the Banach space of complex vectors over the field of real numbers. It is shown that the study of a function from this family can be reduced to the study of a pair of real operator functions of two real operator variables. The main elementary functions of this family are considered: power function; exponent; trigonometric functions of sine, cosine, tangent, cotangent, secant, cosecant; hyperbolic sine, cosine, tangent, cotangent, secant, cosecant; the main property of the exponent is proved. A complex Euler operator formula is obtained. Relations that express sine and cosine in terms of the exponent are found. For the trigonometric functions of sine and cosine, addition formulas are justified. The periodicity of the exponent and trigonometric functions of sine, cosine, tangent, cotangent is proved; reduction formulas for these functions are provided. The main complex operator trigonometric identity is obtained. Equalities connecting trigonometric and hyperbolic functions are found. The main complex operator hyperbolic identity is established. For the hyperbolic functions of sine and cosine, addition formulas are indicated. As an example of an elementary function from the family of complex operator functions under consideration, a rational function is considered, a special case of which is the characteristic operator polynomial of a linear homogeneous differential equation of n-th order with constant bounded operator coefficients in a real Banach space.

Full Text

Введение

Актуальность изучения комплексных операторных функций комплексного операторного переменного обусловлена тем, что такие функции оказались полезным инструментом при исследовании линейных дифференциальных уравнений в банаховом пространстве (см. [1, 2]).

Пусть E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraaaa@38D1@  - вещественное банахово пространство; I,O MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaaiY cacaWGpbaaaa@3A5F@  - соответственно тождественный и нулевой операторы в пространстве E; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiaaiU daaaa@3996@   L(E) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcaaIOaGaamyr aiaaiMcaaaa@44C4@  - вещественная банахова алгебра ограниченных линейных операторов, действующих из E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraaaa@38D1@  в E; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiaaiU daaaa@3996@   GL(E)= AL(E): A 1 L(E) ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramrr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8NeHWKaaGik aiaadweacaaIPaGaaGypamaacmaabaGaamyqaiabgIGiolab=jrimj aaiIcacaWGfbGaaGykaiaaiQdacqGHdicjcaWGbbWaaWbaaSqabeaa cqGHsislcaaIXaaaaOGaeyicI4Sae8NeHWKaaGikaiaadweacaaIPa aacaGL7bGaayzFaaGaaG4oaaaa@57BF@   E 2 = w=(x,y):x,yE MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaDa aaleaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab =1risbqaaiaaikdaaaGccaaI9aWaaiWaaeaacaWG3bGaaGypaiaaiI cacaWG4bGaaGilaiaadMhacaaIPaGaaGOoaiaadIhacaaISaGaamyE aiabgIGiolaadweaaiaawUhacaGL9baaaaa@5310@  - банахово пространство комплексных векторов над полем вещественных чисел с линейными операциями x 1 , y 1 + x 2 , y 2 = x 1 + x 2 , y 1 + y 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadMhadaWgaaWcbaGa aGymaaqabaaakiaawIcacaGLPaaacqGHRaWkdaqadaqaaiaadIhada WgaaWcbaGaaGOmaaqabaGccaaISaGaamyEamaaBaaaleaacaaIYaaa beaaaOGaayjkaiaawMcaaiaai2dadaqadaqaaiaadIhadaWgaaWcba GaaGymaaqabaGccqGHRaWkcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGa aGilaiaadMhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG5bWaaS baaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaaGilaaaa@525F@    α x,y = αx,αy MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aae WaaeaacaWG4bGaaGilaiaadMhaaiaawIcacaGLPaaacaaI9aWaaeWa aeaacqaHXoqycaWG4bGaaGilaiabeg7aHjaadMhaaiaawIcacaGLPa aaaaa@461F@  и нормой x,y = x + y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaada qadaqaaiaadIhacaaISaGaamyEaaGaayjkaiaawMcaaaGaayzcSlaa wQa7aiaai2dadaqbdaqaaiaadIhaaiaawMa7caGLkWoacqGHRaWkda qbdaqaaiaadMhaaiaawMa7caGLkWoaaaa@495A@  (см. [3, c. 103]).

Условимся называть элементы алгебры L(E) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcaaIOaGaamyr aiaaiMcaaaa@44C4@  действительными операторами, а функции со значениями в L(E) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcaaIOaGaamyr aiaaiMcaaaa@44C4@  действительными операторными функциями.

Заметим, что GL(E). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramrr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8NeHWKaaGik aiaadweacaaIPaGaeyiyIKRaeyybIySaaGOlaaaa@4988@  Например, любой скалярный оператор αI, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaam ysaiaaiYcaaaa@3B2A@   α, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF DeIucaaISaaaaa@4698@   α0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey iyIKRaaGimaiaaiYcaaaa@3CDD@  принадлежит множеству GL(E), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramrr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8NeHWKaaGik aiaadweacaaIPaGaaGilaaaa@4646@  ибо существует αI 1 = α 1 I MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHXoqycaWGjbaacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaI XaaaaOGaaGypaiabeg7aHnaaCaaaleqabaGaeyOeI0IaaGymaaaaki aadMeaaaa@42EF@  и αI 1 L(E). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHXoqycaWGjbaacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaI XaaaaOGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUv gaiuaacqWFsectcaaIOaGaamyraiaaiMcacaaIUaaaaa@4CD5@

Пусть XL(E), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8Ne HWKaaGikaiaadweacaaIPaGaaGilaaaa@47DB@   r>0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaai6 dacaaIWaGaaGOlaaaa@3B38@  Обозначим через O r X = FL(E): FX <r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4tamaaBa aaleaacaWGYbaabeaakmaabmaabaGaamiwaaGaayjkaiaawMcaaiaa i2dadaGadaqaaiaadAeacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySL gzG0uy0Hgip5wzaGqbaiab=jrimjaaiIcacaWGfbGaaGykaiaaiQda daqbdaqaaiaadAeacqGHsislcaWGybaacaGLjWUaayPcSdGaaGipai aadkhaaiaawUhacaGL9baaaaa@56AF@  открытый шар пространства L(E) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcaaIOaGaamyr aiaaiMcaaaa@44C4@  с центром в X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaaaa@38E4@  радиуса r. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaai6 caaaa@39B6@

Известно (см. [4, c. 229]), что множество GL(E) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramrr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8NeHWKaaGik aiaadweacaaIPaaaaa@4590@  открыто: если A 0 GL(E), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIWaaabeaakiabgIGiolaadEeatuuDJXwAK1uy0HwmaeHb fv3ySLgzG0uy0Hgip5wzaGqbaiab=jrimjaaiIcacaWGfbGaaGykai aaiYcaaaa@4980@  то

O A 0 1 1 A 0 GL(E). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4tamaaBa aaleaadaqbdaqaaiaadgeadaqhaaqaaiaaicdaaeaacqGHsislcaaI XaaaaaGaayzcSlaawQa7amaaCaaabeqaaiabgkHiTiaaigdaaaaabe aakmaabmaabaGaamyqamaaBaaaleaacaaIWaaabeaaaOGaayjkaiaa wMcaaiabgkOimlaadEeatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGqbaiab=jrimjaaiIcacaWGfbGaaGykaiaai6caaaa@54C8@

Тогда, при любом α, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF DeIucaaISaaaaa@4698@   α0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey iyIKRaaGimaiaaiYcaaaa@3CDD@  учитывая равенство αI 1 1 = α , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaada qadaqaaiabeg7aHjaadMeaaiaawIcacaGLPaaadaahaaWcbeqaaiab gkHiTiaaigdaaaaakiaawMa7caGLkWoadaahaaWcbeqaaiabgkHiTi aaigdaaaGccaaI9aWaaqWaaeaacaaMi8UaeqySdeMaaGjcVdGaay5b SlaawIa7aiaaiYcaaaa@4C42@  получаем

O α αI GL(E). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4tamaaBa aaleaadaabdaqaaiabeg7aHbGaay5bSlaawIa7aaqabaGcdaqadaqa aiabeg7aHjaadMeaaiaawIcacaGLPaaacqGHckcZcaWGhbWefv3ySL gznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcaaIOaGa amyraiaaiMcacaaIUaaaaa@5205@  (0.1)

В случае α>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG Opaiaaicdaaaa@3B28@  имеем α =α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca aMi8UaeqySdeMaaGjcVdGaay5bSlaawIa7aiaai2dacqaHXoqyaaa@4250@  и включение (0.1) принимает вид

O α αI GL(E). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4tamaaBa aaleaacqaHXoqyaeqaaOWaaeWaaeaacqaHXoqycaWGjbaacaGLOaGa ayzkaaGaeyOGIWSaam4ramrr1ngBPrwtHrhAXaqeguuDJXwAKbstHr hAG8KBLbacfaGae8NeHWKaaGikaiaadweacaaIPaGaaGOlaaaa@4EE3@

Заметим, что для всех α,β, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ilaiabek7aIjabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhA Gq1DVbacfaGae8xhHiLaaGilaaaa@48EF@   α,β>0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ilaiabek7aIjaai6dacaaIWaGaaGilaaaa@3E35@  выполнено

α<β O α αI O β βI . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ipaiabek7aIjaaysW7cqGHshI3caaMe8Uaam4tamaaBaaaleaacqaH XoqyaeqaaOWaaeWaaeaacqaHXoqycaWGjbaacaGLOaGaayzkaaGaey OGIWSaam4tamaaBaaaleaacqaHYoGyaeqaaOWaaeWaaeaacqaHYoGy caWGjbaacaGLOaGaayzkaaGaaGOlaaaa@517A@  (0.2)

Действительно, пусть F O α αI , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiabgI Giolaad+eadaWgaaWcbaGaeqySdegabeaakmaabmaabaGaeqySdeMa amysaaGaayjkaiaawMcaaiaaiYcaaaa@41AB@  т. е. FαI<α. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamOraiabgkHiTiabeg7aHjaadMeacqWF LicucaaI8aGaeqySdeMaaGOlaaaa@461D@  Тогда

FβI = FαI βα I FαI + βα I MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaaca WGgbGaeyOeI0IaeqOSdiMaamysaaGaayzcSlaawQa7aiaai2dadaqb daqaamaabmaabaGaamOraiabgkHiTiabeg7aHjaadMeaaiaawIcaca GLPaaacqGHsisldaqadaqaaiabek7aIjabgkHiTiabeg7aHbGaayjk aiaawMcaaiaadMeaaiaawMa7caGLkWoacqGHKjYOdaqbdaqaamaabm aabaGaamOraiabgkHiTiabeg7aHjaadMeaaiaawIcacaGLPaaaaiaa wMa7caGLkWoacqGHRaWkdaqbdaqaaiabgkHiTmaabmaabaGaeqOSdi MaeyOeI0IaeqySdegacaGLOaGaayzkaaGaamysaaGaayzcSlaawQa7 aaaa@6666@

<α+ βα I =α+βα=β. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGipaiabeg 7aHjabgUcaRmaabmaabaGaeqOSdiMaeyOeI0IaeqySdegacaGLOaGa ayzkaaWaauWaaeaacaWGjbaacaGLjWUaayPcSdGaaGypaiabeg7aHj abgUcaRiabek7aIjabgkHiTiabeg7aHjaai2dacqaHYoGycaaIUaGa aGzbVlaaywW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVdaa@5A6B@

Итак FβI<β, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamOraiabgkHiTiabek7aIjaadMeacqWF LicucaaI8aGaeqOSdiMaaGilaaaa@461F@  т. е. F O β βI , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiabgI Giolaad+eadaWgaaWcbaGaeqOSdigabeaakmaabmaabaGaeqOSdiMa amysaaGaayjkaiaawMcaaiaaiYcaaaa@41AF@  и включение (0.2) справедливо.

В работе [2] рассмотрена вещественная банахова алгебра

A= L O E 2 = Z= A,B :A,BL(E) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaI9aGaamit amaaDaaaleaatuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaG Gbaiab+1risbqaaiaad+eacqGFceYqaaGcdaqadaqaaiaadweadaqh aaWcbaGae4xhHifabaGaaGOmaaaaaOGaayjkaiaawMcaaiaai2dada GadaqaaiaadQfacaaI9aWaaeWaaeaacaWGbbGaaGilaiaadkeaaiaa wIcacaGLPaaacaaI6aGaamyqaiaaiYcacaWGcbGaeyicI4Sae8NeHW KaaGikaiaadweacaaIPaaacaGL7bGaayzFaaaaaa@6610@

ограниченных линейных комплексных операторов, действующих в пространстве E 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaDa aaleaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab =1risbqaaiaaikdaaaaaaa@4472@  по закону:

Zw=(A,B)(x,y)=(AxBy,Ay+Bx), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiaadE hacaaI9aGaaGikaiaadgeacaaISaGaamOqaiaaiMcacaaIOaGaamiE aiaaiYcacaWG5bGaaGykaiaai2dacaaIOaGaamyqaiaadIhacqGHsi slcaWGcbGaamyEaiaaiYcacaWGbbGaamyEaiabgUcaRiaadkeacaWG 4bGaaGykaiaaiYcaaaa@4EDE@

с линейными операциями ( A 1 , B 1 )+( A 2 , B 2 )=( A 1 + A 2 , B 1 + B 2 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadg eadaWgaaWcbaGaaGymaaqabaGccaaISaGaamOqamaaBaaaleaacaaI XaaabeaakiaaiMcacqGHRaWkcaaIOaGaamyqamaaBaaaleaacaaIYa aabeaakiaaiYcacaWGcbWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaa i2dacaaIOaGaamyqamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadg eadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamOqamaaBaaaleaacaaI XaaabeaakiabgUcaRiaadkeadaWgaaWcbaGaaGOmaaqabaGccaaIPa GaaGilaaaa@503B@   α(A,B)=(αA,αB), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ikaiaadgeacaaISaGaamOqaiaaiMcacaaI9aGaaGikaiabeg7aHjaa dgeacaaISaGaeqySdeMaamOqaiaaiMcacaaISaaaaa@45B1@  операцией умножения

A 1 , B 1 A 2 , B 2 = A 1 A 2 B 1 B 2 , A 1 B 2 + B 1 A 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGbbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadkeadaWgaaWcbaGa aGymaaqabaaakiaawIcacaGLPaaadaqadaqaaiaadgeadaWgaaWcba GaaGOmaaqabaGccaaISaGaamOqamaaBaaaleaacaaIYaaabeaaaOGa ayjkaiaawMcaaiaai2dadaqadaqaaiaadgeadaWgaaWcbaGaaGymaa qabaGccaWGbbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamOqamaa BaaaleaacaaIXaaabeaakiaadkeadaWgaaWcbaGaaGOmaaqabaGcca aISaGaamyqamaaBaaaleaacaaIXaaabeaakiaadkeadaWgaaWcbaGa aGOmaaqabaGccqGHRaWkcaWGcbWaaSbaaSqaaiaaigdaaeqaaOGaam yqamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaa@55FA@  (0.3)

и нормой Z = A,B = A + B . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaaca WGAbaacaGLjWUaayPcSdGaaGypamaafmaabaWaaeWaaeaacaWGbbGa aGilaiaadkeaaiaawIcacaGLPaaaaiaawMa7caGLkWoacaaI9aWaau WaaeaacaWGbbaacaGLjWUaayPcSdGaey4kaSYaauWaaeaacaWGcbaa caGLjWUaayPcSdGaaGOlaaaa@4E03@

Каждый оператор ZA MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha Xheaaa@45AB@  непрерывен, ибо, как известно (см. [5, c. 89]), для непрерывности линейного оператора F, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiY caaaa@3988@  отображающего нормированное пространство N 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaaIXaaabeaaaaa@39C1@  в нормированное пространство N 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaaIYaaabeaakiaaiYcaaaa@3A82@  необходимо и достаточно, чтобы F MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraaaa@38D2@  был ограничен (в нашем случае N 1 = N 2 =A). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaaIXaaabeaakiaai2dacaWGobWaaSbaaSqaaiaaikdaaeqa aOGaaGypamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfa Gae8haXhKaaGykaiaai6caaaa@49CA@

Алгебра A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqaaa@4348@  некоммутативна. Единицей в ней является оператор I ^ = I,O , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmysayaaja GaaGypamaabmaabaGaamysaiaaiYcacaWGpbaacaGLOaGaayzkaaGa aGilaaaa@3E43@  нулевым элементом оператор O ^ =(O,O). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4tayaaja GaaGypaiaaiIcacaWGpbGaaGilaiaad+eacaaIPaGaaGOlaaaa@3E2D@

Рассмотрим в алгебре A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqaaa@4348@  подалгебры вида

A 1 = A,O :AL(E) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaGa aGymaaqabaGccaaI9aWaaiWaaeaadaqadaqaaiaadgeacaaISaGaam 4taaGaayjkaiaawMcaaiaaiQdacaWGbbGaeyicI4Sae8NeHWKaaGik aiaadweacaaIPaaacaGL7bGaayzFaaGaaGilaaaa@5201@

A 2 = O,B :BL(E) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaGa aGOmaaqabaGccaaI9aWaaiWaaeaadaqadaqaaiaad+eacaaISaGaam OqaaGaayjkaiaawMcaaiaaiQdacaWGcbGaeyicI4Sae8NeHWKaaGik aiaadweacaaIPaaacaGL7bGaayzFaaGaaGOlaaaa@5206@

Алгебра A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqaaa@4348@  является прямой суммой A 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaGa aGymaaqabaaaaa@442F@  и A 2 : MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaGa aGOmaaqabaGccaaI6aaaaa@44FE@   A= A 1 A 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaI9aGae8ha Xh0aaSbaaSqaaiaaigdaaeqaaOGaeyyLIuSae8haXh0aaSbaaSqaai aaikdaaeqaaOGaaGOlaaaa@4C20@

Подалгебра A 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaGa aGymaaqabaaaaa@442F@  изоморфна алгебре L(E) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcaaIOaGaamyr aiaaiMcaaaa@44C4@  при биекции A,O A, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGbbGaaGilaiaad+eaaiaawIcacaGLPaaacqGHugYQcaWGbbGaaGil aaaa@3F48@  поэтому можно считать, что A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqaaa@4348@  - расширение алгебры L(E). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcaaIOaGaamyr aiaaiMcacaaIUaaaaa@457C@  Любой элемент A,O MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGbbGaaGilaiaad+eaaiaawIcacaGLPaaaaaa@3BE0@  подалгебры A 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaGa aGymaaqabaaaaa@442F@  можно отождествлять с соответствующим элементом AL(E): MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8Ne HWKaaGikaiaadweacaaIPaGaaGOoaaaa@47D2@  

A,O =AAL(E). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGbbGaaGilaiaad+eaaiaawIcacaGLPaaacaaI9aGaamyqaiaaywW7 cqGHaiIicaWGbbGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginf gDObYtUvgaiuaacqWFsectcaaIOaGaamyraiaaiMcacaaIUaaaaa@4F8A@  (0.4)

Учитывая соглашение (0.4) и операцию умножения (0.3), получаем для любых AL(E), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaayg W7cqGHiiIZcaaMb8+efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYt UvgaiuaacqWFsectcaaIOaGaamyraiaaiMcacaaISaaaaa@4AD8@   P,Q A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGqbGaaGilaiaadgfaaiaawIcacaGLPaaacqGHiiIZtuuDJXwAK1uy 0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=bq8bbaa@48B6@  равенство

A P,Q = A,O P,Q = AP,AQ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaabm aabaGaamiuaiaaiYcacaWGrbaacaGLOaGaayzkaaGaaGypamaabmaa baGaamyqaiaaiYcacaWGpbaacaGLOaGaayzkaaWaaeWaaeaacaWGqb GaaGilaiaadgfaaiaawIcacaGLPaaacaaI9aWaaeWaaeaacaWGbbGa amiuaiaaiYcacaWGbbGaamyuaaGaayjkaiaawMcaaiaai6caaaa@4C36@  (0.5)

В силу равенств A,B = A,O + O,B , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGbbGaaGilaiaadkeaaiaawIcacaGLPaaacaaI9aWaaeWaaeaacaWG bbGaaGilaiaad+eaaiaawIcacaGLPaaacqGHRaWkdaqadaqaaiaad+ eacaaISaGaamOqaaGaayjkaiaawMcaaiaaiYcaaaa@45E5@   O,B = O,I B,O MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGpbGaaGilaiaadkeaaiaawIcacaGLPaaacaaI9aWaaeWaaeaacaWG pbGaaGilaiaadMeaaiaawIcacaGLPaaadaqadaqaaiaadkeacaaISa Gaam4taaGaayjkaiaawMcaaaaa@4463@  и соглашения (0.4) алгебру A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqaaa@4348@  можно представить в виде

A= Z=A+JB:A,BL(E) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaI9aWaaiWa aeaacaWGAbGaaGypaiaadgeacqGHRaWkcaqGkbGaamOqaiaaiQdaca WGbbGaaGilaiaadkeacqGHiiIZcqWFsectcaaIOaGaamyraiaaiMca aiaawUhacaGL9baacaaISaaaaa@5396@

где J= O,I MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOsaiaai2 dadaqadaqaaiaad+eacaaISaGaamysaaGaayjkaiaawMcaaaaa@3D7C@  - мнимая операторная единица.

В силу соглашения (0.4) A 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaGa aGymaaqabaaaaa@442F@  можно называть подалгеброй действительных операторов A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaaaa@38CD@  алгебры A; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaI7aaaaa@440D@   A 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaGa aGOmaaqabaaaaa@4430@  это подалгебра чисто мнимых операторов JB MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOsaiaadk eaaaa@399B@  алгебры A. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaIUaaaaa@4400@

Учитывая (0.3), (0.4), получаем

J 2 =JJ= I,O = I,O = I ^ =I, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOsamaaCa aaleqabaGaaeOmaaaakiaai2dacaqGkbGaeyyXICTaaeOsaiaai2da daqadaqaaiabgkHiTiaadMeacaaISaGaam4taaGaayjkaiaawMcaai aai2dacqGHsisldaqadaqaaiaadMeacaaISaGaam4taaGaayjkaiaa wMcaaiaai2dacqGHsislceWGjbGbaKaacaaI9aGaeyOeI0Iaamysai aaiYcaaaa@4F5F@  (0.6)

следовательно, допустима запись J= I . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOsaiaai2 dadaGcaaqaaiabgkHiTiaadMeaaSqabaGccaaIUaaaaa@3C33@

Заметим, что

J x,y = y,x x,y E 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOsamaabm aabaGaamiEaiaaiYcacaWG5baacaGLOaGaayzkaaGaaGypamaabmaa baGaeyOeI0IaamyEaiaaiYcacaWG4baacaGLOaGaayzkaaGaaGzbVl abgcGiImaabmaabaGaamiEaiaaiYcacaWG5baacaGLOaGaayzkaaGa eyicI4SaamyramaaDaaaleaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGqbaiab=1risbqaaiaaikdaaaGccaaIUaaaaa@5845@

Для любого Z=A+JBA MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiaai2 dacaWGbbGaey4kaSIaaeOsaiaadkeacqGHiiIZtuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=bq8bbaa@49AE@  имеем

JZ=ZJ=B+JA, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOsaiaayI W7caWGAbGaaGypaiaadQfacaaMi8UaaeOsaiaai2dacqGHsislcaWG cbGaey4kaSIaaeOsaiaadgeacaaISaaaaa@44EE@  (0.7)

в частности, JB=BJ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOsaiaadk eacaaI9aGaamOqaiaabQeaaaa@3BF6@  для любого BL(E), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8Ne HWKaaGikaiaadweacaaIPaGaaGilaaaa@47C5@  следовательно, оператор Z=A+JB MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiaai2 dacaWGbbGaey4kaSIaaeOsaiaadkeaaaa@3CE9@  можно записывать в виде Z=A+BJ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiaai2 dacaWGbbGaey4kaSIaamOqaiaabQeacaaIUaaaaa@3DA1@

В дальнейшем важное значение будут иметь следующие множества в алгебре A: MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaI6aaaaa@440C@  

A K = Z=A+JBA:AB=BA , A G = ZA: Z 1 A . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaGa am4saaqabaGccaaI9aWaaiWaaeaacaWGAbGaaGypaiaadgeacqGHRa WkcaqGkbGaamOqaiabgIGiolab=bq8bjaaiQdacaWGbbGaamOqaiaa i2dacaWGcbGaamyqaaGaay5Eaiaaw2haaiaaiYcacaaMf8UaaGzbVl ab=bq8bnaaBaaaleaacaWGhbaabeaakiaai2dadaGadaqaaiaadQfa cqGHiiIZcqWFaeFqcaaI6aGaey4aIqIaamOwamaaCaaaleqabaGaey OeI0IaaGymaaaakiabgIGiolab=bq8bbGaay5Eaiaaw2haaiaai6ca aaa@69EF@

Справедливы включения

A 1 A K , A 2 A K , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaGa aGymaaqabaGccqGHckcZcqWFaeFqdaWgaaWcbaGaam4saaqabaGcca aISaGaaGzbVlab=bq8bnaaBaaaleaacaaIYaaabeaakiabgkOimlab =bq8bnaaBaaaleaacaWGlbaabeaakiaaiYcaaaa@534E@  (0.8)

ибо FO=OF MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaad+ eacaaI9aGaam4taiaadAeaaaa@3C0C@  для любого FL(E). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8Ne HWKaaGikaiaadweacaaIPaGaaGOlaaaa@47CB@

Выделим в A K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaGa am4saaqabaaaaa@4444@  множество вида

Ω = Z=A+JB A K : A 2 + B 2 GL(E) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aaS baaSqaaiabgEHiQaqabaGccaaI9aWaaiWaaeaacaWGAbGaaGypaiaa dgeacqGHRaWkcaqGkbGaamOqaiabgIGioprr1ngBPrwtHrhAXaqegu uDJXwAKbstHrhAG8KBLbacfaGae8haXh0aaSbaaSqaaiaadUeaaeqa aOGaaGOoaiaadgeadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGcb WaaWbaaSqabeaacaaIYaaaaOGaeyicI4Saam4raiab=jrimjaaiIca caWGfbGaaGykaaGaay5Eaiaaw2haaiaai6caaaa@5BB3@

Известно (см. [2]), что для любого Z=A+JB Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiaai2 dacaWGbbGaey4kaSIaaeOsaiaadkeacqGHiiIZcqqHPoWvdaWgaaWc baGaey4fIOcabeaaaaa@4116@  существует обратный оператор Z 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaCa aaleqabaGaeyOeI0IaaGymaaaaaaa@3ABB@  и справедлива формула

Z 1 =A A 2 + B 2 1 JB A 2 + B 2 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaCa aaleqabaGaeyOeI0IaaGymaaaakiaai2dacaWGbbWaaeWaaeaacaWG bbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamOqamaaCaaaleqaba GaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGym aaaakiabgkHiTiaabQeacaWGcbWaaeWaaeaacaWGbbWaaWbaaSqabe aacaaIYaaaaOGaey4kaSIaamOqamaaCaaaleqabaGaaGOmaaaaaOGa ayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaaiYcaaa a@4F03@  (0.9)

из которой видно, что Z 1 A, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaCa aaleqabaGaeyOeI0IaaGymaaaakiabgIGioprr1ngBPrwtHrhAXaqe guuDJXwAKbstHrhAG8KBLbacfaGae8haXhKaaGilaaaa@4840@  т. е. Z A G . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha Xh0aaSbaaSqaaiaadEeaaeqaaOGaaGOlaaaa@4765@  Таким образом,

Ω A G . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aaS baaSqaaiabgEHiQaqabaGccqGHckcZtuuDJXwAK1uy0HwmaeHbfv3y SLgzG0uy0Hgip5wzaGqbaiab=bq8bnaaBaaaleaacaWGhbaabeaaki aai6caaaa@49B1@  (0.10)

Рассмотрим множества вида

A 1G = A,O A 1 :AGL(E) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaGa aGymaiaadEeaaeqaaOGaaGypamaacmaabaWaaeWaaeaacaWGbbGaaG ilaiaad+eaaiaawIcacaGLPaaacqGHiiIZcqWFaeFqdaWgaaWcbaGa aGymaaqabaGccaaI6aGaamyqaiabgIGiolaadEeacqWFsectcaaIOa GaamyraiaaiMcaaiaawUhacaGL9baacaaISaaaaa@57C5@

A 2G = O,B A 2 :BGL(E) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaGa aGOmaiaadEeaaeqaaOGaaGypamaacmaabaWaaeWaaeaacaWGpbGaaG ilaiaadkeaaiaawIcacaGLPaaacqGHiiIZcqWFaeFqdaWgaaWcbaGa aGOmaaqabaGccaaI6aGaamOqaiabgIGiolaadEeacqWFsectcaaIOa GaamyraiaaiMcaaiaawUhacaGL9baacaaIUaaaaa@57CB@

В силу (0.8) справедливы включения

A 1G A K , A 2G A K . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaGa aGymaiaadEeaaeqaaOGaeyOGIWSae8haXh0aaSbaaSqaaiaadUeaae qaaOGaaGilaiaaywW7cqWFaeFqdaWgaaWcbaGaaGOmaiaadEeaaeqa aOGaeyOGIWSae8haXh0aaSbaaSqaaiaadUeaaeqaaOGaaGOlaaaa@54E8@

Для любого Z= A,O A 1G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiaai2 dadaqadaqaaiaadgeacaaISaGaam4taaGaayjkaiaawMcaaiabgIGi oprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8haXh 0aaSbaaSqaaiaaigdacaWGhbaabeaaaaa@4BFE@  имеем A 2 + B 2 = A 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaCa aaleqabaGaaGOmaaaakiabgUcaRiaadkeadaahaaWcbeqaaiaaikda aaGccaaI9aGaamyqamaaCaaaleqabaGaaGOmaaaakiaaiYcaaaa@3F92@  следовательно, существует обратный оператор A 2 + B 2 1 = A 1 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGbbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamOqamaaCaaaleqa baGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaG ymaaaakiaai2dadaqadaqaaiaadgeadaahaaWcbeqaaiabgkHiTiaa igdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccaaISa aaaa@4662@  т. е. A 2 + B 2 GL(E). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaCa aaleqabaGaaGOmaaaakiabgUcaRiaadkeadaahaaWcbeqaaiaaikda aaGccqGHiiIZcaWGhbWefv3ySLgznfgDOfdaryqr1ngBPrginfgDOb YtUvgaiuaacqWFsectcaaIOaGaamyraiaaiMcacaaIUaaaaa@4C21@  Значит, Z Ω . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI GiolabfM6axnaaBaaaleaacqGHxiIkaeqaaOGaaGOlaaaa@3DD5@  Показано, что

A 1G Ω . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaGa aGymaiaadEeaaeqaaOGaeyOGIWSaeuyQdC1aaSbaaSqaaiabgEHiQa qabaGccaaIUaaaaa@4A6C@  (0.11)

Аналогично получаем включение

A 2G Ω . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaGa aGOmaiaadEeaaeqaaOGaeyOGIWSaeuyQdC1aaSbaaSqaaiabgEHiQa qabaGccaaIUaaaaa@4A6D@  (0.12)

В силу (0.11), (0.12)

A 1G A 2G Ω , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaGa aGymaiaadEeaaeqaaOGaeyOkIGSae8haXh0aaSbaaSqaaiaaikdaca WGhbaabeaakiabgkOimlabfM6axnaaBaaaleaacqGHxiIkaeqaaOGa aGilaaaa@4F7F@

следовательно, в силу (0.10)

A 1G A 2G A G . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaGa aGymaiaadEeaaeqaaOGaeyOkIGSae8haXh0aaSbaaSqaaiaaikdaca WGhbaabeaakiabgkOimlab=bq8bnaaBaaaleaacaWGhbaabeaakiaa i6caaaa@4F87@

Применяя формулу (0.9), получаем Z 1 = A 1 ,O MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaCa aaleqabaGaeyOeI0IaaGymaaaakiaai2dadaqadaqaaiaadgeadaah aaWcbeqaaiabgkHiTiaaigdaaaGccaaISaGaam4taaGaayjkaiaawM caaaaa@4144@  для любого Z= A,O A 1G ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiaai2 dadaqadaqaaiaadgeacaaISaGaam4taaGaayjkaiaawMcaaiabgIGi oprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8haXh 0aaSbaaSqaaiaaigdacaWGhbaabeaakiaaiUdaaaa@4CCD@   Z 1 = O, B 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaCa aaleqabaGaeyOeI0IaaGymaaaakiaai2dadaqadaqaaiaad+eacaaI SaGaeyOeI0IaamOqamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOGaay jkaiaawMcaaaaa@4232@  для любого Z= O,B A 2G . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiaai2 dadaqadaqaaiaad+eacaaISaGaamOqaaGaayjkaiaawMcaaiabgIGi oprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8haXh 0aaSbaaSqaaiaaikdacaWGhbaabeaakiaai6caaaa@4CC2@

В работе [6] рассмотрены действительные операторные функции e X , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamiwaaaakiaaiYcaaaa@3ABB@   sinX, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbGaamiwaiaaiYcaaaa@3C72@   cosX, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaamiwaiaaiYcaaaa@3C6D@   tgX, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabE gacaaMi8UaamiwaiaaiYcaaaa@3D0C@   ctgX, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabs hacaqGNbGaaGjcVlaadIfacaaISaaaaa@3DF2@   secX, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4Caiaacw gacaGGJbGaamiwaiaaiYcaaaa@3C63@   cosecX, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaab+ gacaqGZbGaaeyzaiaabogacaWGybGaaGilaaaa@3E36@   shX, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabI gacaaMi8UaamiwaiaaiYcaaaa@3D0C@   chX, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabI gacaaMi8UaamiwaiaaiYcaaaa@3CFC@   thX, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabI gacaaMi8UaamiwaiaaiYcaaaa@3D0D@   cthX, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabs hacaqGObGaaGjcVlaadIfacaaISaaaaa@3DF3@   sechX, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4Caiaabw gacaqGJbGaaeiAaiaayIW7caWGybGaaGilaaaa@3EDA@   cosechX MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaab+ gacaqGZbGaaeyzaiaabogacaqGObGaaGjcVlaadIfaaaa@3FFC@  действительного операторного переменного XL(E), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8Ne HWKaaGikaiaadweacaaIPaGaaGilaaaa@47DB@  т. е. функции, принадлежащие семейству операторных функций

S L(E),L(E) = f:L(E)D(f) f R(f)L(E) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaabm aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWF sectcaaIOaGaamyraiaaiMcacaaISaGae8NeHWKaaGikaiaadweaca aIPaaacaGLOaGaayzkaaGaaGypamaacmaabaGaamOzaiaaiQdacqWF sectcaaIOaGaamyraiaaiMcacqGHhkIYcaWGebGaaGikaiaadAgaca aIPaWaaybyaeqaleqabaGaamOzaaGcbaGaeyOKH4kaaiaadkfacaaI OaGaamOzaiaaiMcacqGHgksZcqWFsectcaaIOaGaamyraiaaiMcaai aawUhacaGL9baacaaIUaaaaa@647F@  (0.13)

В данной работе изучаются комплексные операторные функции, принадлежащие семейству

S A,A = f:AD(f) f R(f)A . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaabm aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWF aeFqcaaISaGae8haXheacaGLOaGaayzkaaGaaGypamaacmaabaGaam OzaiaaiQdacqWFaeFqcqGHhkIYcaWGebGaaGikaiaadAgacaaIPaWa aybyaeqaleqabaGaamOzaaGcbaGaeyOKH4kaaiaadkfacaaIOaGaam OzaiaaiMcacqGHgksZcqWFaeFqaiaawUhacaGL9baacaaIUaaaaa@5E8F@  (0.14

1. Основные понятия

В силу того, что A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqaaa@4348@  представляет собой декартов квадрат алгебры L(E), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcaaIOaGaamyr aiaaiMcacaaISaaaaa@457A@  а предельный переход в декартовом произведении нормированных пространств равносилен покоординатному предельному переходу (см. [7, c. 19]), приходим к следующим заключениям.

Рассмотрим последовательность Z n = X n +J Y n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaWGUbaabeaakiaai2dacaWGybWaaSbaaSqaaiaad6gaaeqa aOGaey4kaSIaaeOsaiaadMfadaWgaaWcbaGaamOBaaqabaGccaaISa aaaa@4148@   n, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xf H4KaaGilaaaa@45E0@  элементов из A. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaIUaaaaa@4400@  Пусть H=P+JQA. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaai2 dacaWGqbGaey4kaSIaaeOsaiaadgfacqGHiiIZtuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=bq8bjaai6caaaa@4A72@  Тогда

lim n Z n =H( lim n X n =P)( lim n Y n =Q), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4aIqYaay buaeqaleaacaWGUbGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMga caGGTbaaaiaadQfadaWgaaWcbaGaamOBaaqabaGccaaI9aGaamisai abgsDiBlaaiIcacqGHdicjdaGfqbqabSqaaiaad6gacqGHsgIRcqGH EisPaeqakeaaciGGSbGaaiyAaiaac2gaaaGaamiwamaaBaaaleaaca WGUbaabeaakiaai2dacaWGqbGaaGykaiabgEIizlaaiIcacqGHdicj daGfqbqabSqaaiaad6gacqGHsgIRcqGHEisPaeqakeaaciGGSbGaai yAaiaac2gaaaGaamywamaaBaaaleaacaWGUbaabeaakiaai2dacaWG rbGaaGykaiaaiYcaaaa@63E1@

т. е. вопрос о сходимости последовательности элементов из A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqaaa@4348@  сводится к вопросу о сходимости двух последовательностей элементов из L(E). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcaaIOaGaamyr aiaaiMcacaaIUaaaaa@457C@

Рассмотрим ряд k=1 Z k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGRbGaaGypaiaaigdaaeaacqGHEisPa0GaeyyeIuoakiaadQfa daWgaaWcbaGaam4Aaaqabaaaaa@4032@  с членами Z k = X k +J Y k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaWGRbaabeaakiaai2dacaWGybWaaSbaaSqaaiaadUgaaeqa aOGaey4kaSIaaeOsaiaadMfadaWgaaWcbaGaam4Aaaqabaaaaa@407F@  из A. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaIUaaaaa@4400@  Пусть S= S (1) +J S (2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaai2 dacaWGtbWaaWbaaSqabeaacaaIOaGaaGymaiaaiMcaaaGccqGHRaWk caqGkbGaam4uamaaCaaaleqabaGaaGikaiaaikdacaaIPaaaaaaa@41AA@  принадлежит A. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaIUaaaaa@4400@  Имеем: ряд k=1 Z k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGRbGaaGypaiaaigdaaeaacqGHEisPa0GaeyyeIuoakiaadQfa daWgaaWcbaGaam4Aaaqabaaaaa@4032@  сходится и его сумма равна S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaaaa@38DF@  тогда и только тогда, когда сходятся ряды k=1 X k , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGRbGaaGypaiaaigdaaeaacqGHEisPa0GaeyyeIuoakiaadIfa daWgaaWcbaGaam4AaaqabaGccaaISaaaaa@40F0@   k=1 Y k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGRbGaaGypaiaaigdaaeaacqGHEisPa0GaeyyeIuoakiaadMfa daWgaaWcbaGaam4Aaaqabaaaaa@4031@  и их суммы равны соответственно S (1) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaaGikaiaaigdacaaIPaaaaOGaaGilaaaa@3BEC@   S (2) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaaGikaiaaikdacaaIPaaaaOGaaGOlaaaa@3BEF@  Таким образом, вопрос о сходимости ряда с членами из A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqaaa@4348@  сводится к вопросу о сходимости двух рядов с членами из L(E). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcaaIOaGaamyr aiaaiMcacaaIUaaaaa@457C@

Рассмотрим функцию W=f(Z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaai2 dacaWGMbGaaGikaiaadQfacaaIPaaaaa@3CD9@  из семейства (0.14). Представляя Z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaaaa@38E6@  и W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaaaa@38E3@  в алгебраической форме: Z=X+JY, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiaai2 dacaWGybGaey4kaSIaaeOsaiaadMfacaaISaaaaa@3DCD@   W=U+JV, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaai2 dacaWGvbGaey4kaSIaaeOsaiaadAfacaaISaaaaa@3DC4@  получаем U+JV=f X+JY , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiabgU caRiaabQeacaWGwbGaaGypaiaadAgadaqadaqaaiaadIfacqGHRaWk caqGkbGaamywaaGaayjkaiaawMcaaiaaiYcaaaa@42C6@  следовательно, U=U X,Y , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiaai2 dacaWGvbWaaeWaaeaacaWGybGaaGilaiaadMfaaiaawIcacaGLPaaa caaISaaaaa@3F32@   V=V X,Y . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaai2 dacaWGwbWaaeWaaeaacaWGybGaaGilaiaadMfaaiaawIcacaGLPaaa caaIUaaaaa@3F36@  Тогда функцию W=f(Z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaai2 dacaWGMbGaaGikaiaadQfacaaIPaaaaa@3CD9@  можно записать в виде W=U X,Y +JV X,Y , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaai2 dacaWGvbWaaeWaaeaacaWGybGaaGilaiaadMfaaiaawIcacaGLPaaa cqGHRaWkcaqGkbGaamOvamaabmaabaGaamiwaiaaiYcacaWGzbaaca GLOaGaayzkaaGaaGilaaaa@45B8@  при этом U X,Y , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaabm aabaGaamiwaiaaiYcacaWGzbaacaGLOaGaayzkaaGaaGilaaaa@3D91@   V X,Y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaabm aabaGaamiwaiaaiYcacaWGzbaacaGLOaGaayzkaaaaaa@3CDC@  называются соответственно действительной и мнимой частями функции W=f(Z): MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaai2 dacaWGMbGaaGikaiaadQfacaaIPaGaaGOoaaaa@3D9D@  

Re f(Z) =U X,Y ,Im f(Z) =V X,Y . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaadw gadaqadaqaaiaadAgacaaIOaGaamOwaiaaiMcaaiaawIcacaGLPaaa caaI9aGaamyvamaabmaabaGaamiwaiaaiYcacaWGzbaacaGLOaGaay zkaaGaaGilaiaaywW7caWGjbGaamyBamaabmaabaGaamOzaiaaiIca caWGAbGaaGykaaGaayjkaiaawMcaaiaai2dacaWGwbWaaeWaaeaaca WGybGaaGilaiaadMfaaiaawIcacaGLPaaacaaIUaaaaa@532B@

Например, для функции W= Z 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaai2 dacaWGAbWaaWbaaSqabeaacaaIYaaaaOGaaGilaaaa@3C32@   ZA, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha XhKaaGilaaaa@4661@  используя формулу (0.3) , получаем

U X,Y = X 2 Y 2 ,V X,Y =XY+YX, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaabm aabaGaamiwaiaaiYcacaWGzbaacaGLOaGaayzkaaGaaGypaiaadIfa daahaaWcbeqaaiaaikdaaaGccqGHsislcaWGzbWaaWbaaSqabeaaca aIYaaaaOGaaGilaiaaywW7caWGwbWaaeWaaeaacaWGybGaaGilaiaa dMfaaiaawIcacaGLPaaacaaI9aGaamiwaiaadMfacqGHRaWkcaWGzb GaamiwaiaaiYcaaaa@4F1E@

в частности, для Z A K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha Xh0aaSbaaSqaaiaadUeaaeqaaaaa@46A7@  имеем V X,Y =2XY. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaabm aabaGaamiwaiaaiYcacaWGzbaacaGLOaGaayzkaaGaaGypaiaaikda caWGybGaamywaiaai6caaaa@40D2@

Пусть Z 0 = X 0 +J Y 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaaIWaaabeaakiaai2dacaWGybWaaSbaaSqaaiaaicdaaeqa aOGaey4kaSIaaeOsaiaadMfadaWgaaWcbaGaaGimaaqabaaaaa@3FDD@  - предельная точка множества D(f), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiaaiI cacaWGMbGaaGykaiaaiYcaaaa@3BD6@   H=P+JQA. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaai2 dacaWGqbGaey4kaSIaaeOsaiaadgfacqGHiiIZtuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=bq8bjaai6caaaa@4A72@  Тогда

lim Z Z 0 f(Z)=H( lim X X 0 Y Y 0 U X,Y =P)( lim X X 0 Y Y 0 V X,Y =Q). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4aIqYaay buaeqaleaacaWGAbGaeyOKH4QaamOwamaaBaaabaGaaGimaaqabaaa beGcbaGaciiBaiaacMgacaGGTbaaaiaadAgacaaIOaGaamOwaiaaiM cacaaI9aGaamisaiabgsDiBlaaiIcacqGHdicjdaGfqbqabSqaaqaa ceqaaiaadIfacqGHsgIRcaWGybWaaSbaaeaacaaIWaaabeaaaeaaca WGzbGaeyOKH4QaamywamaaBaaabaGaaGimaaqabaaaaaqabOqaaiGa cYgacaGGPbGaaiyBaaaacaWGvbWaaeWaaeaacaWGybGaaGilaiaadM faaiaawIcacaGLPaaacaaI9aGaamiuaiaaiMcacqGHNis2caaIOaGa ey4aIqYaaybuaeqaleaaeaGabeaacaWGybGaeyOKH4QaamiwamaaBa aabaGaaGimaaqabaaabaGaamywaiabgkziUkaadMfadaWgaaqaaiaa icdaaeqaaaaaaeqakeaaciGGSbGaaiyAaiaac2gaaaGaamOvamaabm aabaGaamiwaiaaiYcacaWGzbaacaGLOaGaayzkaaGaaGypaiaadgfa caaIPaGaaGOlaaaa@7457@

Так как непрерывность функции определяется с помощью предельного перехода, то непрерывность функции f(Z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWGAbGaaGykaaaa@3B36@  в данной точке Z 0 D(f) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaaIWaaabeaakiabgIGiolaadseacaaIOaGaamOzaiaaiMca aaa@3E73@  (на данном множестве ΩD(f)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCLaey OHI0SaamiraiaaiIcacaWGMbGaaGykaiaaiMcaaaa@3F62@  равносильна непрерывности ее действительной и мнимой частей в этой точке (на этом множестве).

Таким образом, исследование данной комплексной операторной функции из семейства (0.14) сводится к изучению пары действительных операторных функций двух действительных операторных переменных.

2. Основные результаты

Простейшими примерами комплексных операторных функций из семейства (0.14) являются следующие функции, определенные на A: MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaI6aaaaa@440C@  комплексная операторная степенная функция W= Z n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaai2 dacaWGAbWaaWbaaSqabeaacaWGUbaaaOGaaGilaaaa@3C69@   n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xf H4eaaa@452A@  (частный случай этой функции при n=2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIYaaaaa@3A7D@  рассмотрен выше); комплексная операторная рациональная функция

W= P n (Z)= G 0 Z n + G 1 Z n1 ++ G n1 Z+ G n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaai2 dacaWGqbWaaSbaaSqaaiaad6gaaeqaaOGaaGikaiaadQfacaaIPaGa aGypaiaadEeadaWgaaWcbaGaaGimaaqabaGccaWGAbWaaWbaaSqabe aacaWGUbaaaOGaey4kaSIaam4ramaaBaaaleaacaaIXaaabeaakiaa dQfadaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaOGaey4kaSIaeS OjGSKaey4kaSIaam4ramaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqa baGccaWGAbGaey4kaSIaam4ramaaBaaaleaacaWGUbaabeaakiaaiY caaaa@53B7@

где n; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xf H4KaaG4oaaaa@45EF@   G i A; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGPbaabeaakiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwA KbstHrhAG8KBLbacfaGae8haXhKaaG4oaaaa@4781@   i= 0;n ¯ ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaai2 dadaqdaaqaaiaaicdacaaI7aGaamOBaaaacaaI7aaaaa@3D04@   G 0 O ^ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIWaaabeaakiabgcMi5kqad+eagaqcaiaai6caaaa@3D26@  При n=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaaaaa@3A7C@  получаем линейную функцию W= G 0 Z+ G 1 ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaai2 dacaWGhbWaaSbaaSqaaiaaicdaaeqaaOGaamOwaiabgUcaRiaadEea daWgaaWcbaGaaGymaaqabaGccaaI7aaaaa@3FA9@  при n=2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIYaaaaa@3A7D@  квадратичную функцию W= G 0 Z 2 + G 1 Z+ G 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaai2 dacaWGhbWaaSbaaSqaaiaaicdaaeqaaOGaamOwamaaCaaaleqabaGa aGOmaaaakiabgUcaRiaadEeadaWgaaWcbaGaaGymaaqabaGccaWGAb Gaey4kaSIaam4ramaaBaaaleaacaaIYaaabeaakiaai6caaaa@440E@

В частности, коэффициентами полинома P n (Z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGUbaabeaakiaaiIcacaWGAbGaaGykaaaa@3C49@  могут быть действительные операторы A i L(E), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGPbaabeaakiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwA KbstHrhAG8KBLbacfaGae8NeHWKaaGikaiaadweacaaIPaGaaGilaa aa@48E8@   i= 0;n ¯ ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaai2 dadaqdaaqaaiaaicdacaaI7aGaamOBaaaacaaI7aaaaa@3D04@   A 0 O: MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIWaaabeaakiabgcMi5kaad+eacaaI6aaaaa@3D1C@  

W= P n (Z)= A 0 Z n + A 1 Z n1 ++ A n1 Z+ A n . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaai2 dacaWGqbWaaSbaaSqaaiaad6gaaeqaaOGaaGikaiaadQfacaaIPaGa aGypaiaadgeadaWgaaWcbaGaaGimaaqabaGccaWGAbWaaWbaaSqabe aacaWGUbaaaOGaey4kaSIaamyqamaaBaaaleaacaaIXaaabeaakiaa dQfadaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaOGaey4kaSIaeS OjGSKaey4kaSIaamyqamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqa baGccaWGAbGaey4kaSIaamyqamaaBaaaleaacaWGUbaabeaakiaai6 caaaa@53A1@

В этом случае коэффициенты A i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGPbaabeaaaaa@39E7@  нужно рассматривать как комплексные операторы, и при умножении оператора A i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGPbaabeaaaaa@39E7@  на оператор Z ni , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaCa aaleqabaGaamOBaiabgkHiTiaadMgaaaGccaaISaaaaa@3CA1@   i= 0;n1 ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaai2 dadaqdaaqaaiaaicdacaaI7aGaamOBaiabgkHiTiaaigdaaaGaaGil aaaa@3E9D@  надо использовать формулу (0.5), так как функция W= P n (Z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaai2 dacaWGqbWaaSbaaSqaaiaad6gaaeqaaOGaaGikaiaadQfacaaIPaaa aa@3DEC@  действует в алгебре A. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaIUaaaaa@4400@

Примером комплексной операторной рациональной функции с действительными операторными коэффициентами является характеристический операторный полином линейного однородного дифференциального уравнения n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@38FA@  -го порядка в вещественном банаховом пространстве, использованный в работах [1, 2] для построения общего решения такого уравнения.

В дальнейшем понадобится

Замечание 2.1. Известно ([8, c. 129]), что из абсолютной сходимости ряда k=0 u k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGRbGaaGypaiaaicdaaeaacqGHEisPa0GaeyyeIuoakiaadwha daWgaaWcbaGaam4Aaaqabaaaaa@404C@  с членами из банахова пространства следует его сходимость и, кроме того,

k=0 u k k=0 u k . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIa1aaabCaeqaleaacaWGRbGaaGypaiaaicda aeaacqGHEisPa0GaeyyeIuoakiaadwhadaWgaaWcbaGaam4Aaaqaba GccqWFLicucqGHKjYOdaaeWbqabSqaaiaadUgacaaI9aGaaGimaaqa aiabg6HiLcqdcqGHris5aOGae8xjIaLaamyDamaaBaaaleaacaWGRb aabeaakiab=vIiqjaai6caaaa@541E@

Рассмотрим комплексные операторные функции из семейства (0.14), определяемые суммами сходящихся комплексных операторных степенных рядов. Такие функции и соотношения между ними аналогичны случаю комплексных функций комплексного переменного (см. [9]).

1. Комплексная операторная экспоненциальная функция

По определению,

e Z = k=0 Z k k! , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamOwaaaakiaai2dadaaeWbqabSqaaiaadUgacaaI9aGa aGimaaqaaiabg6HiLcqdcqGHris5aOWaaSaaaeaacaWGAbWaaWbaaS qabeaacaWGRbaaaaGcbaGaam4AaiaaigcaaaGaaGilaaaa@4564@  (2.1)

для любого ZA MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha Xheaaa@45AB@  (здесь, по определению, Z 0 = I ^ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaCa aaleqabaGaaGimaaaakiaai2daceWGjbGbaKaacaaISaaaaa@3C32@  в частности, O ^ 0 = I ^ ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4tayaaja WaaWbaaSqabeaacaaIWaaaaOGaaGypaiqadMeagaqcaiaaiUdaaaa@3C46@   0!=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaig cacaaI9aGaaGymaaaa@3AEE@  ).

Покажем, что определение (2.1) корректно. Убедимся вначале, что ряд

k=0 Z k k! MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGRbGaaGypaiaaicdaaeaacqGHEisPa0GaeyyeIuoakmaalaaa baGaamOwamaaCaaaleqabaGaam4AaaaaaOqaaiaadUgacaaIHaaaaa aa@41E7@  (2.2)

сходится абсолютно, т. е. сходится знакоположительный ряд

k=0 Z k k! . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGRbGaaGjcVlaai2dacaaMi8UaaGimaaqaaiabg6HiLcqdcqGH ris5aOGaaGjcVpaafmaabaWaaSaaaeaacaWGAbWaaWbaaSqabeaaca WGRbaaaaGcbaGaam4AaiaaigcaaaaacaGLjWUaayPcSdGaaGOlaaaa @4A79@  (2.3)

При Z= O ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiaai2 daceWGpbGbaKaaaaa@3A91@  ряд (2.3) имеет вид 1+0++0+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgU caRiaaicdacqGHRaWkcqWIMaYscqGHRaWkcaaIWaGaey4kaSIaeSOj GSeaaa@4002@  и его сумма равна 1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaai6 caaaa@397A@  Пусть Z O ^ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgc Mi5kqad+eagaqcaiaai6caaaa@3C49@  Используя неравенство Z k Z k , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaaca WGAbWaaWbaaSqabeaacaWGRbaaaaGccaGLjWUaayPcSdGaeyizIm6a auWaaeaacaWGAbaacaGLjWUaayPcSdWaaWbaaSqabeaacaWGRbaaaO GaaGilaaaa@44CC@   k, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xf H4KaaGilaaaa@45DD@  вытекающее из кольцевого свойства Z 1 Z 2 Z 1 Z 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaaca WGAbWaaSbaaSqaaiaaigdaaeqaaOGaamOwamaaBaaaleaacaaIYaaa beaaaOGaayzcSlaawQa7aiabgsMiJoaafmaabaGaamOwamaaBaaale aacaaIXaaabeaaaOGaayzcSlaawQa7aiaayIW7daqbdaqaaiaadQfa daWgaaWcbaGaaGOmaaqabaaakiaawMa7caGLkWoaaaa@4C04@  алгебры A, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaISaaaaa@43FE@  имеем

a k = Z k k! = Z k k! Z k k! = b k . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaWGRbaabeaakiaai2dadaqbdaqaamaalaaabaGaamOwamaa CaaaleqabaGaam4AaaaaaOqaaiaadUgacaaIHaaaaaGaayzcSlaawQ a7aiaai2dadaWcaaqaamaafmaabaGaamOwamaaCaaaleqabaGaam4A aaaaaOGaayzcSlaawQa7aaqaaiaadUgacaaIHaaaaiabgsMiJoaala aabaWaauWaaeaacaWGAbaacaGLjWUaayPcSdWaaWbaaSqabeaacaWG RbaaaaGcbaGaam4AaiaaigcaaaGaaGypaiaadkgadaWgaaWcbaGaam 4AaaqabaGccaaIUaaaaa@556A@

Применяя к ряду с b k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa aaleaacaWGRbaabeaaaaa@3A0A@  признак Даламбера, получаем

D= lim k b k+1 b k = lim k [ Z k+1 (k+1)! : Z k k! ]= lim k Z k+1 =0<1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiaai2 dadaGfqbqabSqaaiaadUgacqGHsgIRcqGHEisPaeqakeaaciGGSbGa aiyAaiaac2gaaaWaaSaaaeaacaWGIbWaaSbaaSqaaiaadUgacqGHRa WkcaaIXaaabeaaaOqaaiaadkgadaWgaaWcbaGaam4AaaqabaaaaOGa aGypamaawafabeWcbaGaam4AaiabgkziUkabg6HiLcqabOqaaiGacY gacaGGPbGaaiyBaaaacaaIBbWaaSaaaeaadaqbdaqaaiaadQfaaiaa wMa7caGLkWoadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaaGcba GaaGikaiaadUgacqGHRaWkcaaIXaGaaGykaiaaigcaaaGaaGOoamaa laaabaWaauWaaeaacaWGAbaacaGLjWUaayPcSdWaaWbaaSqabeaaca WGRbaaaaGcbaGaam4AaiaaigcaaaGaaGyxaiaai2dadaGfqbqabSqa aiaadUgacqGHsgIRcqGHEisPaeqakeaaciGGSbGaaiyAaiaac2gaaa WaaSaaaeaadaqbdaqaaiaadQfaaiaawMa7caGLkWoaaeaacaWGRbGa ey4kaSIaaGymaaaacaaI9aGaaGimaiaaiYdacaaIXaGaaGilaaaa@770C@

следовательно, ряд с b k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa aaleaacaWGRbaabeaaaaa@3A0A@  сходится. Значит, по первому признаку сравнения ряд с a k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaWGRbaabeaaaaa@3A09@  сходится, т. е. ряд (2.2) является абсолютно сходящимся. Следовательно, ряд (2.2) сходится (см. замечание 2.1). Корректность определения (2.1) установлена.

При значениях Z= X,O A 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiaays W7caaI9aWaaeWaaeaacaWGybGaaGilaiaad+eaaiaawIcacaGLPaaa cqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbai ab=bq8bnaaBaaaleaacaaIXaaabeaaaaa@4CD6@  функцию e Z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamOwaaaaaaa@39FD@  можно записать, в силу соглашения (4), в следующем виде:

e X = k=0 X k k! , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamiwaaaakiaai2dadaaeWbqabSqaaiaadUgacaaMi8Ua aGypaiaayIW7caaIWaaabaGaeyOhIukaniabggHiLdGccaaMi8+aaS aaaeaacaWGybWaaWbaaSqabeaacaWGRbaaaaGcbaGaam4Aaiaaigca aaGaaGilaaaa@4A13@

т. е. определение комплексной операторной экспоненциальной функции e Z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamOwaaaaaaa@39FD@  согласуется с определением действительной операторной экспоненциальной функции e X . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamiwaaaakiaai6caaaa@3ABD@

Аналогично, вводимые ниже определения других комплексных операторных функций из семейства (0.14) согласуются с определениями соответствующих действительных операторных функций из семейства (0.13).

Применяя теорему 61 из [8, c. 138] при

B:A×AA,B Z 1 , Z 2 = Z 1 Z 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaaiQ datuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=bq8 bjabgEna0kab=bq8bjabgkziUkab=bq8bjaaiYcacaaMf8UaamOqam aabmaabaGaamOwamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGAbWa aSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaaGypaiaadQfada WgaaWcbaGaaGymaaqabaGccaWGAbWaaSbaaSqaaiaaikdaaeqaaOGa aGilaaaa@5A4E@

получаем 

Следствие 2.1. Произведение двух абсолютно сходящихся рядов с членами из алгебры A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqaaa@4348@  является абсолютно сходящимся рядом и, значит, сходящимся рядом (см. замечание 2.1); сумма произведения этих рядов равна произведению сумм перемножаемых рядов.  

Теорема 2.1. Для любых Z 1 , Z 2 A, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaaIXaaabeaakiaaiYcacaWGAbWaaSbaaSqaaiaaikdaaeqa aOGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiu aacqWFaeFqcaaISaaaaa@49D9@  удовлетворяющих условию

Z 1 Z 2 = Z 2 Z 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaaIXaaabeaakiaadQfadaWgaaWcbaGaaGOmaaqabaGccaaI 9aGaamOwamaaBaaaleaacaaIYaaabeaakiaadQfadaWgaaWcbaGaaG ymaaqabaGccaaISaaaaa@40C6@  (2.4)

справедливо основное свойство экспоненциальной функции:

e Z 1 + Z 2 = e Z 1 e Z 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamOwamaaBaaabaGaaGymaaqabaGaey4kaSIaamOwamaa BaaabaGaaGOmaaqabaaaaOGaaGypaiaadwgadaahaaWcbeqaaiaadQ fadaWgaaqaaiaaigdaaeqaaaaakiaadwgadaahaaWcbeqaaiaadQfa daWgaaqaaiaaikdaaeqaaaaakiaai6caaaa@44B9@  (2.5)

Доказательство. Рассмотрим абсолютно сходящиеся ряды, суммы которых определяют левую и правую части формулы (2.5):

P= k=0 Z 1 + Z 2 k k! , P 1 = i=0 Z 1 i i! , P 2 = j=0 Z 2 j j! . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaai2 dadaaeWbqabSqaaiaadUgacaaMi8UaaGypaiaayIW7caaIWaaabaGa eyOhIukaniabggHiLdGccaaMi8+aaSaaaeaadaqadaqaaiaadQfada WgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGAbWaaSbaaSqaaiaaikda aeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaWGRbaaaaGcbaGaam 4AaiaaigcaaaGaaGilaiaaywW7caWGqbWaaSbaaSqaaiaaigdaaeqa aOGaaGypamaaqahabeWcbaGaamyAaiaayIW7caaI9aGaaGjcVlaaic daaeaacqGHEisPa0GaeyyeIuoakiaayIW7daWcaaqaaiaadQfadaqh aaWcbaGaaGymaaqaaiaadMgaaaaakeaacaWGPbGaaGyiaaaacaaISa GaaGzbVlaadcfadaWgaaWcbaGaaGOmaaqabaGccaaI9aWaaabCaeqa leaacaWGQbGaaGjcVlaai2dacaaMi8UaaGimaaqaaiabg6HiLcqdcq GHris5aOGaaGjcVpaalaaabaGaamOwamaaDaaaleaacaaIYaaabaGa amOAaaaaaOqaaiaadQgacaaIHaaaaiaai6caaaa@7652@

В силу условия (2.4) можно применить операторный бином Ньютона:

Z 1 + Z 2 k = s=0 k C k s Z 1 ks Z 2 s . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGAbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamOwamaaBaaaleaa caaIYaaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaam4Aaaaaki aai2dadaaeWbqabSqaaiaadohacaaI9aGaaGimaaqaaiaadUgaa0Ga eyyeIuoakiaadoeadaqhaaWcbaGaam4AaaqaaiaadohaaaGccaWGAb Waa0baaSqaaiaaigdaaeaacaWGRbGaeyOeI0Iaam4CaaaakiaadQfa daqhaaWcbaGaaGOmaaqaaiaadohaaaGccaaIUaaaaa@50C6@  (2.6)

Заметим, что

1 k! C k s = 1 s!(ks)! . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaam4AaiaaigcaaaGaam4qamaaDaaaleaacaWGRbaabaGa am4Caaaakiaai2dadaWcaaqaaiaaigdaaeaacaWGZbGaaGyiaiaaiI cacaWGRbGaeyOeI0Iaam4CaiaaiMcacaaIHaaaaiaai6caaaa@4626@  (2.7)

В силу (2.6), (2.7)

P= k=0 s=0 k Z 1 ks Z 2 s s!(ks)! . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaai2 dadaaeWbqabSqaaiaadUgacaaMi8UaaGypaiaayIW7caaIWaaabaGa eyOhIukaniabggHiLdGccaaMi8+aaabCaeqaleaacaWGZbGaaGypai aaicdaaeaacaWGRbaaniabggHiLdGcdaWcaaqaaiaadQfadaqhaaWc baGaaGymaaqaaiaadUgacqGHsislcaWGZbaaaOGaamOwamaaDaaale aacaaIYaaabaGaam4CaaaaaOqaaiaadohacaaIHaGaaGikaiaadUga cqGHsislcaWGZbGaaGykaiaaigcaaaGaaGOlaaaa@58FB@  (2.8)

Используя произведение рядов в форме Коши, получаем

P 1 P 2 = k=0 i+j=k Z 1 i Z 2 j i!j! = k=0 s=0 k Z 1 ks Z 2 s s!(ks)! . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaaIXaaabeaakiaadcfadaWgaaWcbaGaaGOmaaqabaGccaaI 9aWaaabCaeqaleaacaWGRbGaaGjcVlaai2dacaaMi8UaaGimaaqaai abg6HiLcqdcqGHris5aOGaaGjcVpaaqafabeWcbaGaamyAaiabgUca RiaadQgacaaI9aGaam4Aaaqab0GaeyyeIuoakmaalaaabaGaamOwam aaDaaaleaacaaIXaaabaGaamyAaaaakiaadQfadaqhaaWcbaGaaGOm aaqaaiaadQgaaaaakeaacaWGPbGaaGyiaiaadQgacaaIHaaaaiaai2 dadaaeWbqabSqaaiaadUgacaaMi8UaaGypaiaayIW7caaIWaaabaGa eyOhIukaniabggHiLdGcdaaeWbqabSqaaiaadohacaaI9aGaaGimaa qaaiaadUgaa0GaeyyeIuoakmaalaaabaGaamOwamaaDaaaleaacaaI XaaabaGaam4AaiabgkHiTiaadohaaaGccaWGAbWaa0baaSqaaiaaik daaeaacaWGZbaaaaGcbaGaam4CaiaaigcacaaIOaGaam4AaiabgkHi TiaadohacaaIPaGaaGyiaaaacaaIUaaaaa@7532@  (2.9)

В силу (2.8), (2.9) P= P 1 P 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaai2 dacaWGqbWaaSbaaSqaaiaaigdaaeqaaOGaamiuamaaBaaaleaacaaI Yaaabeaakiaai6caaaa@3DE8@  Значит, в силу следствия 2.1 справедливо равенство (2.5).

Используя формулу (2.5) и равенство e O ^ = I ^ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGabm4tayaajaaaaOGaaGypaiqadMeagaqcaiaaiYcaaaa@3C67@  приходим к выводу: при любом фиксированном ZA MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha Xheaaa@45AB@  оператор e Z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaeyOeI0IaamOwaaaaaaa@3AEA@  является левым и правым обратным оператором для оператора e Z , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamOwaaaakiaaiYcaaaa@3ABD@  следовательно, существует e Z 1 = e Z , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGLbWaaWbaaSqabeaacaWGAbaaaaGccaGLOaGaayzkaaWaaWbaaSqa beaacqGHsislcaaIXaaaaOGaaGypaiaadwgadaahaaWcbeqaaiabgk HiTiaadQfaaaGccaaISaaaaa@41D9@  т. е. e Z A G . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamOwaaaakiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwA KbstHrhAG8KBLbacfaGae8haXh0aaSbaaSqaaiaadEeaaeqaaOGaaG Olaaaa@4886@  Таким образом, область значений R e Z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaabm aabaGaamyzamaaCaaaleqabaGaamOwaaaaaOGaayjkaiaawMcaaaaa @3C67@  функции e Z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamOwaaaaaaa@39FD@  является подмножеством множества A G A, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaGa am4raaqabaGccqGHckcZcqWFaeFqcaaISaaaaa@48B3@  следовательно, R e Z A, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaabm aabaGaamyzamaaCaaaleqabaGaamOwaaaaaOGaayjkaiaawMcaaiab gcMi5orr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8 haXhKaaGilaaaa@4A25@  т. е. e Z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamOwaaaaaaa@39FD@  не является сюръективной функцией. Заметим, что любой оператор ZA\ A G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha XhKaaiixaiab=bq8bnaaBaaaleaacaWGhbaabeaaaaa@493A@  не принадлежит множеству R e Z . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaabm aabaGaamyzamaaCaaaleqabaGaamOwaaaaaOGaayjkaiaawMcaaiaa i6caaaa@3D1F@  Например, O ^ R e Z , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4tayaaja GaeyycI8SaamOuamaabmaabaGaamyzamaaCaaaleqabaGaamOwaaaa aOGaayjkaiaawMcaaiaaiYcaaaa@3F87@  т. е. функция e Z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamOwaaaaaaa@39FD@  не имеет нулей: e Z O ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamOwaaaakiabgcMi5kqad+eagaqcaaaa@3CB2@  для любого ZA. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha XhKaaGOlaaaa@4663@

Рассмотрим в алгебре A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqaaa@4348@  подалгебру скалярных операторов: A s = α I ^ :α . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaGa am4CaaqabaGccaaI9aWaaiWaaeaacqaHXoqyceWGjbGbaKaacaaI6a GaeqySdeMaeyicI48efv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv 39gaiyaacqGFDeIuaiaawUhacaGL9baacaaIUaaaaa@5943@  Заметим, что подалгебра A s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaGa am4Caaqabaaaaa@446C@  коммутативна. Выделим в A s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaGa am4Caaqabaaaaa@446C@  множество позитивных скалярных операторов: A s + = β I ^ A s :β>0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaqhaaWcbaGa am4CaaqaaiabgUcaRaaakiaai2dadaGadaqaaiabek7aIjqadMeaga qcaiabgIGiolab=bq8bnaaBaaaleaacaWGZbaabeaakiaaiQdacqaH YoGycaaI+aGaaGimaaGaay5Eaiaaw2haaiaai6caaaa@53D8@  Справедливо включение A s + R e Z , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaqhaaWcbaGa am4CaaqaaiabgUcaRaaakiabgkOimlaadkfadaqadaqaaiaadwgada ahaaWcbeqaaiaadQfaaaaakiaawIcacaGLPaaacaaISaaaaa@4C6B@  ибо для любого β I ^ A s + , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMabm ysayaajaGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYt UvgaiuaacqWFaeFqdaqhaaWcbaGaam4CaaqaaiabgUcaRaaakiaaiY caaaa@4A12@  используя определение (2.1) и равенство I ^ k = I ^ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmysayaaja WaaWbaaSqabeaacaWGRbaaaOGaaGypaiqadMeagaqcaiaaiYcaaaa@3C67@   k, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xf H4KaaGilaaaa@45DD@  получаем

e I ^ lnβ = k=0 I ^ lnβ k k! = k=0 I ^ k lnβ k k! = I ^ e lnβ =β I ^ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGabmysayaajaGaciiBaiaac6gacqaHYoGyaaGccaaI9aWa aabCaeqaleaacaWGRbGaaGypaiaaicdaaeaacqGHEisPa0GaeyyeIu oakmaalaaabaWaaeWaaeaaceWGjbGbaKaaciGGSbGaaiOBaiabek7a IbGaayjkaiaawMcaamaaCaaaleqabaGaam4AaaaaaOqaaiaadUgaca aIHaaaaiaai2dadaaeWbqabSqaaiaadUgacaaI9aGaaGimaaqaaiab g6HiLcqdcqGHris5aOWaaSaaaeaaceWGjbGbaKaadaahaaWcbeqaai aadUgaaaGcdaqadaqaaiGacYgacaGGUbGaeqOSdigacaGLOaGaayzk aaWaaWbaaSqabeaacaWGRbaaaaGcbaGaam4AaiaaigcaaaGaaGypai qadMeagaqcaiaadwgadaahaaWcbeqaaiGacYgacaGGUbGaeqOSdiga aOGaaGypaiabek7aIjqadMeagaqcaiaai6caaaa@6863@

Попутно показано, что натуральный логарифм позитивного скалярного оператора β I ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMabm ysayaajaaaaa@3A86@  имеет вид ln β I ^ = I ^ lnβ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6 gadaqadaqaaiabek7aIjqadMeagaqcaaGaayjkaiaawMcaaiaai2da ceWGjbGbaKaaciGGSbGaaiOBaiabek7aIjaaiYcaaaa@43D3@  в частности, ln I ^ = O ^ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6 gaceWGjbGbaKaacaaI9aGabm4tayaajaGaaGOlaaaa@3D2C@

Известно (см. [2]), что при любом Z=X+JY A k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiaai2 dacaWGybGaey4kaSIaaeOsaiaadMfacqGHiiIZtuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=bq8bnaaBaaaleaacaWGRb aabeaaaaa@4AF8@  функция e Z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamOwaaaaaaa@39FD@  представима в виде

e Z = e X+JY = e X cosY+JsinY . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamOwaaaakiaai2dacaWGLbWaaWbaaSqabeaacaWGybGa ey4kaSIaaeOsaiaadMfaaaGccaaI9aGaamyzamaaCaaaleqabaGaam iwaaaakmaabmaabaGaci4yaiaac+gacaGGZbGaamywaiabgUcaRiaa bQeaciGGZbGaaiyAaiaac6gacaWGzbaacaGLOaGaayzkaaGaaeOlaa aa@4D6E@  (2.10)

В этом случае действительная и мнимая части функции e Z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamOwaaaaaaa@39FD@  имеют вид

U X,Y = e X cosY,V X,Y = e X sinY. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaabm aabaGaamiwaiaaiYcacaWGzbaacaGLOaGaayzkaaGaaGypaiaadwga daahaaWcbeqaaiaadIfaaaGcciGGJbGaai4BaiaacohacaWGzbGaaG ilaiaaywW7caWGwbWaaeWaaeaacaWGybGaaGilaiaadMfaaiaawIca caGLPaaacaaI9aGaamyzamaaCaaaleqabaGaamiwaaaakiGacohaca GGPbGaaiOBaiaadMfacaaIUaaaaa@519D@

Заметим, что O+JY A k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4taiabgU caRiaabQeacaWGzbGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrgi nfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaGaam4Aaaqabaaaaa@4949@  для любого YL(E). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8Ne HWKaaGikaiaadweacaaIPaGaaGOlaaaa@47DE@  Тогда в силу (2.10) и равенства e O =I MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaam4taaaakiaai2dacaWGjbaaaa@3B91@  имеем

e JY =cosY+JsinYYL(E). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaaeOsaiaadMfaaaGccaaI9aGaci4yaiaac+gacaGGZbGa amywaiabgUcaRiaabQeaciGGZbGaaiyAaiaac6gacaWGzbGaaGzbVl abgcGiIiaadMfacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy 0Hgip5wzaGqbaiab=jrimjaaiIcacaWGfbGaaGykaiaai6caaaa@56E5@  (2.11)

Покажем периодичность функции e Z . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamOwaaaakiaai6caaaa@3ABF@

Теорема 2.2. Любой комплексный оператор T m =2πmJ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGTbaabeaakiaai2dacaaIYaGaeqiWdaNaamyBaiaabQea caaISaaaaa@3FBD@   m, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8hj HOLaaGilaaaa@45FA@   m0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgc Mi5kaaicdacaaISaaaaa@3C30@  является периодом функции e Z . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamOwaaaakiaai6caaaa@3ABF@   

Доказательство. Нужно показать, что для любого ZA MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha Xheaaa@45AB@  справедливо равенство

e Z+2πmJ = e Z . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamOwaiabgUcaRiaaikdacqaHapaCcaWGTbGaaeOsaaaa kiaai2dacaWGLbWaaWbaaSqabeaacaWGAbaaaOGaaGOlaaaa@42A0@  (2.12)

В силу (0.7) операторы Z, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiaaiY caaaa@399C@   2πmJ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabec 8aWjaad2gacaqGkbaaaa@3C3F@  коммутируют между собой, следовательно, в силу (2.5)

e Z+2πmJ = e Z e 2πmJ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamOwaiabgUcaRiaaikdacqaHapaCcaWGTbGaaeOsaaaa kiaai2dacaWGLbWaaWbaaSqabeaacaWGAbaaaOGaamyzamaaCaaale qabaGaaGOmaiabec8aWjaad2gacaqGkbaaaOGaaGOlaaaa@47F9@  (2.13)

В силу (2.11)

e 2πmJ = e J 2πmI =cos 2πmI +Jsin 2πmI . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaaGOmaiabec8aWjaad2gacaqGkbaaaOGaaGypaiaadwga daahaaWcbeqaaiaabQeadaqadaqaaiaaikdacqaHapaCcaWGTbGaam ysaaGaayjkaiaawMcaaaaakiaai2daciGGJbGaai4Baiaacohadaqa daqaaiaaikdacqaHapaCcaWGTbGaamysaaGaayjkaiaawMcaaiabgU caRiaabQeacaqGZbGaaeyAaiaab6gadaqadaqaaiaaikdacqaHapaC caWGTbGaamysaaGaayjkaiaawMcaaiaai6caaaa@5A2F@  (2.14)

Покажем, что

sin αI =Isinαα, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbWaaeWaaeaacqaHXoqycaWGjbaacaGLOaGaayzkaaGaaGyp aiaadMeaciGGZbGaaiyAaiaac6gacqaHXoqycaaMf8UaeyiaIiIaeq ySdeMaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39ga iuaacqWFDeIucaaISaaaaa@55CB@  (2.15)

cos αI =Icosαα. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbWaaeWaaeaacqaHXoqycaWGjbaacaGLOaGaayzkaaGaaGyp aiaadMeacaqGJbGaae4BaiaabohacqaHXoqycaaMf8UaeyiaIiIaeq ySdeMaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39ga iuaacqWFDeIucaaIUaaaaa@55C3@  (2.16)

При α=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ypaiaaicdaaaa@3B27@  выполнимость соотношений (2.15), (2.16) следует из равенств sinO=O, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbGaam4taiaai2dacaWGpbGaaGilaaaa@3E04@   cosO=I, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaam4taiaai2dacaWGjbGaaGilaaaa@3DF9@   sin0=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbGaaGimaiaai2dacaaIWaGaaGilaaaa@3DD0@   cos0=1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaaGimaiaai2dacaaIXaGaaGOlaaaa@3DCE@  Пусть α0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey iyIKRaaGimaiaai6caaaa@3CDF@  Учитывая, что I n =I, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaCa aaleqabaGaamOBaaaakiaai2dacaWGjbGaaGilaaaa@3C4A@   n, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xf H4KaaGilaaaa@45E0@  получаем

sin αI = k=0 (1) k αI 2k+1 2k+1 ! =I k=0 (1) k α 2k+1 2k+1 ! =Isinα; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbWaaeWaaeaacqaHXoqycaWGjbaacaGLOaGaayzkaaGaaGyp amaaqahabeWcbaGaam4AaiaayIW7caaI9aGaaGjcVlaaicdaaeaacq GHEisPa0GaeyyeIuoakiaaiIcacqGHsislcaaIXaGaaGykamaaCaaa leqabaGaam4AaaaakiaayIW7daWcaaqaamaabmaabaGaeqySdeMaam ysaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaiaadUgacqGHRaWk caaIXaaaaaGcbaWaaeWaaeaacaaIYaGaam4AaiabgUcaRiaaigdaai aawIcacaGLPaaacaaIHaaaaiaai2dacaWGjbGaeyyXIC9aaabCaeqa leaacaWGRbGaaGjcVlaai2dacaaMi8UaaGimaaqaaiabg6HiLcqdcq GHris5aOGaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWG RbaaaOGaaGjcVpaalaaabaGaeqySde2aaWbaaSqabeaacaaIYaGaam 4AaiabgUcaRiaaigdaaaaakeaadaqadaqaaiaaikdacaWGRbGaey4k aSIaaGymaaGaayjkaiaawMcaaiaaigcaaaGaaGypaiaadMeaciGGZb GaaiyAaiaac6gacqaHXoqycaqG7aaaaa@801B@

cos αI = k=0 (1) k αI 2k 2k ! =I k=0 (1) k α 2k 2k ! =Icosα. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbWaaeWaaeaacqaHXoqycaWGjbaacaGLOaGaayzkaaGaaGyp amaaqahabeWcbaGaam4AaiaayIW7caaI9aGaaGjcVlaaicdaaeaacq GHEisPa0GaeyyeIuoakiaaiIcacqGHsislcaaIXaGaaGykamaaCaaa leqabaGaam4AaaaakiaayIW7daWcaaqaamaabmaabaGaeqySdeMaam ysaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaiaadUgaaaaakeaa daqadaqaaiaaikdacaWGRbaacaGLOaGaayzkaaGaaGyiaaaacaaI9a GaamysaiabgwSixpaaqahabeWcbaGaam4AaiaayIW7caaI9aGaaGjc VlaaicdaaeaacqGHEisPa0GaeyyeIuoakiaaiIcacqGHsislcaaIXa GaaGykamaaCaaaleqabaGaam4AaaaakiaayIW7daWcaaqaaiabeg7a HnaaCaaaleqabaGaaGOmaiaadUgaaaaakeaadaqadaqaaiaaikdaca WGRbaacaGLOaGaayzkaaGaaGyiaaaacaaI9aGaamysaiGacogacaGG VbGaai4Caiabeg7aHjaai6caaaa@799C@

Соотношения (2.15), (2.16) установлены.

Согласно соотношениям (2.15), (2.16) имеем

sin 2πmI =O,cos 2πmI =I. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbWaaeWaaeaacaaIYaGaeqiWdaNaamyBaiaadMeaaiaawIca caGLPaaacaaI9aGaam4taiaaiYcacaaMf8Uaci4yaiaac+gacaGGZb WaaeWaaeaacaaIYaGaeqiWdaNaamyBaiaadMeaaiaawIcacaGLPaaa caaI9aGaamysaiaai6caaaa@4F5D@  (2.17)

Используя соглашение (0.4), получаем

I= I,O = I ^ ,JO= O,I O,O = O,O = O ^ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaai2 dadaqadaqaaiaadMeacaaISaGaam4taaGaayjkaiaawMcaaiaai2da ceWGjbGbaKaacaaISaGaaGzbVlaabQeacqGHflY1caWGpbGaaGypam aabmaabaGaam4taiaaiYcacaWGjbaacaGLOaGaayzkaaWaaeWaaeaa caWGpbGaaGilaiaad+eaaiaawIcacaGLPaaacaaI9aWaaeWaaeaaca WGpbGaaGilaiaad+eaaiaawIcacaGLPaaacaaI9aGabm4tayaajaGa aGilaaaa@54EF@

следовательно, в силу (2.14), (2.17)

e 2πmJ = I ^ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaaGOmaiabec8aWjaad2gacaqGkbaaaOGaaGypaiqadMea gaqcaiaai6caaaa@3FBD@  (2.18)

Из соотношений (2.13), (2.18) следует равенство (2.12).

В качестве основного периода функции e Z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamOwaaaaaaa@39FD@  берется оператор T 1 =2πJ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaakiaai2dacaaIYaGaeqiWdaNaaeOsaiaai6ca aaa@3E96@

2. Комплексные операторные тригонометрические функции

По определению,

sinZ= k=0 (1) k Z 2k+1 2k+1 ! , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbGaamOwaiaai2dadaaeWbqabSqaaiaadUgacaaMi8UaaGyp aiaayIW7caaIWaaabaGaeyOhIukaniabggHiLdGccaaIOaGaeyOeI0 IaaGymaiaaiMcadaahaaWcbeqaaiaadUgaaaGccaaMi8+aaSaaaeaa caWGAbWaaWbaaSqabeaacaaIYaGaam4AaiabgUcaRiaaigdaaaaake aadaqadaqaaiaaikdacaWGRbGaey4kaSIaaGymaaGaayjkaiaawMca aiaaigcaaaGaaeilaaaa@5631@  (2.19)

cosZ= k=0 (1) k Z 2k 2k ! MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaamOwaiaai2dadaaeWbqabSqaaiaadUgacaaMi8UaaGyp aiaayIW7caaIWaaabaGaeyOhIukaniabggHiLdGccaaIOaGaeyOeI0 IaaGymaiaaiMcadaahaaWcbeqaaiaadUgaaaGccaaMi8+aaSaaaeaa caWGAbWaaWbaaSqabeaacaaIYaGaam4AaaaaaOqaamaabmaabaGaaG OmaiaadUgaaiaawIcacaGLPaaacaaIHaaaaaaa@5248@  (2.20)

для любого ZA. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha XhKaaGOlaaaa@4663@

Обоснование корректности определений (2.19), (2.20) аналогично случаю функции e Z . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamOwaaaakiaai6caaaa@3ABF@

Заметим, что sin O ^ = O ^ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbGabm4tayaajaGaaGypaiqad+eagaqcaiaaiYcaaaa@3E24@   cos O ^ = I ^ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGabm4tayaajaGaaGypaiqadMeagaqcaiaaiYcaaaa@3E19@  

sin Z =sinZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbWaaeWaaeaacqGHsislcaWGAbaacaGLOaGaayzkaaGaaGyp aiabgkHiTiGacohacaGGPbGaaiOBaiaadQfacaaISaaaaa@4450@  (2.21)

cos Z =cosZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbWaaeWaaeaacqGHsislcaWGAbaacaGLOaGaayzkaaGaaGyp aiGacogacaGGVbGaai4CaiaadQfacaaIUaaaaa@4360@  (2.22)

Укажем, какими соотношениями связаны функция e Z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamOwaaaaaaa@39FD@  и функции sinZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbGaamOwaiaaiYcaaaa@3C74@   cosZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaamOwaiaai6caaaa@3C71@  Для этого потребуются некоторые вспомогательные факты.

Для любых Z 1 , Z 2 A, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaaIXaaabeaakiaaiYcacaWGAbWaaSbaaSqaaiaaikdaaeqa aOGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiu aacqWFaeFqcaaISaaaaa@49D9@  удовлетворяющих условию (2.4), справедливы равенства

Z 1 Z 2 n = Z 1 n Z 2 n n, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGAbWaaSbaaSqaaiaaigdaaeqaaOGaamOwamaaBaaaleaacaaIYaaa beaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamOBaaaakiaai2daca WGAbWaa0baaSqaaiaaigdaaeaacaWGUbaaaOGaamOwamaaDaaaleaa caaIYaaabaGaamOBaaaakiaaywW7cqGHaiIicaWGUbGaeyicI48efv 3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFveItcaaI Saaaaa@54E2@  (2.23)

Z 1 ± Z 2 2 = Z 1 2 ±2 Z 1 Z 2 + Z 2 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGAbWaaSbaaSqaaiaaigdaaeqaaOGaeyySaeRaamOwamaaBaaaleaa caaIYaaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaki aai2dacaWGAbWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaeyySaeRa aGOmaiaadQfadaWgaaWcbaGaaGymaaqabaGccaWGAbWaaSbaaSqaai aaikdaaeqaaOGaey4kaSIaamOwamaaDaaaleaacaaIYaaabaGaaGOm aaaaaaa@4D17@  (2.24)

(равенство (2.24) это частный случай формулы (2.26) при k=2). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaaIYaGaaGykaiaai6caaaa@3BE5@

Используя теорему 60 из [8, c 136], приходим к следующему утверждению.

Лемма 2.1. Пусть ряд k=1 Z k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGRbGaaGjcVlaai2dacaaMi8UaaGymaaqaaiabg6HiLcqdcqGH ris5aOGaamOwamaaBaaaleaacaWGRbaabeaaaaa@4354@  с членами из алгебры A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqaaa@4348@  сходится, и его сумма равна S. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaai6 caaaa@3997@  Тогда при любом фиксированном HA MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha Xheaaa@4599@  ряд k=1 H Z k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGRbGaaGjcVlaai2dacaaMi8UaaGymaaqaaiabg6HiLcqdcqGH ris5aOWaaeWaaeaacaWGibGaamOwamaaBaaaleaacaWGRbaabeaaaO GaayjkaiaawMcaaaaa@45B4@  сходится, и его сумма равна HS. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaado facaaIUaaaaa@3A64@  

Замечание 2.2. Если ряды k=1 a k , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGRbGaaGjcVlaai2dacaaMi8UaaGymaaqaaiabg6HiLcqdcqGH ris5aOGaamyyamaaBaaaleaacaWGRbaabeaakiaaiYcaaaa@441B@   k=1 b k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGRbGaaGjcVlaai2dacaaMi8UaaGymaaqaaiabg6HiLcqdcqGH ris5aOGaamOyamaaBaaaleaacaWGRbaabeaaaaa@435C@  с членами из нормированного пространства N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@38DA@  сходятся: k=1 a k = s 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGRbGaaGjcVlaai2dacaaMi8UaaGymaaqaaiabg6HiLcqdcqGH ris5aOGaamyyamaaBaaaleaacaWGRbaabeaakiaai2dacaWGZbWaaS baaSqaaiaaigdaaeqaaOGaaGilaaaa@46CB@   k=1 b k = s 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGRbGaaGjcVlaai2dacaaMi8UaaGymaaqaaiabg6HiLcqdcqGH ris5aOGaamOyamaaBaaaleaacaWGRbaabeaakiaai2dacaWGZbWaaS baaSqaaiaaikdaaeqaaOGaaGilaaaa@46CD@  то ряд k=1 a k + b k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGRbGaaGjcVlaai2dacaaMi8UaaGymaaqaaiabg6HiLcqdcqGH ris5aOWaaeWaaeaacaWGHbWaaSbaaSqaaiaadUgaaeqaaOGaey4kaS IaamOyamaaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaaaa@47DD@  сходится и выполнено k=1 a k + b k = s 1 + s 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGRbGaaGjcVlaai2dacaaMi8UaaGymaaqaaiabg6HiLcqdcqGH ris5aOWaaeWaaeaacaWGHbWaaSbaaSqaaiaadUgaaeqaaOGaey4kaS IaamOyamaaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaiaai2da caWGZbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaam4CamaaBaaale aacaaIYaaabeaaaaa@4D4F@  (см. [10, c. 52]).

Теорема 2.3. Для любого ZA MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha Xheaaa@45AB@  справедлива комплексная операторная формула Эйлера:

e JZ =cosZ+JsinZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaaeOsaiaadQfaaaGccaaI9aGaci4yaiaac+gacaGGZbGa amOwaiabgUcaRiaabQeacaqGZbGaaeyAaiaab6gacaWGAbGaaGOlaa aa@4566@  (2.25)

Доказательство. Учитывая соотношения (0.6), (0.7), (2.23), лемму 2.1 при H=J MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaai2 dacaqGkbaaaa@3A68@  и замечание 2.2, имеем

JsinZ=J k=0 (1) k Z 2k+1 2k+1 ! = k=0 ( I ^ ) k J Z 2k+1 2k+1 ! = k=0 J 2k+1 Z 2k+1 2k+1 ! = k=0 JZ 2k+1 2k+1 ! . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOsaiaabo hacaqGPbGaaeOBaiaadQfacaaI9aGaaeOsamaaqahabeWcbaGaam4A aiaayIW7caaI9aGaaGjcVlaaicdaaeaacqGHEisPa0GaeyyeIuoaki aaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqabaGaam4Aaaaakiaa yIW7daWcaaqaaiaadQfadaahaaWcbeqaaiaaikdacaWGRbGaey4kaS IaaGymaaaaaOqaamaabmaabaGaaGOmaiaadUgacqGHRaWkcaaIXaaa caGLOaGaayzkaaGaaGyiaaaacaaI9aWaaabCaeqaleaacaWGRbGaaG jcVlaai2dacaaMi8UaaGimaaqaaiabg6HiLcqdcqGHris5aOGaaGik aiabgkHiTiqadMeagaqcaiaaiMcadaahaaWcbeqaaiaadUgaaaGcca aMi8+aaSaaaeaacaqGkbGaamOwamaaCaaaleqabaGaaGOmaiaadUga cqGHRaWkcaaIXaaaaaGcbaWaaeWaaeaacaaIYaGaam4AaiabgUcaRi aaigdaaiaawIcacaGLPaaacaaIHaaaaiaai2dadaaeWbqabSqaaiaa dUgacaaMi8UaaGypaiaayIW7caaIWaaabaGaeyOhIukaniabggHiLd GcdaWcaaqaaiaabQeadaahaaWcbeqaaiaaikdacaWGRbGaey4kaSIa aGymaaaakiaadQfadaahaaWcbeqaaiaaikdacaWGRbGaey4kaSIaaG ymaaaaaOqaamaabmaabaGaaGOmaiaadUgacqGHRaWkcaaIXaaacaGL OaGaayzkaaGaaGyiaaaacaaI9aWaaabCaeqaleaacaWGRbGaaGjcVl aai2dacaaMi8UaaGimaaqaaiabg6HiLcqdcqGHris5aOWaaSaaaeaa daqadaqaaiaabQeacaWGAbaacaGLOaGaayzkaaWaaWbaaSqabeaaca aIYaGaam4AaiabgUcaRiaaigdaaaaakeaadaqadaqaaiaaikdacaWG RbGaey4kaSIaaGymaaGaayjkaiaawMcaaiaaigcaaaGaaGOlaaaa@A138@

Аналогично получаем

cosZ= k=0 JZ 2k 2k ! . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaamOwaiaai2dadaaeWbqabSqaaiaadUgacaaMi8UaaGyp aiaayIW7caaIWaaabaGaeyOhIukaniabggHiLdGcdaWcaaqaamaabm aabaGaaeOsaiaadQfaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikda caWGRbaaaaGcbaWaaeWaaeaacaaIYaGaam4AaaGaayjkaiaawMcaai aaigcaaaGaaGOlaaaa@4F91@

Тогда, используя замечание 2.2, имеем

e JZ = m=0 JZ m m! = k=0 [ JZ 2k 2k ! + JZ 2k+1 2k+1 ! ]= k=0 JZ 2k 2k ! + k=0 JZ 2k+1 2k+1 ! =cosZ+JsinZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaaeOsaiaadQfaaaGccaaMb8UaaGypamaaqahabeWcbaGa amyBaiaayIW7caaI9aGaaGjcVlaaicdaaeaacqGHEisPa0GaeyyeIu oakiaaygW7daWcaaqaamaabmaabaGaaeOsaiaadQfaaiaawIcacaGL PaaadaahaaWcbeqaaiaad2gaaaaakeaacaWGTbGaaGyiaaaacaaI9a WaaabCaeqaleaacaWGRbGaaGjcVlaai2dacaaMi8UaaGimaaqaaiab g6HiLcqdcqGHris5aOGaaG4wamaalaaabaWaaeWaaeaacaqGkbGaam OwaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaiaadUgaaaaakeaa daqadaqaaiaaikdacaWGRbaacaGLOaGaayzkaaGaaGyiaaaacqGHRa WkdaWcaaqaamaabmaabaGaaeOsaiaadQfaaiaawIcacaGLPaaadaah aaWcbeqaaiaaikdacaWGRbGaey4kaSIaaGymaaaaaOqaamaabmaaba GaaGOmaiaadUgacqGHRaWkcaaIXaaacaGLOaGaayzkaaGaaGyiaaaa caaIDbGaaGypamaaqahabeWcbaGaam4AaiaayIW7caaI9aGaaGjcVl aaicdaaeaacqGHEisPa0GaeyyeIuoakmaalaaabaWaaeWaaeaacaqG kbGaamOwaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaiaadUgaaa aakeaadaqadaqaaiaaikdacaWGRbaacaGLOaGaayzkaaGaaGyiaaaa cqGHRaWkdaaeWbqabSqaaiaadUgacaaMi8UaaGypaiaayIW7caaIWa aabaGaeyOhIukaniabggHiLdGcdaWcaaqaamaabmaabaGaaeOsaiaa dQfaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdacaWGRbGaey4kaS IaaGymaaaaaOqaamaabmaabaGaaGOmaiaadUgacqGHRaWkcaaIXaaa caGLOaGaayzkaaGaaGyiaaaacaaI9aGaci4yaiaac+gacaGGZbGaam OwaiabgUcaRiaabQeaciGGZbGaaiyAaiaac6gacaWGAbGaaGOlaaaa @A449@

В силу (2.21), (2.22), (2.25)

e JZ =cosZJsinZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaeyOeI0IaaeOsaiaadQfaaaGccaaI9aGaci4yaiaac+ga caGGZbGaamOwaiabgkHiTiaabQeacaqGZbGaaeyAaiaab6gacaWGAb GaaGOlaaaa@465E@  (2.26)

Из соотношений (2.25), (2.26) получаем

2JsinZ= e JZ e JZ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaabQ eacaqGZbGaaeyAaiaab6gacaWGAbGaaGypaiaadwgadaahaaWcbeqa aiaabQeacaWGAbaaaOGaeyOeI0IaamyzamaaCaaaleqabaGaeyOeI0 IaaeOsaiaadQfaaaGccaaIUaaaaa@4635@  (2.27)

Заметим, что J A G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOsaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha Xh0aaSbaaSqaaiaadEeaaeqaaaaa@4691@  и

J 1 =J. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOsamaaCa aaleqabaGaeyOeI0IaaGymaaaakiaai2dacqGHsislcaqGkbGaaGOl aaaa@3DEC@  (2.28)

Умножая слева обе части равенства (2.27) на 2 1 J 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaaCa aaleqabaGaeyOeI0IaaGymaaaakiaabQeadaahaaWcbeqaaiabgkHi Tiaaigdaaaaaaa@3D44@  и учитывая соотношение (2.28), имеем

sinZ=J e JZ e JZ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbGaamOwaiaai2dacqGHsislcaqGkbWaaSaaaeaacaWGLbWa aWbaaSqabeaacaqGkbGaamOwaaaakiabgkHiTiaadwgadaahaaWcbe qaaiabgkHiTiaabQeacaWGAbaaaaGcbaGaaeOmaaaaaaa@4673@  (2.29)

или, в силу (0.7),

sinZ= e JZ e JZ 2 J. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbGaamOwaiaai2dacqGHsisldaWcaaqaaiaadwgadaahaaWc beqaaiaabQeacaWGAbaaaOGaeyOeI0IaamyzamaaCaaaleqabaGaey OeI0IaaeOsaiaadQfaaaaakeaacaqGYaaaaiaabQeacaaIUaaaaa@472B@

Согласно (2.25), (2.26), имеем

cosZ= e JZ + e JZ 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaamOwaiaai2dadaWcaaqaaiaadwgadaahaaWcbeqaaiaa bQeacaWGAbaaaOGaey4kaSIaamyzamaaCaaaleqabaGaeyOeI0Iaae OsaiaadQfaaaaakeaacaqGYaaaaiaai6caaaa@4566@  (2.30)

Заметим, что для любого ZA MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha Xheaaa@45AB@  выполнено

e JZ e JZ = e JZ e JZ = I ^ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaaeOsaiaadQfaaaGccaWGLbWaaWbaaSqabeaacqGHsisl caqGkbGaamOwaaaakiaai2dacaWGLbWaaWbaaSqabeaacqGHsislca qGkbGaamOwaaaakiaadwgadaahaaWcbeqaaiaabQeacaWGAbaaaOGa aGypaiqadMeagaqcaiaai6caaaa@4839@  (2.31)

Справедливо основное комплексное операторное тригонометрическое тождество: для любого ZA MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha Xheaaa@45AB@  

sin 2 Z+ cos 2 Z= I ^ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbWaaWbaaSqabeaacaqGYaaaaOGaamOwaiabgUcaRiaaboga caqGVbGaae4CamaaCaaaleqabaGaaeOmaaaakiaadQfacaaI9aGabm ysayaajaGaaGOlaaaa@447D@  (2.32)

Действительно, используя соотношения (0.6), (0.7), (2.5), (2.23), (2.24), (2.29)-( 2.31), получаем

sin 2 Z= 4 1 e 2JZ 2 I ^ + e 2JZ , cos 2 Z =4 1 e 2JZ +2 I ^ + e 2JZ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbWaaWbaaSqabeaacaqGYaaaaOGaamOwaiaai2dacqGHsisl caaI0aWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaacaWGLb WaaWbaaSqabeaacaqGYaGaaeOsaiaadQfaaaGccqGHsislcaaIYaGa bmysayaajaGaey4kaSIaamyzamaaCaaaleqabaGaeyOeI0IaaGOmai aabQeacaWGAbaaaaGccaGLOaGaayzkaaGaaGilaiaaysW7caaMe8Ua aGjcVpaavacabeWcbeqaaiaabkdaaOqaaiGacogacaGGVbGaai4Caa aacaWGAbGaaGypaiaaisdadaahaaWcbeqaaiabgkHiTiaaigdaaaGc daqadaqaaiaadwgadaahaaWcbeqaaiaabkdacaqGkbGaamOwaaaaki abgUcaRiaaikdaceWGjbGbaKaacqGHRaWkcaWGLbWaaWbaaSqabeaa cqGHsislcaaIYaGaaeOsaiaadQfaaaaakiaawIcacaGLPaaacaaISa aaaa@68F4@

откуда и следует тождество (2.32).

Покажем периодичность функций sinZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbGaamOwaiaaiYcaaaa@3C6F@   cosZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaamOwaiaai6caaaa@3C71@

Используя (2.12), (2.29), имеем для любых ZA, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha XhKaaGilaaaa@4661@   m, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8hj HOLaaGilaaaa@45FA@   m0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgc Mi5kaaicdaaaa@3B7A@ :

sin Z+2πm I ^ = 2 1 J e J Z+2πm I ^ e J Z+2πm I ^ = 2 1 J e JZ+2πmJ e JZ+2π(m)J MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbWaaeWaaeaacaWGAbGaey4kaSIaaGjcVlaaikdacqaHapaC caWGTbGabmysayaajaaacaGLOaGaayzkaaGaaGypaiabgkHiTiaaik dadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaqGkbWaamWaaeaacaWG LbWaaWbaaSqabeaacaqGkbWaaeWaaeaacaWGAbGaey4kaSIaaGjcVl aaikdacqaHapaCcaWGTbGabmysayaajaaacaGLOaGaayzkaaaaaOGa eyOeI0IaamyzamaaCaaaleqabaGaeyOeI0IaaeOsamaabmaabaGaam OwaiabgUcaRiaayIW7caaIYaGaeqiWdaNaamyBaiqadMeagaqcaaGa ayjkaiaawMcaaaaaaOGaay5waiaaw2faaiaai2dacqGHsislcaaIYa WaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaeOsamaadmaabaGaamyz amaaCaaaleqabaGaaeOsaiaadQfacqGHRaWkcaaIYaGaeqiWdaNaam yBaiaabQeaaaGccqGHsislcaWGLbWaaWbaaSqabeaacqGHsislcaqG kbGaamOwaiabgUcaRiaaikdacqaHapaCcaaIOaGaeyOeI0IaamyBai aaiMcacaqGkbaaaaGccaGLBbGaayzxaaaaaa@7E12@

= 2 1 J e JZ e JZ =sinZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgk HiTiaaikdadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaqGkbWaaeWa aeaacaWGLbWaaWbaaSqabeaacaqGkbGaamOwaaaakiabgkHiTiaadw gadaahaaWcbeqaaiabgkHiTiaabQeacaWGAbaaaaGccaGLOaGaayzk aaGaaGypaiGacohacaGGPbGaaiOBaiaadQfacaaIUaaaaa@4B56@

Получили равенство sin Z+2πm I ^ =sinZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbWaaeWaaeaacaWGAbGaey4kaSIaaGjcVlaaikdacqaHapaC caWGTbGabmysayaajaaacaGLOaGaayzkaaGaaGypaiGacohacaGGPb GaaiOBaiaadQfacaaIUaaaaa@4934@  Аналогично доказывается, что

cos(Z+2πm I ^ )=cosZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaaGikaiaadQfacqGHRaWkcaaMi8UaaGOmaiabec8aWjaa d2gaceWGjbGbaKaacaaIPaGaaGypaiGacogacaGGVbGaai4CaiaadQ facaaIUaaaaa@490B@

Таким образом, любой комплексный оператор T m =2πm I ^ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGTbaabeaakiaai2dacaaIYaGaeqiWdaNaamyBaiqadMea gaqcaiaaiYcaaaa@3FCE@   m, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8hj HOLaaGilaaaa@45FA@   m0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgc Mi5kaaicdacaaISaaaaa@3C30@  является периодом функций sinZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbGaamOwaiaaiYcaaaa@3C6F@   cosZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaamOwaiaai6caaaa@3C71@  В качестве основного периода этих функций берется оператор T 1 =2π I ^ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaakiaai2dacaaIYaGaeqiWdaNabmysayaajaGa aGOlaaaa@3EA7@

Используя равенство (2.5), можно доказать некоторые формулы комплексной операторной тригонометрии.

Замечание 2.3. Пусть операторы Z 1 , Z 2 A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaaIXaaabeaakiaaiYcacaWGAbWaaSbaaSqaaiaaikdaaeqa aOGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiu aacqWFaeFqaaa@4923@  удовлетворяют условию (2.4). Тогда операторы J Z 1 ,J Z 2 ,J Z 1 ,J Z 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOsaiaadQ fadaWgaaWcbaGaaGymaaqabaGccaaISaGaaeOsaiaadQfadaWgaaWc baGaaGOmaaqabaGccaaISaGaeyOeI0IaaeOsaiaadQfadaWgaaWcba GaaGymaaqabaGccaaISaGaeyOeI0IaaeOsaiaadQfadaWgaaWcbaGa aGOmaaqabaaaaa@466F@  попарно коммутируют между собой.

Теорема 2.4. Для любых операторов Z 1 , Z 2 A, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaaIXaaabeaakiaaiYcacaWGAbWaaSbaaSqaaiaaikdaaeqa aOGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiu aacqWFaeFqcaaISaaaaa@49D9@  удовлетворяющих условию (2.4), справедливы формулы сложения

sin Z 1 + Z 2 =sin Z 1 cos Z 2 +cos Z 1 sin Z 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbWaaeWaaeaacaWGAbWaaSbaaSqaaiaaigdaaeqaaOGaey4k aSIaamOwamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiaai2 daciGGZbGaaiyAaiaac6gacaWGAbWaaSbaaSqaaiaaigdaaeqaaOGa ae4yaiaab+gacaqGZbGaamOwamaaBaaaleaacaaIYaaabeaakiabgU caRiGacogacaGGVbGaai4CaiaadQfadaWgaaWcbaGaaGymaaqabaGc ciGGZbGaaiyAaiaac6gacaWGAbWaaSbaaSqaaiaaikdaaeqaaOGaaG ilaaaa@55D8@  (2.33)

cos Z 1 + Z 2 =cos Z 1 cos Z 2 sin Z 1 sin Z 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbWaaeWaaeaacaWGAbWaaSbaaSqaaiaaigdaaeqaaOGaey4k aSIaamOwamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiaai2 daciGGJbGaai4BaiaacohacaWGAbWaaSbaaSqaaiaaigdaaeqaaOGa ci4yaiaac+gacaGGZbGaamOwamaaBaaaleaacaaIYaaabeaakiabgk HiTiGacohacaGGPbGaaiOBaiaadQfadaWgaaWcbaGaaGymaaqabaGc ciGGZbGaaiyAaiaac6gacaWGAbWaaSbaaSqaaiaaikdaaeqaaOGaaG Olaaaa@55EA@  (2.34)

Доказательство. Используя соотношения (2.5), (2.29), (2.30) и учитывая замечание 2.3, получаем

sin Z 1 cos Z 2 +cos Z 1 sin Z 2 = 4 1 J e J Z 1 e J Z 1 e J Z 2 + e J Z 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbGaamOwamaaBaaaleaacaaIXaaabeaakiaabogacaqGVbGa ae4CaiaadQfadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkciGGJbGaai 4BaiaacohacaWGAbWaaSbaaSqaaiaaigdaaeqaaOGaci4CaiaacMga caGGUbGaamOwamaaBaaaleaacaaIYaaabeaakiaai2dacqGHsislca aI0aWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaeOsamaabmaabaGa amyzamaaCaaaleqabaGaaeOsaiaadQfadaWgaaqaaiaaigdaaeqaaa aakiabgkHiTiaadwgadaahaaWcbeqaaiabgkHiTiaabQeacaWGAbWa aSbaaeaacaaIXaaabeaaaaaakiaawIcacaGLPaaadaqadaqaaiaadw gadaahaaWcbeqaaiaabQeacaWGAbWaaSbaaeaacaaIYaaabeaaaaGc cqGHRaWkcaWGLbWaaWbaaSqabeaacqGHsislcaqGkbGaamOwamaaBa aabaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaaaaa@65FB@

4 1 J e J Z 1 + e J Z 1 e J Z 2 e J Z 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG inamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaabQeadaqadaqaaiaa dwgadaahaaWcbeqaaiaabQeacaWGAbWaaSbaaeaacaaIXaaabeaaaa GccqGHRaWkcaWGLbWaaWbaaSqabeaacqGHsislcaqGkbGaamOwamaa BaaabaGaaGymaaqabaaaaaGccaGLOaGaayzkaaWaaeWaaeaacaWGLb WaaWbaaSqabeaacaqGkbGaamOwamaaBaaabaGaaGOmaaqabaaaaOGa eyOeI0IaamyzamaaCaaaleqabaGaeyOeI0IaaeOsaiaadQfadaWgaa qaaiaaikdaaeqaaaaaaOGaayjkaiaawMcaaaaa@51BF@

= 4 1 J e J Z 1 + Z 2 + e J Z 1 Z 2 e J Z 2 Z 1 e J Z 1 + Z 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgk HiTiaaisdadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaqGkbWaamqa aeaacaWGLbWaaWbaaSqabeaacaqGkbWaaeWaaeaacaWGAbWaaSbaae aacaaIXaaabeaacqGHRaWkcaWGAbWaaSbaaeaacaaIYaaabeaaaiaa wIcacaGLPaaaaaGccqGHRaWkcaWGLbWaaWbaaSqabeaacaqGkbWaae WaaeaacaWGAbWaaSbaaeaacaaIXaaabeaacqGHsislcaWGAbWaaSba aeaacaaIYaaabeaaaiaawIcacaGLPaaaaaGccqGHsislcaWGLbWaaW baaSqabeaacaqGkbWaaeWaaeaacaWGAbWaaSbaaeaacaaIYaaabeaa cqGHsislcaWGAbWaaSbaaeaacaaIXaaabeaaaiaawIcacaGLPaaaaa GccqGHsislcaWGLbWaaWbaaSqabeaacqGHsislcaqGkbWaaeWaaeaa caWGAbWaaSbaaeaacaaIXaaabeaacqGHRaWkcaWGAbWaaSbaaeaaca aIYaaabeaaaiaawIcacaGLPaaaaaaakiaawUfaaaaa@611F@

+ e J Z 1 + Z 2 e J Z 1 Z 2 + e J Z 2 Z 1 e J Z 1 + Z 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaam GaaeaacaWGLbWaaWbaaSqabeaacaqGkbWaaeWaaeaacaWGAbWaaSba aeaacaaIXaaabeaacqGHRaWkcaWGAbWaaSbaaeaacaaIYaaabeaaai aawIcacaGLPaaaaaGccqGHsislcaWGLbWaaWbaaSqabeaacaqGkbWa aeWaaeaacaWGAbWaaSbaaeaacaaIXaaabeaacqGHsislcaWGAbWaaS baaeaacaaIYaaabeaaaiaawIcacaGLPaaaaaGccqGHRaWkcaWGLbWa aWbaaSqabeaacaqGkbWaaeWaaeaacaWGAbWaaSbaaeaacaaIYaaabe aacqGHsislcaWGAbWaaSbaaeaacaaIXaaabeaaaiaawIcacaGLPaaa aaGccqGHsislcaWGLbWaaWbaaSqabeaacqGHsislcaqGkbWaaeWaae aacaWGAbWaaSbaaeaacaaIXaaabeaacqGHRaWkcaWGAbWaaSbaaeaa caaIYaaabeaaaiaawIcacaGLPaaaaaaakiaaw2faaaaa@5CE6@

= 2 1 J e J Z 1 + Z 2 e J Z 1 + Z 2 =sin Z 1 + Z 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgk HiTiaaikdadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaqGkbWaamWa aeaacaWGLbWaaWbaaSqabeaacaqGkbWaaeWaaeaacaWGAbWaaSbaae aacaaIXaaabeaacqGHRaWkcaWGAbWaaSbaaeaacaaIYaaabeaaaiaa wIcacaGLPaaaaaGccqGHsislcaWGLbWaaWbaaSqabeaacqGHsislca qGkbWaaeWaaeaacaWGAbWaaSbaaeaacaaIXaaabeaacqGHRaWkcaWG AbWaaSbaaeaacaaIYaaabeaaaiaawIcacaGLPaaaaaaakiaawUfaca GLDbaacaaI9aGaci4CaiaacMgacaGGUbWaaeWaaeaacaWGAbWaaSba aSqaaiaaigdaaeqaaOGaey4kaSIaamOwamaaBaaaleaacaaIYaaabe aaaOGaayjkaiaawMcaaiaai6caaaa@5AF2@

Формула (2.33) доказана. Справедливость формулы (2.34) проверяется аналогично.

В силу теоремы 2.4, для любого ZA MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha Xheaaa@45AB@  справедливы формулы двойного аргумента:

sin2Z=2sinZcosZ,cos2Z= cos 2 Z sin 2 Z. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbGaaeOmaiaadQfacaaI9aGaaGOmaiGacohacaGGPbGaaiOB aiaadQfacaqGJbGaae4BaiaabohacaWGAbGaaGilaiaaywW7caqGJb Gaae4BaiaabohacaqGYaGaamOwaiaai2dacaqGJbGaae4Baiaaboha daahaaWcbeqaaiaabkdaaaGccaWGAbGaeyOeI0Yaaubiaeqaleqaba GaaGOmaaGcbaGaci4CaiaacMgacaGGUbaaaiaadQfacaaIUaaaaa@57C6@

Из теоремы 2.4 и соотношений (2.21), (2.22) следует, что для любых Z 1 , Z 2 A, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaaIXaaabeaakiaaiYcacaWGAbWaaSbaaSqaaiaaikdaaeqa aOGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiu aacqWFaeFqcaaISaaaaa@49D9@  удовлетворяющих условию (2.4), справедливы равенства

sin Z 1 Z 2 =sin Z 1 cos Z 2 cos Z 1 sin Z 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbWaaeWaaeaacaWGAbWaaSbaaSqaaiaaigdaaeqaaOGaeyOe I0IaamOwamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiaai2 daciGGZbGaaiyAaiaac6gacaWGAbWaaSbaaSqaaiaaigdaaeqaaOGa ae4yaiaab+gacaqGZbGaamOwamaaBaaaleaacaaIYaaabeaakiabgk HiTiGacogacaGGVbGaai4CaiaadQfadaWgaaWcbaGaaGymaaqabaGc ciGGZbGaaiyAaiaac6gacaWGAbWaaSbaaSqaaiaaikdaaeqaaOGaaG ilaaaa@55EE@  (2.35)

cos Z 1 Z 2 =cos Z 1 cos Z 2 +sin Z 1 sin Z 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbWaaeWaaeaacaWGAbWaaSbaaSqaaiaaigdaaeqaaOGaeyOe I0IaamOwamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiaai2 daciGGJbGaai4BaiaacohacaWGAbWaaSbaaSqaaiaaigdaaeqaaOGa ci4yaiaac+gacaGGZbGaamOwamaaBaaaleaacaaIYaaabeaakiabgU caRiGacohacaGGPbGaaiOBaiaadQfadaWgaaWcbaGaaGymaaqabaGc ciGGZbGaaiyAaiaac6gacaWGAbWaaSbaaSqaaiaaikdaaeqaaOGaaG Olaaaa@55EA@  (2.36)

Из (2.33)-( 2.36) следуют формулы преобразования произведения комплексных операторных тригонометрических функций в сумму:

sin Z 1 cos Z 2 = 1 2 sin Z 1 + Z 2 +sin Z 1 Z 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbGaamOwamaaBaaaleaacaaIXaaabeaakiaabogacaqGVbGa ae4CaiaadQfadaWgaaWcbaGaaGOmaaqabaGccaaI9aWaaSaaaeaaca qGXaaabaGaaeOmaaaadaWadaqaaiaabohacaqGPbGaaeOBamaabmaa baGaamOwamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadQfadaWgaa WcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHRaWkcaqGZbGaaeyA aiaab6gadaqadaqaaiaadQfadaWgaaWcbaGaaGymaaqabaGccqGHsi slcaWGAbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaacaGL BbGaayzxaaGaaGilaaaa@58E1@  (2.37)

cos Z 1 cos Z 2 = 1 2 cos Z 1 + Z 2 +cos Z 1 Z 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaamOwamaaBaaaleaacaaIXaaabeaakiaabogacaqGVbGa ae4CaiaadQfadaWgaaWcbaGaaGOmaaqabaGccaaI9aWaaSaaaeaaca qGXaaabaGaaeOmaaaadaWadaqaaiGacogacaGGVbGaai4Camaabmaa baGaamOwamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadQfadaWgaa WcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHRaWkciGGJbGaai4B aiaacohadaqadaqaaiaadQfadaWgaaWcbaGaaGymaaqabaGccqGHsi slcaWGAbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaacaGL BbGaayzxaaGaaGilaaaa@58DC@  (2.38)

sin Z 1 sin Z 2 = 1 2 cos Z 1 Z 2 cos Z 1 + Z 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbGaamOwamaaBaaaleaacaaIXaaabeaakiGacohacaGGPbGa aiOBaiaadQfadaWgaaWcbaGaaGOmaaqabaGccaaI9aWaaSaaaeaaca qGXaaabaGaaeOmaaaadaWadaqaaiGacogacaGGVbGaai4Camaabmaa baGaamOwamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadQfadaWgaa WcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHsislcaqGJbGaae4B aiaabohadaqadaqaaiaadQfadaWgaaWcbaGaaGymaaqabaGccqGHRa WkcaWGAbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaacaGL BbGaayzxaaGaaGOlaaaa@58F3@  (2.39)

Из (2.37)-( 2.39) следуют формулы преобразования суммы и разности одноименных комплексных операторных тригонометрических функций в произведение:

sin Z 1 +sin Z 2 =2sin Z 1 + Z 2 2 cos Z 1 Z 2 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbGaamOwamaaBaaaleaacaaIXaaabeaakiabgUcaRiGacoha caGGPbGaaiOBaiaadQfadaWgaaWcbaGaaGOmaaqabaGccaaI9aGaae OmaiGacohacaGGPbGaaiOBamaalaaabaGaamOwamaaBaaaleaacaaI XaaabeaakiabgUcaRiaadQfadaWgaaWcbaGaaGOmaaqabaaakeaaca aIYaaaaiGacogacaGGVbGaai4CamaalaaabaGaamOwamaaBaaaleaa caaIXaaabeaakiabgkHiTiaadQfadaWgaaWcbaGaaGOmaaqabaaake aacaaIYaaaaiaaiYcaaaa@54C0@  (2.40)

sin Z 1 sin Z 2 =2sin Z 1 Z 2 2 cos Z 1 + Z 2 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbGaamOwamaaBaaaleaacaaIXaaabeaakiabgkHiTiGacoha caGGPbGaaiOBaiaadQfadaWgaaWcbaGaaGOmaaqabaGccaaI9aGaae OmaiGacohacaGGPbGaaiOBamaalaaabaGaamOwamaaBaaaleaacaaI XaaabeaakiabgkHiTiaadQfadaWgaaWcbaGaaGOmaaqabaaakeaaca aIYaaaaiGacogacaGGVbGaai4CamaalaaabaGaamOwamaaBaaaleaa caaIXaaabeaakiabgUcaRiaadQfadaWgaaWcbaGaaGOmaaqabaaake aacaaIYaaaaiaaiYcaaaa@54CB@  (2.41)

cos Z 1 +cos Z 2 =2cos Z 1 + Z 2 2 cos Z 1 Z 2 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaamOwamaaBaaaleaacaaIXaaabeaakiabgUcaRiGacoga caGGVbGaai4CaiaadQfadaWgaaWcbaGaaGOmaaqabaGccaaI9aGaae OmaiGacogacaGGVbGaai4CamaalaaabaGaamOwamaaBaaaleaacaaI XaaabeaakiabgUcaRiaadQfadaWgaaWcbaGaaGOmaaqabaaakeaaca aIYaaaaiGacogacaGGVbGaai4CamaalaaabaGaamOwamaaBaaaleaa caaIXaaabeaakiabgkHiTiaadQfadaWgaaWcbaGaaGOmaaqabaaake aacaaIYaaaaiaaiYcaaaa@54B1@  (2.42)

cos Z 1 cos Z 2 =2sin Z 1 Z 2 2 sin Z 1 + Z 2 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaamOwamaaBaaaleaacaaIXaaabeaakiabgkHiTiGacoga caGGVbGaai4CaiaadQfadaWgaaWcbaGaaGOmaaqabaGccaaI9aGaey OeI0IaaeOmaiaabohacaqGPbGaaeOBamaalaaabaGaamOwamaaBaaa leaacaaIXaaabeaakiabgkHiTiaadQfadaWgaaWcbaGaaGOmaaqaba aakeaacaaIYaaaaiGacohacaGGPbGaaiOBamaalaaabaGaamOwamaa BaaaleaacaaIXaaabeaakiabgUcaRiaadQfadaWgaaWcbaGaaGOmaa qabaaakeaacaaIYaaaaiaai6caaaa@55B0@  (2.43)

Напомним, что формулы (2.33)-( 2.43) верны при выполнении условия (2.4).

Теперь покажем, что для функций sinZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbGaamOwaiaaiYcaaaa@3C6F@   cosZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaamOwaaaa@3BB9@  справедливы стандартные формулы приведения.

Теорема 2.5. Для любого ZA MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha Xheaaa@45AB@  

sin(Z+π I ^ )=sinZ,cos(Z+π I ^ )=cosZ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbGaaGikaiaadQfacqGHRaWkcqaHapaCceWGjbGbaKaacaaI PaGaaGypaiabgkHiTiGacohacaGGPbGaaiOBaiaadQfacaaISaGaaG zbVlGacogacaGGVbGaai4CaiaaiIcacaWGAbGaey4kaSIaeqiWdaNa bmysayaajaGaaGykaiaai2dacqGHsislciGGJbGaai4Baiaacohaca WGAbGaaG4oaaaa@5709@  (2.44)

sin(Z+ π 2 I ^ )=cosZ,cos(Z+ π 2 I ^ )=sinZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbGaaGikaiaadQfacqGHRaWkdaWcaaqaaiabec8aWbqaaiaa ikdaaaGabmysayaajaGaaGykaiaai2daciGGJbGaai4Baiaacohaca WGAbGaaGilaiaaywW7ciGGJbGaai4BaiaacohacaaIOaGaamOwaiab gUcaRmaalaaabaGaeqiWdahabaGaaGOmaaaaceWGjbGbaKaacaaIPa GaaGypaiabgkHiTiGacohacaGGPbGaaiOBaiaadQfacaaIUaaaaa@57A7@  (2.45)

Доказательсво. Операторы Z,π I ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiaaiY cacqaHapaCceWGjbGbaKaaaaa@3C37@  коммутируют между собой, следовательно, в силу (2.33), (2.34)

sin(Z+π I ^ )=sinZcos(π I ^ )+cosZsin(π I ^ ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbGaaGikaiaadQfacqGHRaWkcqaHapaCceWGjbGbaKaacaaI PaGaaGypaiGacohacaGGPbGaaiOBaiaadQfacaqGJbGaae4Baiaabo hacaaIOaGaeqiWdaNabmysayaajaGaaGykaiabgUcaRiGacogacaGG VbGaai4CaiaadQfaciGGZbGaaiyAaiaac6gacaaIOaGaeqiWdaNabm ysayaajaGaaGykaiaaiYcaaaa@580E@  (2.46)

cos(Z+π I ^ )=cosZcos(π I ^ )sinZsin(π I ^ ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaaGikaiaadQfacqGHRaWkcqaHapaCceWGjbGbaKaacaaI PaGaaGypaiGacogacaGGVbGaai4CaiaadQfacaqGJbGaae4Baiaabo hacaaIOaGaeqiWdaNabmysayaajaGaaGykaiabgkHiTiGacohacaGG PbGaaiOBaiaadQfaciGGZbGaaiyAaiaac6gacaaIOaGaeqiWdaNabm ysayaajaGaaGykaiaai6caaaa@5816@  (2.47)

Аналогично равенствам (2.15), (2.16) получаем

sin(α I ^ )= I ^ sinαα, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbGaaGikaiabeg7aHjqadMeagaqcaiaaiMcacaaI9aGabmys ayaajaGaci4CaiaacMgacaGGUbGaeqySdeMaaGzbVlabgcGiIiabeg 7aHjabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbac faGae8xhHiLaaGilaaaa@55CC@  (2.48)

cos(α I ^ )= I ^ cosαα, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaaGikaiabeg7aHjqadMeagaqcaiaaiMcacaaI9aGabmys ayaajaGaci4yaiaac+gacaGGZbGaeqySdeMaaGzbVlabgcGiIiabeg 7aHjabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbac faGae8xhHiLaaGilaaaa@55C2@  (2.49)

в частности,

sin(π I ^ )= O ^ ,cos(π I ^ )= I ^ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbGaaGikaiabec8aWjqadMeagaqcaiaaiMcacaaI9aGabm4t ayaajaGaaGilaiaaywW7ciGGJbGaai4BaiaacohacaaIOaGaeqiWda NabmysayaajaGaaGykaiaai2dacqGHsislceWGjbGbaKaacaaIUaaa aa@4CEB@  (2.50)

Из соотношений (2.46), (2.47), (2.50) следуют формулы (2.44). Далее,

sin(Z+ π 2 I ^ )=sinZcos π 2 I ^ +cosZsin π 2 I ^ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbGaaGikaiaadQfacqGHRaWkdaWcaaqaaiabec8aWbqaaiaa ikdaaaGabmysayaajaGaaGykaiaai2daciGGZbGaaiyAaiaac6gaca WGAbGaci4yaiaac+gacaGGZbWaaeWaaeaadaWcaaqaaiabec8aWbqa aiaaikdaaaGabmysayaajaaacaGLOaGaayzkaaGaey4kaSIaci4yai aac+gacaGGZbGaamOwaiGacohacaGGPbGaaiOBamaabmaabaWaaSaa aeaacqaHapaCaeaacaaIYaaaaiqadMeagaqcaaGaayjkaiaawMcaai aaiYcaaaa@5ABA@  (2.51)

cos Z+ π 2 I ^ =cosZcos π 2 I ^ sinZsin π 2 I ^ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbWaaeWaaeaacaWGAbGaey4kaSYaaSaaaeaacqaHapaCaeaa caaIYaaaaiqadMeagaqcaaGaayjkaiaawMcaaiaai2daciGGJbGaai 4BaiaacohacaWGAbGaci4yaiaac+gacaGGZbWaaeWaaeaadaWcaaqa aiabec8aWbqaaiaaikdaaaGabmysayaajaaacaGLOaGaayzkaaGaey OeI0Iaci4CaiaacMgacaGGUbGaamOwaiGacohacaGGPbGaaiOBamaa bmaabaWaaSaaaeaacqaHapaCaeaacaaIYaaaaiqadMeagaqcaaGaay jkaiaawMcaaiaai6caaaa@5AEB@  (2.52)

В силу (2.48), (2.49)

sin π 2 I ^ = I ^ ,cos π 2 I ^ = O ^ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbWaaeWaaeaadaWcaaqaaiabec8aWbqaaiaaikdaaaGabmys ayaajaaacaGLOaGaayzkaaGaaGypaiqadMeagaqcaiaaiYcacaaMf8 Uaci4yaiaac+gacaGGZbWaaeWaaeaadaWcaaqaaiabec8aWbqaaiaa ikdaaaGabmysayaajaaacaGLOaGaayzkaaGaaGypaiqad+eagaqcai aai6caaaa@4DDE@  (2.53)

Из соотношений (2.51)-( 2.53) следуют формулы (2.45).

Аналогично показывается, что для любого ZA MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha Xheaaa@45AB@  

sin Z π 2 I ^ =cosZ,cos Z π 2 I ^ =sinZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbWaaeWaaeaacaWGAbGaeyOeI0YaaSaaaeaacqaHapaCaeaa caaIYaaaaiqadMeagaqcaaGaayjkaiaawMcaaiaai2dacqGHsislci GGJbGaai4BaiaacohacaWGAbGaaGilaiaaywW7ciGGJbGaai4Baiaa cohadaqadaqaaiaadQfacqGHsisldaWcaaqaaiabec8aWbqaaiaaik daaaGabmysayaajaaacaGLOaGaayzkaaGaaGypaiGacohacaGGPbGa aiOBaiaadQfacaaIUaaaaa@580A@

Укажем, как операторы из алгебры A, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaISaaaaa@43FE@  определяемые суммами сходящихся рядов, действуют в пространстве E 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaDa aaleaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab =1risbqaaiaaikdaaaGccaaIUaaaaa@4534@

Замечание 2.4. Из сходимости (по норме) последовательности H n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaWGUbaabeaakiaaiYcaaaa@3AB3@   n, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xf H4KaaGilaaaa@45E0@  с членами из алгебры A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqaaa@4348@  к оператору HA MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha Xheaaa@4599@  следует ее поточечная сходимость (в иной терминологии сильная сходимость).

Действительно, сходимость по норме означает, что

H n H 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaaca WGibWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamisaaGaayzcSlaa wQa7aiabgkziUkaaicdacaaIUaaaaa@423D@  (2.54)

Для любого фиксированного w E 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiabgI GiolaadweadaqhaaWcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgD Obcv39gaiuaacqWFDeIuaeaacaaIYaaaaaaa@46F2@  получаем

H n wHw = H n H w H n H w . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaaca WGibWaaSbaaSqaaiaad6gaaeqaaOGaam4DaiabgkHiTiaadIeacaWG 3baacaGLjWUaayPcSdGaaGypamaafmaabaWaaeWaaeaacaWGibWaaS baaSqaaiaad6gaaeqaaOGaeyOeI0IaamisaaGaayjkaiaawMcaaiaa dEhaaiaawMa7caGLkWoacqGHKjYOdaqbdaqaaiaadIeadaWgaaWcba GaamOBaaqabaGccqGHsislcaWGibaacaGLjWUaayPcSdGaaGjcVpaa fmaabaGaam4DaaGaayzcSlaawQa7aiaai6caaaa@59F1@  (2.55)

В силу (2.54), (2.55) H n wHw 0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaaca WGibWaaSbaaSqaaiaad6gaaeqaaOGaam4DaiabgkHiTiaadIeacaWG 3baacaGLjWUaayPcSdGaeyOKH4QaaGimaiaaiYcaaaa@4433@  т. е. последовательность H n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WGibWaaSbaaSqaaiaad6gaaeqaaaGccaGL7bGaayzFaaaaaa@3C2E@  сходится поточечно.

Пусть ряд

k=1 Z k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGRbGaaGypaiaaigdaaeaacqGHEisPa0GaeyyeIuoakiaadQfa daWgaaWcbaGaam4Aaaqabaaaaa@4032@  (2.56)

с членами из алгебры A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqaaa@4348@  сходится и его сумма S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaaaa@38DF@  принадлежит A. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaIUaaaaa@4400@  Это означает, по определению, что последовательность частичных сумм S n = k=1 n Z k , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGUbaabeaakiaai2dadaaeWbqabSqaaiaadUgacaaI9aGa aGymaaqaaiaad6gaa0GaeyyeIuoakiaadQfadaWgaaWcbaGaam4Aaa qabaGccaaISaaaaa@433C@   n, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xf H4KaaGilaaaa@45E0@  ряда (2.56) сходится к S, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaaiY caaaa@3995@  т. е. S n S 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaaca WGtbWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0Iaam4uaaGaayzcSlaa wQa7aiabgkziUkaaicdacaaIUaaaaa@4253@  Следовательно, в силу замечания 2.4 имеем для любого фиксированного w E 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiabgI GiolaadweadaqhaaWcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgD Obcv39gaiuaacqWFDeIuaeaacaaIYaaaaaaa@46F2@  

S n wSw 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaaca WGtbWaaSbaaSqaaiaad6gaaeqaaOGaam4DaiabgkHiTiaadofacaWG 3baacaGLjWUaayPcSdGaeyOKH4QaaGimaiaai6caaaa@444B@  (2.57)

Заметим, что

S n w=( k=1 n Z k )w= k=1 n Z k w MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGUbaabeaakiaadEhacaaI9aGaaGikamaaqahabeWcbaGa am4Aaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOGaamOwamaaBa aaleaacaWGRbaabeaakiaaiMcacaWG3bGaaGypamaaqahabeWcbaGa am4Aaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOWaaeWaaeaaca WGAbWaaSbaaSqaaiaadUgaaeqaaOGaam4DaaGaayjkaiaawMcaaaaa @50E6@

является n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@38FA@  -ой частичной суммой ряда

k=1 Z k w . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGRbGaaGypaiaaigdaaeaacqGHEisPa0GaeyyeIuoakmaabmaa baGaamOwamaaBaaaleaacaWGRbaabeaakiaadEhaaiaawIcacaGLPa aacaaIUaaaaa@4379@  (2.58)

Следовательно, в силу (2.57) ряд (2.58) сходится, и его сумма равна Sw: MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadE hacaaI6aaaaa@3A9F@  

Sw= k=1 Z k w . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadE hacaaI9aWaaabCaeqaleaacaWGRbGaaGypaiaaigdaaeaacqGHEisP a0GaeyyeIuoakmaabmaabaGaamOwamaaBaaaleaacaWGRbaabeaaki aadEhaaiaawIcacaGLPaaacaaIUaaaaa@4614@

Пусть, например, HA, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha XhKaaGilaaaa@464F@   H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaaaa@38D4@  фиксирован. Тогда оператор

e H = k=0 H k k! MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamisaaaakiaai2dadaaeWbqabSqaaiaadUgacaaI9aGa aGimaaqaaiabg6HiLcqdcqGHris5aOWaaSaaaeaacaWGibWaaWbaaS qabeaacaWGRbaaaaGcbaGaam4Aaiaaigcaaaaaaa@448A@

действует в пространстве E 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaDa aaleaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab =1risbqaaiaaikdaaaaaaa@4472@  по правилу: для любого w E 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiabgI GiolaadweadaqhaaWcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgD Obcv39gaiuaacqWFDeIuaeaacaaIYaaaaaaa@46F2@  

e H w= k=0 H k w k! . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamisaaaakiaadEhacaaI9aWaaabCaeqaleaacaWGRbGa aGypaiaaicdaaeaacqGHEisPa0GaeyyeIuoakmaalaaabaGaamisam aaCaaaleqabaGaam4AaaaakiaadEhaaeaacaWGRbGaaGyiaaaacaaI Uaaaaa@473A@

Комплексные операторные тригонометрические функции tgZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabE gacaaMi8UaamOwaiaaiYcaaaa@3D0E@   ctgZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabs hacaqGNbGaaGjcVlaadQfaaaa@3D3E@  определяются равенствами

tgZ=sinZ cos 1 Z,ctgZ=cosZ sin 1 Z, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabE gacaaMi8UaamOwaiaai2daciGGZbGaaiyAaiaac6gacaWGAbWaaubi aeqaleqabaGaeyOeI0IaaGymaaGcbaGaci4yaiaac+gacaGGZbaaai aadQfacaaISaGaaGzbVlaabogacaqG0bGaae4zaiaayIW7caWGAbGa aGypaiGacogacaGGVbGaai4CaiaadQfadaqfGaqabSqabeaacqGHsi slcaaIXaaakeaaciGGZbGaaiyAaiaac6gaaaGaamOwaiaaiYcaaaa@58DF@

где cos 1 Z= cosZ 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaubiaeqale qabaGaeyOeI0IaaGymaaGcbaGaci4yaiaac+gacaGGZbaaaiaadQfa caaI9aWaaeWaaeaaciGGJbGaai4BaiaacohacaWGAbaacaGLOaGaay zkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaGilaaaa@464B@   sin 1 Z= sinZ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaubiaeqale qabaGaeyOeI0IaaGymaaGcbaGaci4CaiaacMgacaGGUbaaaiaadQfa caaI9aWaaeWaaeaaciGGZbGaaiyAaiaac6gacaWGAbaacaGLOaGaay zkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaaaa@4595@  - обратные операторы соответственно для операторов cosZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaaGjcVlaadQfacaaISaaaaa@3E00@   sinZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbGaaGjcVlaadQfacaaIUaaaaa@3E02@

Области определения этих функций имеют вид

D tgZ = ZA:cosZ A G ,D ctgZ = ZA:sinZ A G . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaabm aabaGaaeiDaiaabEgacaaMi8UaamOwaaGaayjkaiaawMcaaiaai2da daGadaqaaiaadQfacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGqbaiab=bq8bjaaiQdaciGGJbGaai4BaiaacohacaWG AbGaeyicI4Sae8haXh0aaSbaaSqaaiaadEeaaeqaaaGccaGL7bGaay zFaaGaaGilaiaaywW7caWGebWaaeWaaeaacaqGJbGaaeiDaiaabEga caaMi8UaamOwaaGaayjkaiaawMcaaiaai2dadaGadaqaaiaadQfacq GHiiIZcqWFaeFqcaaI6aGaci4CaiaacMgacaGGUbGaamOwaiabgIGi olab=bq8bnaaBaaaleaacaWGhbaabeaaaOGaay5Eaiaaw2haaiaai6 caaaa@7248@

Покажем, что

D tgZ ,D ctgZ ,D tgZ D ctgZ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaabm aabaGaaeiDaiaabEgacaaMi8UaamOwaaGaayjkaiaawMcaaiabgcMi 5kabgwGiglaaiYcacaaMf8UaamiramaabmaabaGaae4yaiaabshaca qGNbGaaGjcVlaadQfaaiaawIcacaGLPaaacqGHGjsUcqGHfiIXcaaI SaGaaGzbVlaadseadaqadaqaaiaabshacaqGNbGaaGjcVlaadQfaai aawIcacaGLPaaacqGHPiYXcaWGebWaaeWaaeaacaqGJbGaaeiDaiaa bEgacaaMi8UaamOwaaGaayjkaiaawMcaaiabgcMi5kabgwGiglaai6 caaaa@64FD@  (2.59)

Пусть

M 1 = α:α π 2 +πm,m , M 2 = α:απm,m . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaaIXaaabeaakiaai2dadaGadaqaaiabeg7aHjabgIGioprr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHiLaaG Ooaiabeg7aHjabgcMi5oaalaaabaGaeqiWdahabaGaaGOmaaaacqGH RaWkcqaHapaCcaWGTbGaaGilaiaad2gacqGHiiIZcqWFKeIwaiaawU hacaGL9baacaaISaGaaGzbVlaad2eadaWgaaWcbaGaaGOmaaqabaGc caaI9aWaaiWaaeaacqaHXoqycqGHiiIZcqWFDeIucaaI6aGaeqySde MaeyiyIKRaeqiWdaNaamyBaiaaiYcacaWGTbGaeyicI4Sae8hjHOfa caGL7bGaayzFaaGaaGOlaaaa@704A@

Заметим, что M 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaaIXaaabeaakiaaiYcaaaa@3A80@   M 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaaIYaaabeaaaaa@39C1@  являются соответственно областями определения скалярных функций tgα, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabE gacaaMi8UaeqySdeMaaGilaaaa@3DCE@   ctgα. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabs hacaqGNbGaeqySdeMaaGOlaaaa@3D25@  Рассмотрим множество

M= M 1 M 2 = α:α π 2 k,k . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaai2 dacaWGnbWaaSbaaSqaaiaaigdaaeqaaOGaeyykICSaamytamaaBaaa leaacaaIYaaabeaakiaai2dadaGadaqaaiabeg7aHjabgIGioprr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHiLaaGOo aiabeg7aHjabgcMi5oaalaaabaGaeqiWdahabaGaaGOmaaaacaWGRb GaaGilaiaadUgacqGHiiIZcqWFKeIwaiaawUhacaGL9baacaaIUaaa aa@5C41@

Лемма 2.2. Справедливы включения

α I ^ D tgZ α M 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMabm ysayaajaGaeyicI4SaamiramaabmaabaGaaeiDaiaabEgacaaMi8Ua amOwaaGaayjkaiaawMcaaiaaywW7cqGHaiIicqaHXoqycqGHiiIZca WGnbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaaaa@4AA5@  (2.60)

α I ^ D ctgZ α M 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMabm ysayaajaGaeyicI4SaamiramaabmaabaGaae4yaiaabshacaqGNbGa aGjcVlaadQfaaiaawIcacaGLPaaacaaMf8UaeyiaIiIaeqySdeMaey icI4SaamytamaaBaaaleaacaaIYaaabeaakiaaiYcaaaa@4B8C@  (2.61)

α I ^ D tgZ D ctgZ αM. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMabm ysayaajaGaeyicI4SaamiramaabmaabaGaaeiDaiaabEgacaaMi8Ua amOwaaGaayjkaiaawMcaaiabgMIihlaadseadaqadaqaaiaabogaca qG0bGaae4zaiaayIW7caWGAbaacaGLOaGaayzkaaGaaGzbVlabgcGi Iiabeg7aHjabgIGiolaad2eacaaIUaaaaa@52DD@  (2.62)

Доказательство. Из соотношения (2.49) следует, что при любом α M 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI4SaamytamaaBaaaleaacaaIXaaabeaaaaa@3CE3@  существует

cos 1 (α I ^ )= 1 cosα I ^ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaubiaeqale qabaGaeyOeI0IaaGymaaGcbaGaci4yaiaac+gacaGGZbaaaiaaiIca cqaHXoqyceWGjbGbaKaacaaIPaGaaGypamaalaaabaGaaGymaaqaai GacogacaGGVbGaai4Caiabeg7aHbaaceWGjbGbaKaacaaISaaaaa@484F@  (2.63)

следовательно, определен tg(α I ^ )=sin(α I ^ ) cos 1 (α I ^ ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabE gacaaMi8UaaGikaiabeg7aHjqadMeagaqcaiaaiMcacaaI9aGaci4C aiaacMgacaGGUbGaaGikaiabeg7aHjqadMeagaqcaiaaiMcadaqfGa qabSqabeaacqGHsislcaaIXaaakeaaciGGJbGaai4BaiaacohaaaGa aGikaiabeg7aHjqadMeagaqcaiaaiMcacaaIUaaaaa@5044@  Включение (2.60) доказано.

Далее, из соотношения (2.48) видно, что при любом α M 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI4SaamytamaaBaaaleaacaaIYaaabeaaaaa@3CE4@  существует

sin 1 (α I ^ )= 1 sinα I ^ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaubiaeqale qabaGaeyOeI0IaaGymaaGcbaGaci4CaiaacMgacaGGUbaaaiaaiIca cqaHXoqyceWGjbGbaKaacaaIPaGaaGypamaalaaabaGaaGymaaqaai GacohacaGGPbGaaiOBaiabeg7aHbaaceWGjbGbaKaacaaISaaaaa@4859@  (2.64)

значит, определен ctg(α I ^ )=cos(α I ^ ) sin 1 (α I ^ ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabs hacaqGNbGaaGjcVlaaiIcacqaHXoqyceWGjbGbaKaacaaIPaGaaGyp aiGacogacaGGVbGaai4CaiaaiIcacqaHXoqyceWGjbGbaKaacaaIPa WaaubiaeqaleqabaGaeyOeI0IaaGymaaGcbaGaci4CaiaacMgacaGG UbaaaiaaiIcacqaHXoqyceWGjbGbaKaacaaIPaGaaGOlaaaa@512A@  Включение (2.61) установлено.

Включение (2.62) следует из (2.60), (2.61).

В силу леммы 2.2 справедливы соотношения (2.59).

В силу (2.48), (2.49), (2.63), (2.64) имеем

tg(α I ^ )= I ^ tgαα M 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabE gacaaMi8UaaGikaiabeg7aHjqadMeagaqcaiaaiMcacaaI9aGabmys ayaajaGaaGjcVlaabshacaqGNbGaaGjcVlabeg7aHjaaywW7cqGHai IicqaHXoqycqGHiiIZcaWGnbWaaSbaaSqaaiaaigdaaeqaaOGaaGil aaaa@4F9C@

ctg(α I ^ )= I ^ ctgαα M 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabs hacaqGNbGaaGjcVlaaiIcacqaHXoqyceWGjbGbaKaacaaIPaGaaGyp aiqadMeagaqcaiaayIW7caqGJbGaaeiDaiaabEgacaaMi8UaeqySde MaaGzbVlabgcGiIiabeg7aHjabgIGiolaad2eadaWgaaWcbaGaaGOm aaqabaGccaaIUaaaaa@516B@

Для любого ZD tgZ D ctgZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI GiolaadseadaqadaqaaiaabshacaqGNbGaaGjcVlaadQfaaiaawIca caGLPaaacqGHPiYXcaWGebWaaeWaaeaacaqGJbGaaeiDaiaabEgaca aMi8UaamOwaaGaayjkaiaawMcaaaaa@4A34@  справедливо тождество

tgZctgZ= I ^ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabE gacaaMi8UaamOwaiaayIW7caqGJbGaaeiDaiaabEgacaaMi8UaamOw aiaai2daceWGjbGbaKaacaaIUaaaaa@457D@  (2.65)

Действительно, используя сочетательное свойство Z 1 Z 2 Z 3 = Z 1 Z 2 Z 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaaIXaaabeaakmaabmaabaGaamOwamaaBaaaleaacaaIYaaa beaakiaadQfadaWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPaaaca aI9aWaaeWaaeaacaWGAbWaaSbaaSqaaiaaigdaaeqaaOGaamOwamaa BaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiaadQfadaWgaaWcba GaaG4maaqabaaaaa@46BC@  алгебры A, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaISaaaaa@43FE@  получаем

tgZctgZ=(sinZ cos 1 Z)(cosZ sin 1 Z)=sinZ( cos 1 Z(cosZ sin 1 Z)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabE gacaaMi8UaamOwaiaayIW7caqGJbGaaeiDaiaabEgacaaMi8UaamOw aiaai2dacaaIOaGaci4CaiaacMgacaGGUbGaamOwamaavacabeWcbe qaaiabgkHiTiaaigdaaOqaaiGacogacaGGVbGaai4CaaaacaWGAbGa aGykaiaaiIcaciGGJbGaai4BaiaacohacaWGAbWaaubiaeqaleqaba GaeyOeI0IaaGymaaGcbaGaci4CaiaacMgacaGGUbaaaiaadQfacaaI PaGaaGypaiGacohacaGGPbGaaiOBaiaadQfacaaIOaWaaubiaeqale qabaGaeyOeI0IaaGymaaGcbaGaci4yaiaac+gacaGGZbaaaiaadQfa caaIOaGaci4yaiaac+gacaGGZbGaamOwamaavacabeWcbeqaaiabgk HiTiaaigdaaOqaaiGacohacaGGPbGaaiOBaaaacaWGAbGaaGykaiaa iMcaaaa@6FD2@

=sinZ(( cos 1 ZcosZ) sin 1 Z)=sinZ( I ^ sin 1 Z)=sinZ sin 1 Z= I ^ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiGaco hacaGGPbGaaiOBaiaadQfacaaIOaGaaGikamaavacabeWcbeqaaiab gkHiTiaaigdaaOqaaiGacogacaGGVbGaai4CaaaacaWGAbGaci4yai aac+gacaGGZbGaamOwaiaaiMcadaqfGaqabSqabeaacqGHsislcaaI XaaakeaaciGGZbGaaiyAaiaac6gaaaGaamOwaiaaiMcacaaI9aGaci 4CaiaacMgacaGGUbGaamOwaiaaiIcaceWGjbGbaKaadaqfGaqabSqa beaacqGHsislcaaIXaaakeaaciGGZbGaaiyAaiaac6gaaaGaamOwai aaiMcacaaI9aGaci4CaiaacMgacaGGUbGaamOwamaavacabeWcbeqa aiabgkHiTiaaigdaaOqaaiGacohacaGGPbGaaiOBaaaacaWGAbGaaG ypaiqadMeagaqcaiaai6caaaa@6760@

Для комплексных операторов справедливо следующее утверждение, аналогичное лемме из [10, c. 141]:

Лемма 2.3. Пусть

H 1 , H 2 A G . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaaIXaaabeaakiaaiYcacaWGibWaaSbaaSqaaiaaikdaaeqa aOGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiu aacqWFaeFqdaWgaaWcbaGaam4raaqabaGccaaIUaaaaa@4AB9@  (2.66)

Тогда

H 1 H 2 A G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaaIXaaabeaakiaadIeadaWgaaWcbaGaaGOmaaqabaGccqGH iiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=b q8bnaaBaaaleaacaWGhbaabeaaaaa@4941@  (2.67)

и справедливо равенство

H 1 H 2 1 = H 2 1 H 1 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGibWaaSbaaSqaaiaaigdaaeqaaOGaamisamaaBaaaleaacaaIYaaa beaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaki aai2dacaWGibWaa0baaSqaaiaaikdaaeaacqGHsislcaaIXaaaaOGa amisamaaDaaaleaacaaIXaaabaGaeyOeI0IaaGymaaaakiaai6caaa a@473A@  (2.68)

Доказательство. Покажем, что уравнение

H 1 H 2 w=h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGibWaaSbaaSqaaiaaigdaaeqaaOGaamisamaaBaaaleaacaaIYaaa beaaaOGaayjkaiaawMcaaiaadEhacaaI9aGaamiAaaaa@3FBD@  (2.69)

при любом фиксированном h E 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiabgI GiolaadweadaqhaaWcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgD Obcv39gaiuaacqWFDeIuaeaacaaIYaaaaaaa@46E3@  имеет единственное решение w E 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiabgI GiolaadweadaqhaaWcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgD Obcv39gaiuaacqWFDeIuaeaacaaIYaaaaOGaaGOlaaaa@47B4@  Это будет означать, что R H 1 H 2 = E 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaabm aabaGaamisamaaBaaaleaacaaIXaaabeaakiaadIeadaWgaaWcbaGa aGOmaaqabaaakiaawIcacaGLPaaacaaI9aGaamyramaaDaaaleaatu uDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risbqa aiaaikdaaaaaaa@4B16@  и существует H 1 H 2 1 : E 2 E 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGibWaaSbaaSqaaiaaigdaaeqaaOGaamisamaaBaaaleaacaaIYaaa beaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaki aaiQdacaWGfbWaa0baaSqaamrr1ngBPrwtHrhAYaqeguuDJXwAKbst HrhAGq1DVbacfaGae8xhHifabaGaaGOmaaaakiabgkziUkaadweada qhaaWcbaGae8xhHifabaGaaGOmaaaakiaai6caaaa@519C@

Применяя к обеим частям уравнения (2.69) оператор H 1 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaDa aaleaacaaIXaaabaGaeyOeI0IaaGymaaaakiaaiYcaaaa@3C24@  получаем

H 2 w= H 1 1 h. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaaIYaaabeaakiaadEhacaaI9aGaamisamaaDaaaleaacaaI XaaabaGaeyOeI0IaaGymaaaakiaadIgacaaIUaaaaa@4095@  (2.70)

Применяя к обеим частям уравнения (2.70) оператор H 2 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaDa aaleaacaaIYaaabaGaeyOeI0IaaGymaaaakiaaiYcaaaa@3C25@  имеем

w= H 2 1 H 1 1 h, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Daiaai2 dadaqadaqaaiaadIeadaqhaaWcbaGaaGOmaaqaaiabgkHiTiaaigda aaGccaWGibWaa0baaSqaaiaaigdaaeaacqGHsislcaaIXaaaaaGcca GLOaGaayzkaaGaamiAaiaaiYcaaaa@43C5@  (2.71)

т. е. уравнение (2.69) при любом фиксированном h E 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiabgI GiolaadweadaqhaaWcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgD Obcv39gaiuaacqWFDeIuaeaacaaIYaaaaaaa@46E3@  имеет единственное решение (2.71), принадлежащее пространству E 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaDa aaleaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab =1risbqaaiaaikdaaaGccaaIUaaaaa@4534@

Из равенства (2.71) следует формула (2.68). В силу (2.66) H 2 1 , H 1 1 A, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaDa aaleaacaaIYaaabaGaeyOeI0IaaGymaaaakiaaiYcacaWGibWaa0ba aSqaaiaaigdaaeaacqGHsislcaaIXaaaaOGaeyicI48efv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaISaaaaa@4D07@  следовательно, в силу (2.68) оператор H 1 H 2 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGibWaaSbaaSqaaiaaigdaaeqaaOGaamisamaaBaaaleaacaaIYaaa beaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaaa a@3EE2@  принадлежит алгебре A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqaaa@4348@  как произведение двух операторов из этой алгебры. Справедливость включения (2.67) установлена.

Применяя лемму 2.3, для любого ZD tgZ D ctgZ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI GiolaadseadaqadaqaaiaabshacaqGNbGaaGjcVlaadQfaaiaawIca caGLPaaacqGHPiYXcaWGebWaaeWaaeaacaqGJbGaaeiDaiaabEgaca aMi8UaamOwaaGaayjkaiaawMcaaiaaiYcaaaa@4AEA@  получаем

ctg 1 Z= cosZ sin 1 Z 1 =sinZ cos 1 Z=tgZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabs hacaqGNbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaamOwaiaai2da daqadaqaaiGacogacaGGVbGaai4CaiaadQfadaqfGaqabSqabeaacq GHsislcaaIXaaakeaaciGGZbGaaiyAaiaac6gaaaGaamOwaaGaayjk aiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaai2daciGGZb GaaiyAaiaac6gacaWGAbWaaubiaeqaleqabaGaeyOeI0IaaGymaaGc baGaci4yaiaac+gacaGGZbaaaiaadQfacaaI9aGaaeiDaiaabEgaca WGAbGaaGilaaaa@5987@

tg 1 Z= sinZ cos 1 Z 1 =cosZ sin 1 Z=ctgZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabE gadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaaMi8UaamOwaiaai2da daqadaqaaiGacohacaGGPbGaaiOBaiaadQfadaqfGaqabSqabeaacq GHsislcaaIXaaakeaaciGGJbGaai4BaiaacohaaaGaamOwaaGaayjk aiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaai2daciGGJb Gaai4BaiaacohacaWGAbWaaubiaeqaleqabaGaeyOeI0IaaGymaaGc baGaci4CaiaacMgacaGGUbaaaiaadQfacaaI9aGaae4yaiaabshaca qGNbGaamOwaiaaiYcaaaa@5B18@

т. е.

tgZ= ctg 1 Z,ctgZ= tg 1 Z. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabE gacaWGAbGaaGypaiaabogacaqG0bGaae4zamaaCaaaleqabaGaeyOe I0IaaGymaaaakiaadQfacaaISaGaaGzbVlaabogacaqG0bGaae4zai aadQfacaaI9aGaaeiDaiaabEgadaahaaWcbeqaaiabgkHiTiaaigda aaGccaWGAbGaaGOlaaaa@4D1B@  (2.72)

Покажем периодичность функций tgZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabE gacaWGAbGaaGilaaaa@3B7D@   ctgZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabs hacaqGNbGaamOwaiaai6caaaa@3C65@

Теорема 2.6. Любой комплексный оператор T m =πm I ^ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGTbaabeaakiaai2dacqaHapaCcaWGTbGabmysayaajaGa aGilaaaa@3F12@   m, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8hj HOLaaGilaaaa@45FA@   m0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgc Mi5kaaicdacaaISaaaaa@3C30@  является периодом функций tgZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabE gacaWGAbGaaGilaaaa@3B7D@   ctgZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabs hacaqGNbGaamOwaiaai6caaaa@3C65@   

Доказательство. Согласно определению периодической функции нужно показать, что для любого ZD tgZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI GiolaadseadaqadaqaaiaabshacaqGNbGaamOwaaGaayjkaiaawMca aaaa@3F7C@  выполнено

Z+πm I ^ D tgZ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgU caRiabec8aWjaad2gaceWGjbGbaKaacqGHiiIZcaWGebWaaeWaaeaa caqG0bGaae4zaiaadQfaaiaawIcacaGLPaaacaaISaaaaa@44A1@  (2.73)

tg(Z+πm I ^ )=tgZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabE gacaaIOaGaamOwaiabgUcaRiabec8aWjaad2gaceWGjbGbaKaacaaI PaGaaGypaiaabshacaqGNbGaamOwaiaaiYcaaaa@44D8@  (2.74)

а для любого ZD ctgZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI GiolaadseadaqadaqaaiaabogacaqG0bGaae4zaiaadQfaaiaawIca caGLPaaaaaa@4062@  выполнено

Z+πm I ^ D ctgZ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgU caRiabec8aWjaad2gaceWGjbGbaKaacqGHiiIZcaWGebWaaeWaaeaa caqGJbGaaeiDaiaabEgacaWGAbaacaGLOaGaayzkaaGaaGilaaaa@4587@  (2.75)

ctg(Z+πm I ^ )=ctgZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabs hacaqGNbGaaGikaiaadQfacqGHRaWkcqaHapaCcaWGTbGabmysayaa jaGaaGykaiaai2dacaqGJbGaaeiDaiaabEgacaWGAbGaaGOlaaaa@46A6@  (2.76)

Любой оператор ZA MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha Xheaaa@45AB@  коммутирует с любым оператором πm I ^ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam yBaiqadMeagaqcaiaaiYcaaaa@3C4A@   m, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8hj HOLaaGilaaaa@45FA@  следовательно, в силу (2.33), (2.34)

sin(Z+πm I ^ )=sinZcos(πm I ^ )+cosZsin(πm I ^ ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbGaaGikaiaadQfacqGHRaWkcqaHapaCcaWGTbGabmysayaa jaGaaGykaiaai2daciGGZbGaaiyAaiaac6gacaWGAbGaae4yaiaab+ gacaqGZbGaaGikaiabec8aWjaad2gaceWGjbGbaKaacaaIPaGaey4k aSIaci4yaiaac+gacaGGZbGaamOwaiGacohacaGGPbGaaiOBaiaaiI cacqaHapaCcaWGTbGabmysayaajaGaaGykaiaaiYcaaaa@5ADF@  (2.77)

cos(Z+πm I ^ )=cosZcos(πm I ^ )sinZsin(πm I ^ ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaaGikaiaadQfacqGHRaWkcqaHapaCcaWGTbGabmysayaa jaGaaGykaiaai2daciGGJbGaai4BaiaacohacaWGAbGaci4yaiaac+ gacaGGZbGaaGikaiabec8aWjaad2gaceWGjbGbaKaacaaIPaGaeyOe I0Iaci4CaiaacMgacaGGUbGaamOwaiGacohacaGGPbGaaiOBaiaaiI cacqaHapaCcaWGTbGabmysayaajaGaaGykaiaai6caaaa@5AF1@  (2.78)

В силу (2.48), (2.49)

sin(πm I ^ )= O ^ ,cos(πm I ^ )=( 1) m I ^ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbGaaGikaiabec8aWjaad2gaceWGjbGbaKaacaaIPaGaaGyp aiqad+eagaqcaiaaiYcacaaMf8Uaae4yaiaab+gacaqGZbGaaGikai abec8aWjaad2gaceWGjbGbaKaacaaIPaGaaGypaiaaiIcacqGHsisl caaIXaGaaGykamaaCaaaleqabaGaamyBaaaakiqadMeagaqcaiaab6 caaaa@520C@  (2.79)

В силу (2.77)-(2.79)

sin(Z+πm I ^ )=( 1) m sinZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbGaaGikaiaadQfacqGHRaWkcqaHapaCcaWGTbGabmysayaa jaGaaGykaiaai2dacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbe qaaiaad2gaaaGcciGGZbGaaiyAaiaac6gacaWGAbGaaGilaaaa@4AF7@  (2.80)

cos(Z+πm I ^ )=( 1) m cosZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaaGikaiaadQfacqGHRaWkcqaHapaCcaWGTbGabmysayaa jaGaaGykaiaai2dacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbe qaaiaad2gaaaGcciGGJbGaai4BaiaacohacaWGAbGaaGOlaaaa@4AF4@  (2.81)

Пусть ZD tgZ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI GiolaadseadaqadaqaaiaabshacaqGNbGaamOwaaGaayjkaiaawMca aiaai6caaaa@4034@  Тогда, в силу (2.81) существует

cos 1 (Z+πm I ^ )=( 1) m cos 1 Z, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaubiaeqale qabaGaeyOeI0IaaGymaaGcbaGaci4yaiaac+gacaGGZbaaaiaaiIca caWGAbGaey4kaSIaeqiWdaNaamyBaiqadMeagaqcaiaaiMcacaaI9a GaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacqGHsislcaWG TbaaaOWaaubiaeqaleqabaGaeyOeI0IaaGymaaGcbaGaci4yaiaac+ gacaGGZbaaaiaadQfacaaISaaaaa@4FD5@  (2.82)

следовательно, определен

tg(Z+πm I ^ )=sin(Z+πm I ^ ) cos 1 (Z+πm I ^ ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabE gacaaIOaGaamOwaiabgUcaRiabec8aWjaad2gaceWGjbGbaKaacaaI PaGaaGypaiGacohacaGGPbGaaiOBaiaaiIcacaWGAbGaey4kaSIaeq iWdaNaamyBaiqadMeagaqcaiaaiMcadaqfGaqabSqabeaacqGHsisl caaIXaaakeaaciGGJbGaai4BaiaacohaaaGaaGikaiaadQfacqGHRa WkcqaHapaCcaWGTbGabmysayaajaGaaGykaiaaiYcaaaa@5724@

т. е. справедливо включение (2.73). В силу (2.80), (2.82)

tg(Z+πm I ^ )=( 1) m sinZ (1) m cos 1 Z=sinZ cos 1 Z=tgZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabE gacaaIOaGaamOwaiabgUcaRiabec8aWjaad2gaceWGjbGbaKaacaaI PaGaaGypaiaaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqabaGaam yBaaaakiGacohacaGGPbGaaiOBaiaadQfacaaMi8UaaGikaiabgkHi TiaaigdacaaIPaWaaWbaaSqabeaacqGHsislcaWGTbaaaOWaaubiae qaleqabaGaeyOeI0IaaGymaaGcbaGaci4yaiaac+gacaGGZbaaaiaa dQfacaaI9aGaci4CaiaacMgacaGGUbGaamOwamaavacabeWcbeqaai abgkHiTiaaigdaaOqaaiGacogacaGGVbGaai4CaaaacaWGAbGaaGyp aiaabshacaqGNbGaamOwaiaai6caaaa@641A@

Равенство (2.74) доказано. Пусть ZD ctgZ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI GiolaadseadaqadaqaaiaabogacaqG0bGaae4zaiaadQfaaiaawIca caGLPaaacaaIUaaaaa@411A@  Тогда, в силу (2.80) существует

sin 1 (Z+πm I ^ )=( 1) m sin 1 Z, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaubiaeqale qabaGaeyOeI0IaaGymaaGcbaGaci4CaiaacMgacaGGUbaaaiaaiIca caWGAbGaey4kaSIaeqiWdaNaamyBaiqadMeagaqcaiaaiMcacaaI9a GaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacqGHsislcaWG TbaaaOWaaubiaeqaleqabaGaeyOeI0IaaGymaaGcbaGaci4CaiaacM gacaGGUbaaaiaadQfacaaISaaaaa@4FDF@  (2.83)

значит, определен ctg(Z+πm I ^ )=cos(Z+πm I ^ ) sin 1 (Z+πm I ^ ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabs hacaqGNbGaaGikaiaadQfacqGHRaWkcqaHapaCcaWGTbGabmysayaa jaGaaGykaiaai2daciGGJbGaai4BaiaacohacaaIOaGaamOwaiabgU caRiabec8aWjaad2gaceWGjbGbaKaacaaIPaWaaubiaeqaleqabaGa eyOeI0IaaGymaaGcbaGaci4CaiaacMgacaGGUbaaaiaaiIcacaWGAb Gaey4kaSIaeqiWdaNaamyBaiqadMeagaqcaiaaiMcacaaISaaaaa@580A@  т. е. справедливо включение (2.75). Из соотношений (2.81), (2.83) следует равенство (2.76).

В качестве основного периода функций tgZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabE gacaWGAbGaaGilaaaa@3B7D@   ctgZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabs hacaqGNbGaamOwaaaa@3BAD@  берется оператор T 1 =π I ^ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaakiaai2dacqaHapaCceWGjbGbaKaacaaIUaaa aa@3DEB@

Покажем, что для функций tgZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabE gacaWGAbGaaGilaaaa@3B7D@   ctgZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabs hacaqGNbGaamOwaaaa@3BAD@  верны стандартные формулы приведения.

Теорема 2.7. Для любого ZD tgZ D ctgZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI GiolaadseadaqadaqaaiaabshacaqGNbGaaGjcVlaadQfaaiaawIca caGLPaaacqGHPiYXcaWGebWaaeWaaeaacaqGJbGaaeiDaiaabEgaca aMi8UaamOwaaGaayjkaiaawMcaaaaa@4A34@  справедливы равенства

tg Z+ π 2 I ^ =ctgZ,ctg Z+ π 2 I ^ =tgZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaadE gadaqadaqaaiaadQfacqGHRaWkdaWcaaqaaiabec8aWbqaaiaaikda aaGabmysayaajaaacaGLOaGaayzkaaGaaGypaiabgkHiTiaabogaca qG0bGaae4zaiaayIW7caWGAbGaaGilaiaaywW7caqGJbGaaeiDaiaa bEgacaaMi8+aaeWaaeaacaWGAbGaey4kaSYaaSaaaeaacqaHapaCae aacaaIYaaaaiqadMeagaqcaaGaayjkaiaawMcaaiaai2dacqGHsisl caqG0bGaae4zaiaadQfacaaIUaaaaa@5A01@  (2.84)

Доказательство. В силу (2.45) существуют

sin 1 Z+ π 2 I ^ = cos 1 Z, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaacaWG AbGaey4kaSYaaSaaaeaacqaHapaCaeaacaaIYaaaaiqadMeagaqcaa GaayjkaiaawMcaaiaai2dadaqfGaqabSqabeaacqGHsislcaaIXaaa keaaciGGJbGaai4BaiaacohaaaGaamOwaiaaiYcaaaa@4A94@  (2.85)

cos 1 Z+ π 2 I ^ = sin 1 Z. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaubiaeqale qabaGaeyOeI0IaaGymaaGcbaGaci4yaiaac+gacaGGZbaaamaabmaa baGaamOwaiabgUcaRmaalaaabaGaeqiWdahabaGaaGOmaaaaceWGjb GbaKaaaiaawIcacaGLPaaacaaI9aGaeyOeI0YaaubiaeqaleqabaGa eyOeI0IaaGymaaGcbaGaci4CaiaacMgacaGGUbaaaiaadQfacaaIUa aaaa@4BA4@  (2.86)

Из соотношений (2.45), (2.85), (2.86) следуют формулы (2.84).

Комплексные операторные тригонометрические функции secZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4Caiaabw gacaqGJbGaamOwaiaaiYcaaaa@3C60@   cosecZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaab+ gacaqGZbGaaeyzaiaabogacaWGAbaaaa@3D82@  определяются равенствами

secZ= cos 1 Z,cosecZ= sin 1 Z. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4Caiaabw gacaqGJbGaamOwaiaai2dadaqfGaqabSqabeaacqGHsislcaaIXaaa keaaciGGJbGaai4BaiaacohaaaGaamOwaiaaiYcacaaMf8Uaae4yai aab+gacaqGZbGaaeyzaiaabogacaWGAbGaaGypamaavacabeWcbeqa aiabgkHiTiaaigdaaOqaaiGacohacaGGPbGaaiOBaaaacaWGAbGaaG Olaaaa@510E@

Для этих функций

D secZ = ZA:cosZ A G ,D cosecZ = ZA:sinZ A G . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaabm aabaGaae4CaiaabwgacaqGJbGaamOwaaGaayjkaiaawMcaaiaai2da daGadaqaaiaadQfacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGqbaiab=bq8bjaaiQdaciGGJbGaai4BaiaacohacaWG AbGaeyicI4Sae8haXh0aaSbaaSqaaiaadEeaaeqaaaGccaGL7bGaay zFaaGaaGilaiaaysW7caaMe8UaaGjcVlaadseadaqadaqaaiaaboga caqGVbGaae4CaiaabwgacaqGJbGaamOwaaGaayjkaiaawMcaaiaai2 dadaGadaqaaiaadQfacqGHiiIZcqWFaeFqcaaI6aGaci4CaiaacMga caGGUbGaamOwaiabgIGiolab=bq8bnaaBaaaleaacaWGhbaabeaaaO Gaay5Eaiaaw2haaiaai6caaaa@74FB@

Таким образом, D secZ =D tgZ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaabm aabaGaae4CaiaabwgacaqGJbGaamOwaaGaayjkaiaawMcaaiaai2da caWGebWaaeWaaeaacaqG0bGaae4zaiaadQfaaiaawIcacaGLPaaaca aISaaaaa@448B@   D cosecZ =D ctgZ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaabm aabaGaae4yaiaab+gacaqGZbGaaeyzaiaabogacaWGAbaacaGLOaGa ayzkaaGaaGypaiaadseadaqadaqaaiaabogacaqG0bGaae4zaiaadQ faaiaawIcacaGLPaaacaaIUaaaaa@474B@  Следовательно, в силу леммы 2.2

α I ^ D secZ α M 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMabm ysayaajaGaeyicI4SaamiramaabmaabaGaae4CaiaabwgacaqGJbGa amOwaaGaayjkaiaawMcaaiaaywW7cqGHaiIicqaHXoqycqGHiiIZca WGnbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaaaa@49F7@

α I ^ D cosecZ α M 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMabm ysayaajaGaeyicI4SaamiramaabmaabaGaae4yaiaab+gacaqGZbGa aeyzaiaabogacaWGAbaacaGLOaGaayzkaaGaaGzbVlabgcGiIiabeg 7aHjabgIGiolaad2eadaWgaaWcbaGaaGOmaaqabaGccaaISaaaaa@4BD0@

α I ^ D secZ D cosecZ αM, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMabm ysayaajaGaeyicI4SaamiramaabmaabaGaae4CaiaabwgacaqGJbGa amOwaaGaayjkaiaawMcaaiabgMIihlaadseadaqadaqaaiaabogaca qGVbGaae4CaiaabwgacaqGJbGaamOwaaGaayjkaiaawMcaaiaaywW7 cqGHaiIicqaHXoqycqGHiiIZcaWGnbGaaGilaaaa@5271@

и для таких значений аргумента получаем в силу (2.63), (2.64)

sec(α I ^ )= I ^ secα,cosec(α I ^ )= I ^ cosecα. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4Caiaabw gacaqGJbGaaGjcVlaaiIcacqaHXoqyceWGjbGbaKaacaaIPaGaaGyp aiqadMeagaqcaiaayIW7caqGZbGaaeyzaiaabogacaaMi8UaeqySde MaaGilaiaaywW7caqGJbGaae4BaiaabohacaqGLbGaae4yaiaayIW7 caaIOaGaeqySdeMabmysayaajaGaaGykaiaai2daceWGjbGbaKaaca aMi8Uaae4yaiaab+gacaqGZbGaaeyzaiaabogacaaMi8UaeqySdeMa aGOlaaaa@6175@

Заметим, что

sec O ^ = I ^ , O ^ D cosecZ ,sec Z =secZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4Caiaabw gacaqGJbGaaGjcVlqad+eagaqcaiaai2daceWGjbGbaKaacaaISaGa aGzbVlqad+eagaqcaiabgMGiplaadseadaqadaqaaiaabogacaqGVb Gaae4CaiaabwgacaqGJbGaamOwaaGaayjkaiaawMcaaiaaiYcacaaM f8Uaae4CaiaabwgacaqGJbWaaeWaaeaacqGHsislcaWGAbaacaGLOa GaayzkaaGaaGypaiaabohacaqGLbGaae4yaiaayIW7caWGAbGaaGil aaaa@5A6E@

cosec Z =cosecZ,cosZsecZ= I ^ ,sinZcosecZ= I ^ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaab+ gacaqGZbGaaeyzaiaabogacaaMi8+aaeWaaeaacqGHsislcaWGAbaa caGLOaGaayzkaaGaaGypaiabgkHiTiaabogacaqGVbGaae4Caiaabw gacaqGJbGaaGjcVlaadQfacaaISaGaaGzbVlaabogacaqGVbGaae4C aiaadQfacaaMi8Uaae4CaiaabwgacaqGJbGaamOwaiaai2daceWGjb GbaKaacaaISaGaaGzbVlGacohacaGGPbGaaiOBaiaadQfacaaMi8Ua ae4yaiaab+gacaqGZbGaaeyzaiaabogacaWGAbGaaGjcVlaai2dace WGjbGbaKaacaaIUaaaaa@6808@

Для любого ZD secZ D cosecZ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI GiolaadseadaqadaqaaiaabohacaqGLbGaae4yaiaadQfaaiaawIca caGLPaaacqGHPiYXcaWGebWaaeWaaeaacaqGJbGaae4Baiaabohaca qGLbGaae4yaiaadQfaaiaawIcacaGLPaaacaaISaaaaa@4A80@  используя лемму 2.3, получаем равенство

secZcosecZ= sinZcosZ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4Caiaabw gacaqGJbGaamOwaiaayIW7caqGJbGaae4BaiaabohacaqGLbGaae4y aiaadQfacaaI9aWaaeWaaeaaciGGZbGaaiyAaiaac6gacaWGAbGaci 4yaiaac+gacaGGZbGaamOwaaGaayjkaiaawMcaamaaCaaaleqabaGa eyOeI0IaaGymaaaaaaa@4E44@

или в силу формулы sinZcosZ =2 1 sin2Z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbGaamOwaiGacogacaGGVbGaai4CaiaadQfacaaI9aGaaGOm amaaCaaaleqabaGaeyOeI0IaaGymaaaakiGacohacaGGPbGaaiOBai aaikdacaWGAbaaaa@4745@  равенство

secZcosecZ=2 sin 1 2Z. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4Caiaabw gacaqGJbGaamOwaiaayIW7caqGJbGaae4BaiaabohacaqGLbGaae4y aiaadQfacaaI9aGaaGOmamaavacabeWcbeqaaiabgkHiTiaaigdaaO qaaiGacohacaGGPbGaaiOBaaaacaaIYaGaamOwaiaai6caaaa@4B5F@

Функции secZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4Caiaabw gacaqGJbGaamOwaiaaiYcaaaa@3C60@   cosecZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaab+ gacaqGZbGaaeyzaiaabogacaWGAbaaaa@3D82@  периодичны: любой комплексный оператор T m =2πm I ^ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGTbaabeaakiaai2dacaaIYaGaeqiWdaNaamyBaiqadMea gaqcaiaaiYcaaaa@3FCE@   m, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8hj HOLaaGilaaaa@45FA@   m0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgc Mi5kaaicdacaaISaaaaa@3C30@  является периодом этих функций:

sec(Z+2πm I ^ )=secZZD secZ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4Caiaabw gacaqGJbGaaGikaiaadQfacqGHRaWkcaaIYaGaeqiWdaNaamyBaiqa dMeagaqcaiaaiMcacaaI9aGaae4CaiaabwgacaqGJbGaamOwaiaayw W7cqGHaiIicaWGAbGaeyicI4SaamiramaabmaabaGaae4Caiaabwga caqGJbGaaGjcVlaadQfaaiaawIcacaGLPaaacaaISaaaaa@53A1@

cosec(Z+2πm I ^ )=cosecZZD cosecZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaab+ gacaqGZbGaaeyzaiaabogacaaIOaGaamOwaiabgUcaRiaaikdacqaH apaCcaWGTbGabmysayaajaGaaGykaiaai2dacaqGJbGaae4Baiaabo hacaqGLbGaae4yaiaadQfacaaMf8UaeyiaIiIaamOwaiabgIGiolaa dseadaqadaqaaiaabogacaqGVbGaae4CaiaabwgacaqGJbGaaGjcVl aadQfaaiaawIcacaGLPaaaaaa@5873@

(это следует из периодичности функций sinZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbGaamOwaiaaiYcaaaa@3C74@   cosZ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaamOwaiaaiMcacaaIUaaaaa@3D24@  В качестве основного периода функций secZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4Caiaabw gacaqGJbGaamOwaiaaiYcaaaa@3C60@   cosecZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaab+ gacaqGZbGaaeyzaiaabogacaWGAbaaaa@3D82@  берется оператор T 1 =2π I ^ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaakiaai2dacaaIYaGaeqiWdaNabmysayaajaGa aGOlaaaa@3EA7@

Для функций secZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4Caiaabw gacaqGJbGaamOwaiaaiYcaaaa@3C60@   cosecZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaab+ gacaqGZbGaaeyzaiaabogacaWGAbaaaa@3D82@  справедливы формулы приведения

sec(Z+π I ^ )=secZZD secZ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4Caiaabw gacaqGJbGaaGikaiaadQfacqGHRaWkcqaHapaCceWGjbGbaKaacaaI PaGaaGypaiabgkHiTiaabohacaqGLbGaae4yaiaadQfacaaMf8Uaey iaIiIaamOwaiabgIGiolaadseadaqadaqaaiaabohacaqGLbGaae4y aiaayIW7caWGAbaacaGLOaGaayzkaaGaaGilaaaa@52E0@

cosec(Z+π I ^ )=cosecZZD cosecZ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaab+ gacaqGZbGaaeyzaiaabogacaaIOaGaamOwaiabgUcaRiabec8aWjqa dMeagaqcaiaaiMcacaaI9aGaeyOeI0Iaae4yaiaab+gacaqGZbGaae yzaiaabogacaWGAbGaaGzbVlabgcGiIiaadQfacqGHiiIZcaWGebWa aeWaaeaacaqGJbGaae4BaiaabohacaqGLbGaae4yaiaayIW7caWGAb aacaGLOaGaayzkaaGaaGilaaaa@5868@

sec Z+ π 2 I ^ =cosecZ,cosec Z+ π 2 I ^ =secZ,ZD secZ D cosecZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4Caiaabw gacaqGJbWaaeWaaeaacaWGAbGaey4kaSYaaSaaaeaacqaHapaCaeaa caaIYaaaaiqadMeagaqcaaGaayjkaiaawMcaaiaai2dacqGHsislca qGJbGaae4BaiaabohacaqGLbGaae4yaiaadQfacaaISaGaaGzbVlaa bogacaqGVbGaae4CaiaabwgacaqGJbWaaeWaaeaacaWGAbGaey4kaS YaaSaaaeaacqaHapaCaeaacaaIYaaaaiqadMeagaqcaaGaayjkaiaa wMcaaiaai2dacaqGZbGaaeyzaiaabogacaWGAbGaaGilaiaaywW7cq GHaiIicaWGAbGaeyicI4SaamiramaabmaabaGaae4CaiaabwgacaqG JbGaaGjcVlaadQfaaiaawIcacaGLPaaacqGHPiYXcaWGebWaaeWaae aacaqGJbGaae4BaiaabohacaqGLbGaae4yaiaayIW7caWGAbaacaGL OaGaayzkaaaaaa@729F@

(это следует из формул (2.44), (2.45)).

3. Комплексные операторные гиперболические функции

По определению, для любого ZA MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha Xheaaa@45AB@  

shZ= k=0 Z 2k+1 (2k+1)! ,chZ= k=0 Z 2k (2k)! . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabI gacaaMi8UaamOwaiaai2dadaaeWbqabSqaaiaadUgacaaMi8UaaGyp aiaayIW7caaIWaaabaGaeyOhIukaniabggHiLdGccaaMi8+aaSaaae aacaWGAbWaaWbaaSqabeaacaaIYaGaam4AaiabgUcaRiaaigdaaaaa keaacaaIOaGaaGOmaiaadUgacqGHRaWkcaaIXaGaaGykaiaaigcaaa GaaGilaiaaywW7caqGJbGaaeiAaiaayIW7caWGAbGaaGypamaaqaha beWcbaGaam4AaiaayIW7caaI9aGaaGjcVlaaicdaaeaacqGHEisPa0 GaeyyeIuoakiaayIW7daWcaaqaaiaadQfadaahaaWcbeqaaiaaikda caWGRbaaaaGcbaGaaGikaiaaikdacaWGRbGaaGykaiaaigcaaaGaaG Olaaaa@6B3D@  (2.87)

Обоснование корректности определений (101) аналогично случаю функции e Z . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamOwaaaakiaai6caaaa@3ABF@

Заметим, что sh O ^ = O ^ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabI gacaaMi8Uabm4tayaajaGaaGypaiqad+eagaqcaiaaiYcaaaa@3EBE@   ch O ^ = I ^ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabI gacaaMi8Uabm4tayaajaGaaGypaiqadMeagaqcaiaaiYcaaaa@3EA8@  

sh Z =shZ,ch Z =chZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabI gacaaMi8+aaeWaaeaacqGHsislcaWGAbaacaGLOaGaayzkaaGaaGyp aiabgkHiTiaabohacaqGObGaaGjcVlaadQfacaaISaGaaGzbVlaabo gacaqGObWaaeWaaeaacqGHsislcaWGAbaacaGLOaGaayzkaaGaaGyp aiaabogacaqGObGaaGjcVlaadQfacaaIUaaaaa@51FD@  (2.88)

Для любого ZA, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha XhKaaGilaaaa@4661@  используя замечание 2.2, имеем

e Z = m=0 Z m m! = k=0 Z 2k (2k)! + Z 2k+1 (2k+1)! = k=0 Z 2k (2k)! + k=0 Z 2k+1 (2k+1)! =chZ+shZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamOwaaaakiaai2dadaaeWbqabSqaaiaad2gacaaMi8Ua aGypaiaayIW7caaIWaaabaGaeyOhIukaniabggHiLdGccaaMi8+aaS aaaeaacaWGAbWaaWbaaSqabeaacaWGTbaaaaGcbaGaamyBaiaaigca aaGaaGypamaaqahabeWcbaGaam4AaiaayIW7caaI9aGaaGjcVlaaic daaeaacqGHEisPa0GaeyyeIuoakiaayIW7daWadaqaamaalaaabaGa amOwamaaCaaaleqabaGaaGOmaiaadUgaaaaakeaacaaIOaGaaGOmai aadUgacaaIPaGaaGyiaaaacqGHRaWkdaWcaaqaaiaadQfadaahaaWc beqaaiaaikdacaWGRbGaey4kaSIaaGymaaaaaOqaaiaaiIcacaaIYa Gaam4AaiabgUcaRiaaigdacaaIPaGaaGyiaaaaaiaawUfacaGLDbaa caaI9aWaaabCaeqaleaacaWGRbGaaGjcVlaai2dacaaMi8UaaGimaa qaaiabg6HiLcqdcqGHris5aOGaaGjcVpaalaaabaGaamOwamaaCaaa leqabaGaaGOmaiaadUgaaaaakeaacaaIOaGaaGOmaiaadUgacaaIPa GaaGyiaaaacqGHRaWkdaaeWbqabSqaaiaadUgacaaMi8UaaGypaiaa yIW7caaIWaaabaGaeyOhIukaniabggHiLdGccaaMi8+aaSaaaeaaca WGAbWaaWbaaSqabeaacaaIYaGaam4AaiabgUcaRiaaigdaaaaakeaa caaIOaGaaGOmaiaadUgacqGHRaWkcaaIXaGaaGykaiaaigcaaaGaaG ypaiaabogacaqGObGaaGjcVlaadQfacqGHRaWkcaqGZbGaaeiAaiaa yIW7caWGAbGaaGOlaaaa@9AF0@

Получили соотношение

e Z =shZ+chZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamOwaaaakiaai2dacaqGZbGaaeiAaiaayIW7caWGAbGa ey4kaSIaae4yaiaabIgacaaMi8UaamOwaiaai6caaaa@44FA@  (2.89)

В силу (2.88), (2.89)

e Z =shZ+chZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaeyOeI0IaamOwaaaakiaai2dacqGHsislcaqGZbGaaeiA aiaayIW7caWGAbGaey4kaSIaae4yaiaabIgacaaMi8UaamOwaiaai6 caaaa@46D4@  (2.90)

Из соотношений (2.89), (2.90) получаем равенства

shZ= e Z e Z 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabI gacaaMi8UaamOwaiaai2dadaWcaaqaaiaadwgadaahaaWcbeqaaiaa dQfaaaGccqGHsislcaWGLbWaaWbaaSqabeaacqGHsislcaWGAbaaaa GcbaGaaGOmaaaacaaISaaaaa@447B@  (2.91)

chZ= e Z + e Z 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabI gacaaMi8UaamOwaiaai2dadaWcaaqaaiaadwgadaahaaWcbeqaaiaa dQfaaaGccqGHRaWkcaWGLbWaaWbaaSqabeaacqGHsislcaWGAbaaaa GcbaGaaGOmaaaacaaIUaaaaa@4462@  (2.92

Найдем соотношения, связывающие комплексные операторные тригонометрические функции sinZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbGaamOwaiaaiYcaaaa@3C6F@   cosZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaamOwaaaa@3BB9@  и комплексные операторные гиперболические функции shZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabI gacaaMi8UaamOwaiaaiYcaaaa@3D0E@   chZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabI gacaaMi8UaamOwaiaai6caaaa@3D00@

В силу (2.29), (2.30), (2.91), (2.92)

sinZ=Jsh JZ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbGaamOwaiaai2dacqGHsislcaqGkbGaaGjcVlaabohacaqG ObGaaGjcVpaabmaabaGaaeOsaiaadQfaaiaawIcacaGLPaaacaaISa aaaa@472D@  (2.93)

cosZ=ch JZ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaamOwaiaai2dacaqGJbGaaeiAaiaayIW7daqadaqaaiaa bQeacaWGAbaacaGLOaGaayzkaaGaaGOlaaaa@43CF@  (2.94)

Заменяя в равенствах (2.93), (2.94) Z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaaaa@38E6@  на JZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaae OsaiaadQfaaaa@3AA0@  и используя соотношение (0.6), получаем

JshZ=sin JZ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaae OsaiaayIW7caqGZbGaaeiAaiaayIW7caWGAbGaaGypaiGacohacaGG PbGaaiOBamaabmaabaGaeyOeI0IaaeOsaiaadQfaaiaawIcacaGLPa aacaaISaaaaa@481A@  (2.95)

chZ=cos JZ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabI gacaWGAbGaaGypaiGacogacaGGVbGaai4CaiaayIW7daqadaqaaiab gkHiTiaabQeacaWGAbaacaGLOaGaayzkaaGaaGOlaaaa@44BC@  (2.96)

Умножая слева обе части равенства (2.95) на J MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOsaaaa@38D4@  и учитывая соотношение (2.21), имеем

shZ=Jsin JZ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabI gacaaMi8UaamOwaiaai2dacqGHsislcaqGkbGaaGjcVlGacohacaGG PbGaaiOBamaabmaabaGaaeOsaiaadQfaaiaawIcacaGLPaaacaaIUa aaaa@472F@  (2.97)

В силу (2.22) равенство (2.96) принимает вид

chZ=cos JZ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabI gacaWGAbGaaGypaiGacogacaGGVbGaai4CaiaayIW7daqadaqaaiaa bQeacaWGAbaacaGLOaGaayzkaaGaaGOlaaaa@43CF@  (2.98)

Из равенства (2.97) получаем

sin JZ =JshZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbWaaeWaaeaacaqGkbGaamOwaaGaayjkaiaawMcaaiaai2da caqGkbGaaGjcVlaabohacaqGObGaaGjcVlaadQfacaaIUaaaaa@4642@  (2.99)

Формулу (2.98) можно записать в виде

cos JZ =chZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaaGjcVpaabmaabaGaaeOsaiaadQfaaiaawIcacaGLPaaa caaI9aGaae4yaiaabIgacaWGAbGaaGOlaaaa@43CF@  (2.100)

В силу (2.93), (2.94)

sh JZ =JsinZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabI gacaaMi8+aaeWaaeaacaqGkbGaamOwaaGaayjkaiaawMcaaiaai2da caqGkbGaaGjcVlGacohacaGGPbGaaiOBaiaadQfacaaISaaaaa@4640@  (2.101)

ch JZ =cosZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabI gacaaMi8+aaeWaaeaacaqGkbGaamOwaaGaayjkaiaawMcaaiaai2da ciGGJbGaai4BaiaacohacaWGAbGaaGOlaaaa@43CF@  (2.102)

Покажем справедливость основного комплексного операторного гиперболического тождества: для любого ZA MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha Xheaaa@45AB@  

ch 2 Z sh 2 Z= I ^ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabI gadaahaaWcbeqaaiaabkdaaaGccaaMi8UaamOwaiabgkHiTiaaboha caqGObWaaWbaaSqabeaacaqGYaaaaOGaaGjcVlaadQfacaaI9aGabm ysayaajaGaaGOlaaaa@45BB@  (2.103)

Используя соотношения (0.6), (0.7), (2.23), (2.32), (2.97), (2.98), получаем

ch 2 Z sh 2 Z= cos 2 JZ Jsin JZ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabI gadaahaaWcbeqaaiaabkdaaaGccaaMi8UaamOwaiabgkHiTiaaboha caqGObWaaWbaaSqabeaacaqGYaaaaOGaaGjcVlaadQfacaaI9aWaau biaeqaleqabaGaaGOmaaGcbaGaci4yaiaac+gacaGGZbaaamaabmaa baGaaeOsaiaadQfaaiaawIcacaGLPaaacqGHsisldaqadaqaaiabgk HiTiaabQeaciGGZbGaaiyAaiaac6gadaqadaqaaiaabQeacaWGAbaa caGLOaGaayzkaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaa aa@5662@

= cos 2 JZ J 2 sin 2 JZ = cos 2 JZ + sin 2 JZ = I ^ .1ex MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaava cabeWcbeqaaiaaikdaaOqaaiGacogacaGGVbGaai4Caaaadaqadaqa aiaabQeacaWGAbaacaGLOaGaayzkaaGaeyOeI0IaaeOsamaaCaaale qabaGaaeOmaaaakmaavacabeWcbeqaaiaaikdaaOqaaiGacohacaGG PbGaaiOBaaaadaqadaqaaiaabQeacaWGAbaacaGLOaGaayzkaaGaaG ypamaavacabeWcbeqaaiaaikdaaOqaaiGacogacaGGVbGaai4Caaaa daqadaqaaiaabQeacaWGAbaacaGLOaGaayzkaaGaey4kaSYaaubiae qaleqabaGaaGOmaaGcbaGaci4CaiaacMgacaGGUbaaamaabmaabaGa aeOsaiaadQfaaiaawIcacaGLPaaacaaI9aGabmysayaajaGaaGOlai abgkHiTiaaigdacaWGLbGaamiEaaaa@5F6F@

Тождество (2.103) доказано.

Для любых Z 1 , Z 2 A, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaaIXaaabeaakiaaiYcacaWGAbWaaSbaaSqaaiaaikdaaeqa aOGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiu aacqWFaeFqcaaISaaaaa@49D9@  удовлетворяющих условию (2.4), справедливы формулы сложения:

sh Z 1 + Z 2 =sh Z 1 ch Z 2 +ch Z 1 sh Z 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabI gadaqadaqaaiaadQfadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG AbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaaGypaiaabo hacaqGObGaaGjcVlaadQfadaWgaaWcbaGaaGymaaqabaGccaqGJbGa aeiAaiaayIW7caWGAbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaae 4yaiaabIgacaaMi8UaamOwamaaBaaaleaacaaIXaaabeaakiaaboha caqGObGaaGjcVlaadQfadaWgaaWcbaGaaGOmaaqabaGccaaISaaaaa@573D@  (2.104)

ch Z 1 + Z 2 =ch Z 1 ch Z 2 +sh Z 1 sh Z 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabI gadaqadaqaaiaadQfadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG AbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaaGypaiaabo gacaqGObGaaGjcVlaadQfadaWgaaWcbaGaaGymaaqabaGccaqGJbGa aeiAaiaayIW7caWGAbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaae 4CaiaabIgacaaMi8UaamOwamaaBaaaleaacaaIXaaabeaakiaaboha caqGObGaaGjcVlaadQfadaWgaaWcbaGaaGOmaaqabaGccaaIUaaaaa@572F@  (2.105)

Доказательство формул (2.104), (2.105) идентично: с помощью соотношений (2.5), (2.91), (2.92) показывается, что правая часть формулы равна ее левой части.

В силу (2.104), (2.105) справедливы формулы двойного аргумента: для любого ZA MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha Xheaaa@45AB@  

sh2Z=2shZchZ,ch2Z= ch 2 Z+ sh 2 Z. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabI gacaaMi8UaaGOmaiaadQfacaaI9aGaaGOmaiaabohacaqGObGaaGjc VlaadQfacaaMi8Uaae4yaiaabIgacaaMi8UaamOwaiaaiYcacaaMf8 Uaae4yaiaabIgacaaMi8UaaGOmaiaadQfacaaI9aGaae4yaiaabIga daahaaWcbeqaaiaabkdaaaGccaaMi8UaamOwaiabgUcaRiaabohaca qGObWaaWbaaSqabeaacaqGYaaaaOGaaGjcVlaadQfacaaIUaaaaa@5CC6@

Из соотношений (2.88), (2.104), (2.105) следует, что для любых Z 1 , Z 2 A, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaaIXaaabeaakiaaiYcacaWGAbWaaSbaaSqaaiaaikdaaeqa aOGaeyicI4SaamyqaiaaiYcaaaa@3F5E@  удовлетворяющих условию (2.4), справедливы равенства

sh Z 1 Z 2 =sh Z 1 ch Z 2 ch Z 1 sh Z 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabI gadaqadaqaaiaadQfadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG AbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaaGypaiaabo hacaqGObGaaGjcVlaadQfadaWgaaWcbaGaaGymaaqabaGccaqGJbGa aeiAaiaayIW7caWGAbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Iaae 4yaiaabIgacaaMi8UaamOwamaaBaaaleaacaaIXaaabeaakiaaboha caqGObGaaGjcVlaadQfadaWgaaWcbaGaaGOmaaqabaGccaaISaaaaa@5753@  (2.106)

ch Z 1 Z 2 =ch Z 1 ch Z 2 sh Z 1 sh Z 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabI gadaqadaqaaiaadQfadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG AbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaaGypaiaabo gacaqGObGaaGjcVlaadQfadaWgaaWcbaGaaGymaaqabaGccaqGJbGa aeiAaiaayIW7caWGAbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Iaae 4CaiaabIgacaaMi8UaamOwamaaBaaaleaacaaIXaaabeaakiaaboha caqGObGaaGjcVlaadQfadaWgaaWcbaGaaGOmaaqabaGccaaIUaaaaa@5745@  (2.107)

Из (2.103)-( 2.107) следуют формулы преобразования произведения комплексных операторных гиперболических функций в сумму:

sh Z 1 ch Z 2 = 1 2 sh Z 1 + Z 2 +sh Z 1 Z 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabI gacaaMi8UaamOwamaaBaaaleaacaaIXaaabeaakiaabogacaqGObGa aGjcVlaadQfadaWgaaWcbaGaaGOmaaqabaGccaaI9aWaaSaaaeaaca aIXaaabaGaaGOmaaaadaWadaqaaiaabohacaqGObGaaGjcVpaabmaa baGaamOwamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadQfadaWgaa WcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHRaWkcaqGZbGaaeiA aiaayIW7daqadaqaaiaadQfadaWgaaWcbaGaaGymaaqabaGccqGHsi slcaWGAbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaacaGL BbGaayzxaaGaaGilaaaa@5B5B@  (2.108)

ch Z 1 ch Z 2 = 1 2 ch Z 1 + Z 2 +ch Z 1 Z 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabI gacaaMi8UaamOwamaaBaaaleaacaaIXaaabeaakiaabogacaqGObGa aGjcVlaadQfadaWgaaWcbaGaaGOmaaqabaGccaaI9aWaaSaaaeaaca aIXaaabaGaaGOmaaaadaWadaqaaiaabogacaqGObGaaGjcVpaabmaa baGaamOwamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadQfadaWgaa WcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHRaWkcaqGJbGaaeiA aiaayIW7daqadaqaaiaadQfadaWgaaWcbaGaaGymaaqabaGccqGHsi slcaWGAbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaacaGL BbGaayzxaaGaaGilaaaa@5B2B@  (2.109)

sh Z 1 sh Z 2 = 1 2 ch Z 1 + Z 2 ch Z 1 Z 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabI gacaaMi8UaamOwamaaBaaaleaacaaIXaaabeaakiaabohacaqGObGa aGjcVlaadQfadaWgaaWcbaGaaGOmaaqabaGccaaI9aWaaSaaaeaaca aIXaaabaGaaGOmaaaadaWadaqaaiaabogacaqGObGaaGjcVpaabmaa baGaamOwamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadQfadaWgaa WcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHsislcaqGJbGaaeiA aiaayIW7daqadaqaaiaadQfadaWgaaWcbaGaaGymaaqabaGccqGHsi slcaWGAbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaacaGL BbGaayzxaaGaaGOlaaaa@5B58@  (2.110)

Из последних трех равенств следуют формулы преобразования суммы и разности одноименных комплексных операторных гиперболических функций в произведение:

sh Z 1 +sh Z 2 =2sh Z 1 + Z 2 2 ch Z 1 Z 2 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabI gacaaMi8UaamOwamaaBaaaleaacaaIXaaabeaakiabgUcaRiaaboha caqGObGaaGjcVlaadQfadaWgaaWcbaGaaGOmaaqabaGccaaI9aGaaG OmaiaabohacaqGObGaaGjcVpaalaaabaGaamOwamaaBaaaleaacaaI XaaabeaakiabgUcaRiaadQfadaWgaaWcbaGaaGOmaaqabaaakeaaca aIYaaaaiaabogacaqGObGaaGjcVpaalaaabaGaamOwamaaBaaaleaa caaIXaaabeaakiabgkHiTiaadQfadaWgaaWcbaGaaGOmaaqabaaake aacaaIYaaaaiaaiYcaaaa@5724@  (2.111)

sh Z 1 sh Z 2 =2sh Z 1 Z 2 2 ch Z 1 + Z 2 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabI gacaaMi8UaamOwamaaBaaaleaacaaIXaaabeaakiabgkHiTiaaboha caqGObGaaGjcVlaadQfadaWgaaWcbaGaaGOmaaqabaGccaaI9aGaaG OmaiaabohacaqGObGaaGjcVpaalaaabaGaamOwamaaBaaaleaacaaI XaaabeaakiabgkHiTiaadQfadaWgaaWcbaGaaGOmaaqabaaakeaaca aIYaaaaiaabogacaqGObGaaGjcVpaalaaabaGaamOwamaaBaaaleaa caaIXaaabeaakiabgUcaRiaadQfadaWgaaWcbaGaaGOmaaqabaaake aacaaIYaaaaiaaiYcaaaa@572F@  (2.112)

ch Z 1 +ch Z 2 =2ch Z 1 + Z 2 2 ch Z 1 Z 2 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabI gacaaMi8UaamOwamaaBaaaleaacaaIXaaabeaakiabgUcaRiaaboga caqGObGaaGjcVlaadQfadaWgaaWcbaGaaGOmaaqabaGccaaI9aGaaG OmaiaabogacaqGObGaaGjcVpaalaaabaGaamOwamaaBaaaleaacaaI XaaabeaakiabgUcaRiaadQfadaWgaaWcbaGaaGOmaaqabaaakeaaca aIYaaaaiaabogacaqGObGaaGjcVpaalaaabaGaamOwamaaBaaaleaa caaIXaaabeaakiabgkHiTiaadQfadaWgaaWcbaGaaGOmaaqabaaake aacaaIYaaaaiaaiYcaaaa@56F4@  (2.113)

ch Z 1 ch Z 2 =2sh Z 1 Z 2 2 sh Z 1 + Z 2 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabI gacaaMi8UaamOwamaaBaaaleaacaaIXaaabeaakiabgkHiTiaaboga caqGObGaaGjcVlaadQfadaWgaaWcbaGaaGOmaaqabaGccaaI9aGaaG OmaiaabohacaqGObGaaGjcVpaalaaabaGaamOwamaaBaaaleaacaaI XaaabeaakiabgkHiTiaadQfadaWgaaWcbaGaaGOmaaqabaaakeaaca aIYaaaaiaabohacaqGObGaaGjcVpaalaaabaGaamOwamaaBaaaleaa caaIXaaabeaakiabgUcaRiaadQfadaWgaaWcbaGaaGOmaaqabaaake aacaaIYaaaaiaai6caaaa@5721@  (2.114)

Напомним, что формулы (2.104)-( 2.114) справедливы при выполнении условия (2.4).

В дальнейшем потребуется следующее утверждение.

Пусть P,QA, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaaiY cacaWGrbGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYt UvgaiuaacqWFaeFqcaaISaaaaa@47E3@   P,Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaaiY cacaWGrbaaaa@3A68@  фиксированы, комплексные операторные степенные ряды

R 1 = i=1 α i P i , R 2 = j=1 β j Q j , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaaIXaaabeaakiaai2dadaaeWbqabSqaaiaadMgacaaMi8Ua aGypaiaayIW7caaIXaaabaGaeyOhIukaniabggHiLdGccaaMi8Uaeq ySde2aaSbaaSqaaiaadMgaaeqaaOGaamiuamaaCaaaleqabaGaamyA aaaakiaaiYcacaaMf8UaamOuamaaBaaaleaacaaIYaaabeaakiaai2 dadaaeWbqabSqaaiaadQgacaaMi8UaaGypaiaayIW7caaIXaaabaGa eyOhIukaniabggHiLdGccaaMi8UaeqOSdi2aaSbaaSqaaiaadQgaae qaaOGaamyuamaaCaaaleqabaGaamOAaaaakiaaiYcaaaa@5F62@  (2.115)

где α i , β j ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadMgaaeqaaOGaaGilaiabek7aInaaBaaaleaacaWGQbaa beaakiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVb acfaGae8xhHiLaaG4oaaaa@4B47@   i,j, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaaiY cacaWGQbGaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv 39gaiuaacqWFveItcaaISaaaaa@4780@  сходятся абсолютно, и их суммы равны соответственно S P , S Q . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGqbaabeaakiaaiYcacaWGtbWaaSbaaSqaaiaadgfaaeqa aOGaaGOlaaaa@3D3C@  Напомним (см. замечание 2.1), что в этом случае ряды (2.115) являются сходящимися.

Лемма 2.4. При выполнении условия

PQ=QP MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaadg facaaI9aGaamyuaiaadcfaaaa@3C24@  (2.116)

справедливо равенство

S P S Q = S Q S P . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGqbaabeaakiaadofadaWgaaWcbaGaamyuaaqabaGccaaI 9aGaam4uamaaBaaaleaacaWGrbaabeaakiaadofadaWgaaWcbaGaam iuaaqabaGccaaIUaaaaa@4114@  (2.117)

Доказательство. Применяя сочетательное свойство операции умножения алгебры A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqaaa@4348@  и условие (2.116), получаем

P m Q n = Q n P m m,n. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaCa aaleqabaGaamyBaaaakiaadgfadaahaaWcbeqaaiaad6gaaaGccaaI 9aGaamyuamaaCaaaleqabaGaamOBaaaakiaadcfadaahaaWcbeqaai aad2gaaaGccaaMf8UaeyiaIiIaamyBaiaaiYcacaWGUbGaeyicI48e fv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFveItca aIUaaaaa@52AB@  (2.118)

Используя произведение рядов в форме Коши и формулу (2.118), получаем

R 1 R 2 = k=2 i+j=k α i P i β j Q j = k=2 j+i=k β j Q j α i P i = R 2 R 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaaIXaaabeaakiaadkfadaWgaaWcbaGaaGOmaaqabaGccaaI 9aWaaabCaeqaleaacaWGRbGaaGjcVlaai2dacaaMi8UaaGOmaaqaai abg6HiLcqdcqGHris5aOWaaabuaeqaleaacaWGPbGaey4kaSIaamOA aiaai2dacaWGRbaabeqdcqGHris5aOWaamWaaeaadaqadaqaaiabeg 7aHnaaBaaaleaacaWGPbaabeaakiaadcfadaahaaWcbeqaaiaadMga aaaakiaawIcacaGLPaaadaqadaqaaiabek7aInaaBaaaleaacaWGQb aabeaakiaadgfadaahaaWcbeqaaiaadQgaaaaakiaawIcacaGLPaaa aiaawUfacaGLDbaacaaI9aWaaabCaeqaleaacaWGRbGaaGjcVlaai2 dacaaMi8UaaGOmaaqaaiabg6HiLcqdcqGHris5aOWaaabuaeqaleaa caWGQbGaey4kaSIaamyAaiaai2dacaWGRbaabeqdcqGHris5aOWaam Waaeaadaqadaqaaiabek7aInaaBaaaleaacaWGQbaabeaakiaadgfa daahaaWcbeqaaiaadQgaaaaakiaawIcacaGLPaaadaqadaqaaiabeg 7aHnaaBaaaleaacaWGPbaabeaakiaadcfadaahaaWcbeqaaiaadMga aaaakiaawIcacaGLPaaaaiaawUfacaGLDbaacaaI9aGaamOuamaaBa aaleaacaaIYaaabeaakiaadkfadaWgaaWcbaGaaGymaaqabaGccaaI Uaaaaa@7F2A@

Таким образом, R 1 R 2 = R 2 R 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaaIXaaabeaakiaadkfadaWgaaWcbaGaaGOmaaqabaGccaaI 9aGaamOuamaaBaaaleaacaaIYaaabeaakiaadkfadaWgaaWcbaGaaG ymaaqabaGccaaISaaaaa@40A6@  значит, в силу следствия 2.1 справедливо (2.117).

Найдем вид действительной и мнимой частей функций sinZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbGaamOwaiaaiYcaaaa@3C74@   cosZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaamOwaaaa@3BB9@  для значений Z A K . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha Xh0aaSbaaSqaaiaadUeaaeqaaOGaaGOlaaaa@4769@

Пусть Z=X+JY A K . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiaai2 dacaWGybGaey4kaSIaaeOsaiaadMfacqGHiiIZtuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=bq8bnaaBaaaleaacaWGlb aabeaakiaai6caaaa@4B9A@  Используя соотношения (0.6), (0.7), (2.10), (2.21), (2.22), (2.91)-(2.94), получаем

sinZ=sin X+JY =chYsinX+JshYcosX, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbGaamOwaiaai2daciGGZbGaaiyAaiaac6gadaqadaqaaiaa dIfacqGHRaWkcaqGkbGaamywaaGaayjkaiaawMcaaiaai2dacaqGJb GaaeiAaiaayIW7caWGzbGaci4CaiaacMgacaGGUbGaamiwaiabgUca RiaabQeacaqGZbGaaeiAaiaayIW7caWGzbGaci4yaiaac+gacaGGZb GaamiwaiaaiYcaaaa@576C@                                                (2.119)

cosZ=cos X+JY =chYcosXJshYsinX. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaamOwaiaai2daciGGJbGaai4Baiaacohadaqadaqaaiaa dIfacqGHRaWkcaqGkbGaamywaaGaayjkaiaawMcaaiaai2dacaqGJb GaaeiAaiaayIW7caWGzbGaci4yaiaac+gacaGGZbGaamiwaiabgkHi TiaabQeacaqGZbGaaeiAaiaayIW7caWGzbGaci4CaiaacMgacaGGUb Gaamiwaiaai6caaaa@5774@                                               (2.120)

Пусть X,Y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiaaiY cacaWGzbaaaa@3A78@  фиксированы. Используя условие XY=YX, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiaadM facaaI9aGaamywaiaadIfacaaISaaaaa@3CFA@  лемму 2.4 для комплексных операторов из подалгебры A 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaGa aGymaaqabaaaaa@442F@  и соглашение (0.4), приходим к выводу: операторы

sinX= k=0 (1) 2k+1 X 2k+1 2k+1 ! ,cosX= k=0 (1) k X 2k 2k ! MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbGaamiwaiaai2dadaaeWbqabSqaaiaadUgacaaMi8UaaGyp aiaayIW7caaIWaaabaGaeyOhIukaniabggHiLdGccaaIOaGaeyOeI0 IaaGymaiaaiMcadaahaaWcbeqaaiaaikdacaWGRbGaey4kaSIaaGym aaaakiaayIW7daWcaaqaaiaadIfadaahaaWcbeqaaiaaikdacaWGRb Gaey4kaSIaaGymaaaaaOqaamaabmaabaGaaGOmaiaadUgacqGHRaWk caaIXaaacaGLOaGaayzkaaGaaGyiaaaacaaISaGaaGzbVlaaywW7ci GGJbGaai4BaiaacohacaWGybGaaGypamaaqahabeWcbaGaam4Aaiaa yIW7caaI9aGaaGjcVlaaicdaaeaacqGHEisPa0GaeyyeIuoakiaaiI cacqGHsislcaaIXaGaaGykamaaCaaaleqabaGaam4AaaaakiaayIW7 daWcaaqaaiaadIfadaahaaWcbeqaaiaaikdacaWGRbaaaaGcbaWaae WaaeaacaaIYaGaam4AaaGaayjkaiaawMcaaiaaigcaaaaaaa@75EB@

попарно коммутируют с операторами

shY= k=0 Y 2k+1 (2k+1)! ,chY= k=0 Y 2k (2k)! . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabI gacaaMi8Uaamywaiaai2dadaaeWbqabSqaaiaadUgacaaMi8UaaGyp aiaayIW7caaIWaaabaGaeyOhIukaniabggHiLdGccaaMi8+aaSaaae aacaWGzbWaaWbaaSqabeaacaaIYaGaam4AaiabgUcaRiaaigdaaaaa keaacaaIOaGaaGOmaiaadUgacqGHRaWkcaaIXaGaaGykaiaaigcaaa GaaGilaiaaywW7caaMf8Uaae4yaiaabIgacaaMi8Uaamywaiaai2da daaeWbqabSqaaiaadUgacaaMi8UaaGypaiaayIW7caaIWaaabaGaey OhIukaniabggHiLdGccaaMi8+aaSaaaeaacaWGzbWaaWbaaSqabeaa caaIYaGaam4AaaaaaOqaaiaaiIcacaaIYaGaam4AaiaaiMcacaaIHa aaaiaai6caaaa@6CC7@

Следовательно, равенства (2.119), (2.120) можно записать в виде

sinZ=sin X+JY =sinXchY+JcosXshY, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGUbGaamOwaiaai2daciGGZbGaaiyAaiaac6gadaqadaqaaiaa dIfacqGHRaWkcaqGkbGaamywaaGaayjkaiaawMcaaiaai2daciGGZb GaaiyAaiaac6gacaWGybGaae4yaiaabIgacaaMi8UaamywaiabgUca RiaabQeaciGGJbGaai4BaiaacohacaWGybGaae4CaiaabIgacaaMi8 UaamywaiaaiYcaaaa@576C@

cosZ=cos X+JY =cosXchYJsinXshY. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaamOwaiaai2daciGGJbGaai4Baiaacohadaqadaqaaiaa dIfacqGHRaWkcaqGkbGaamywaaGaayjkaiaawMcaaiaai2daciGGJb Gaai4BaiaacohacaWGybGaae4yaiaabIgacaaMi8UaamywaiabgkHi TiaabQeaciGGZbGaaiyAaiaac6gacaWGybGaae4CaiaabIgacaaMi8 Uaamywaiaai6caaaa@5774@

Таким образом, для Z=X+JY A K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiaai2 dacaWGybGaey4kaSIaaeOsaiaadMfacqGHiiIZtuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=bq8bnaaBaaaleaacaWGlb aabeaaaaa@4AD8@  имеем

Re sinZ =sinXchY,Im sinZ =cosXshY; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaadw gadaqadaqaaiaabohacaqGPbGaaeOBaiaadQfaaiaawIcacaGLPaaa caaI9aGaci4CaiaacMgacaGGUbGaamiwaiaabogacaqGObGaaGjcVl aadMfacaaISaGaaGzbVlaadMeacaWGTbWaaeWaaeaacaqGZbGaaeyA aiaab6gacaWGAbaacaGLOaGaayzkaaGaaGypaiGacogacaGGVbGaai 4CaiaadIfacaqGZbGaaeiAaiaayIW7caWGzbGaaG4oaaaa@5A8A@

Re cosZ =cosXchY,Im cosZ =sinXshY. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaadw gadaqadaqaaiGacogacaGGVbGaai4CaiaadQfaaiaawIcacaGLPaaa caaI9aGaci4yaiaac+gacaGGZbGaamiwaiaabogacaqGObGaaGjcVl aadMfacaaISaGaaGzbVlaadMeacaWGTbWaaeWaaeaaciGGJbGaai4B aiaacohacaWGAbaacaGLOaGaayzkaaGaaGypaiabgkHiTiGacohaca GGPbGaaiOBaiaadIfacaqGZbGaaeiAaiaayIW7caWGzbGaaGOlaaaa @5B6A@

Комплексные операторные гиперболические функции thZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabI gacaaMi8UaamOwaiaaiYcaaaa@3D0F@   cthZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabs hacaqGObGaaGjcVlaadQfaaaa@3D3F@  определяются равенствами

thZ=shZ ch 1 Z,cthZ=chZ sh 1 Z, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabI gacaaMi8UaamOwaiaai2dacaqGZbGaaeiAaiaayIW7caWGAbGaaGjc VlaabogacaqGObWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaamOwai aaiYcacaaMf8Uaae4yaiaabshacaqGObGaaGjcVlaadQfacaaI9aGa ae4yaiaabIgacaaMi8UaamOwaiaayIW7caqGZbGaaeiAamaaCaaale qabaGaeyOeI0IaaGymaaaakiaadQfacaaISaaaaa@5AFB@

где ch 1 Z= chZ 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabI gadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGAbGaaGypamaabmaa baGaae4yaiaabIgacaaMi8UaamOwaaGaayjkaiaawMcaamaaCaaale qabaGaeyOeI0IaaGymaaaakiaaiYcaaaa@45BC@   sh 1 Z= shZ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabI gadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGAbGaaGypamaabmaa baGaae4CaiaabIgacaaMi8UaamOwaaGaayjkaiaawMcaamaaCaaale qabaGaeyOeI0IaaGymaaaaaaa@451C@  - обратные операторы соответственно для операторов chZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabI gacaaMi8UaamOwaiaaiYcaaaa@3CFE@   shZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabI gacaaMi8UaamOwaiaai6caaaa@3D10@  Для этих функций

D thZ = ZA:chZ A G , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaabm aabaGaaeiDaiaabIgacaaMi8UaamOwaaGaayjkaiaawMcaaiaai2da daGadaqaaiaadQfacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGqbaiab=bq8bjaaiQdacaqGJbGaaeiAaiaayIW7caWG AbGaeyicI4Sae8haXh0aaSbaaSqaaiaadEeaaeqaaaGccaGL7bGaay zFaaGaaGilaaaa@593F@

D cthZ = ZA:shZ A G . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaabm aabaGaae4yaiaabshacaqGObGaaGjcVlaadQfaaiaawIcacaGLPaaa caaI9aWaaiWaaeaacaWGAbGaeyicI48efv3ySLgznfgDOfdaryqr1n gBPrginfgDObYtUvgaiuaacqWFaeFqcaaI6aGaae4CaiaabIgacaaM i8UaamOwaiabgIGiolab=bq8bnaaBaaaleaacaWGhbaabeaaaOGaay 5Eaiaaw2haaiaai6caaaa@5A37@

Покажем, что

D thZ ,D cthZ ,D thZ D cthZ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaabm aabaGaaeiDaiaabIgacaaMi8UaamOwaaGaayjkaiaawMcaaiabgcMi 5kabgwGiglaaiYcacaaMf8UaamiramaabmaabaGaae4yaiaabshaca qGObGaaGjcVlaadQfaaiaawIcacaGLPaaacqGHGjsUcqGHfiIXcaaI SaGaaGzbVlaadseadaqadaqaaiaabshacaqGObGaaGjcVlaadQfaai aawIcacaGLPaaacqGHPiYXcaWGebWaaeWaaeaacaqGJbGaaeiDaiaa bIgacaaMi8UaamOwaaGaayjkaiaawMcaaiabgcMi5kabgwGiglaai6 caaaa@6501@                                     (2.121)

Лемма 2.5. Для любого α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF DeIuaaa@45E2@  справедливо включение

α I ^ D thZ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMabm ysayaajaGaeyicI4SaamiramaabmaabaGaaeiDaiaabIgacaaMi8Ua amOwaaGaayjkaiaawMcaaiaaiYcaaaa@4362@                                                                                (2.122)

а при любом α, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF DeIucaaISaaaaa@4698@   α0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey iyIKRaaGimaaaa@3C27@  - включения

α I ^ D cthZ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMabm ysayaajaGaeyicI4SaamiramaabmaabaGaae4yaiaabshacaqGObGa aGjcVlaadQfaaiaawIcacaGLPaaacaaISaaaaa@4448@                                                                                (2.123)

α I ^ D thZ D cthZ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMabm ysayaajaGaeyicI4SaamiramaabmaabaGaaeiDaiaabIgacaaMi8Ua amOwaaGaayjkaiaawMcaaiabgMIihlaadseadaqadaqaaiaabogaca qG0bGaaeiAaiaayIW7caWGAbaacaGLOaGaayzkaaGaaGOlaaaa@4C8C@                                                                    (2.124)

Доказательство. Используя определение функции e Z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamOwaaaaaaa@39FD@  и равенство I ^ n = I ^ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmysayaaja WaaWbaaSqabeaacaWGUbaaaOGaaGypaiqadMeagaqcaiaaiYcaaaa@3C6A@   n, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xf H4KaaGilaaaa@45E0@  получаем для любого α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF DeIuaaa@45E2@  

e α I ^ = e α I ^ , e α I ^ = e α I ^ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaeqySdeMabmysayaajaaaaOGaaGypaiaadwgadaahaaWc beqaaiabeg7aHbaakiqadMeagaqcaiaaiYcacaaMf8UaamyzamaaCa aaleqabaGaeyOeI0IaeqySdeMabmysayaajaaaaOGaaGypaiaadwga daahaaWcbeqaaiabgkHiTiabeg7aHbaakiqadMeagaqcaiaai6caaa a@4CE3@                                                                       (2.125)

Применяя соотношения (2.91), (2.92), (2.125), получаем

sh(α I ^ )= I ^ shαприлюбомα, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabI gacaaMi8UaaGikaiabeg7aHjqadMeagaqcaiaaiMcacaaI9aGabmys ayaajaGaaGjcVlaabohacaqGObGaaGjcVlabeg7aHjaaysW7caaMi8 UaaGjcVlaad+dbcaWGarGaamioeiaaysW7caWG7qGaamOteiaadgdb caWG+qGaamipeiaayIW7caaMi8UaaGjbVlabeg7aHjabgIGioprr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHiLaaGil aaaa@6751@                                                          (2.126)

ch(α I ^ )= I ^ chαприлюбомα. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabI gacaaMi8UaaGikaiabeg7aHjqadMeagaqcaiaaiMcacaaI9aGabmys ayaajaGaaGjcVlaabogacaqGObGaaGjcVlabeg7aHjaaysW7caaMi8 UaaGjcVlaad+dbcaWGarGaamioeiaaysW7caWG7qGaamOteiaadgdb caWG+qGaamipeiaayIW7caaMi8UaaGjbVlabeg7aHjabgIGioprr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHiLaaGOl aaaa@6733@                                                          (2.127)

Заметим, что

shα0прилюбомα,α0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabI gacaaMi8UaeqySdeMaeyiyIKRaaGimaiaaysW7caaMi8UaaGjcVlaa d+dbcaWGarGaamioeiaaysW7caWG7qGaamOteiaadgdbcaWG+qGaam ipeiaayIW7caaMi8UaaGjbVlabeg7aHjabgIGioprr1ngBPrwtHrhA YaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHiLaaGilaiaaysW7ca aMi8UaeqySdeMaeyiyIKRaaGimaiaaiYcaaaa@673C@                                                          (2.128)

chα0прилюбомα. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabI gacaaMi8UaeqySdeMaeyiyIKRaaGimaiaaysW7caaMi8UaaGjcVlaa d+dbcaWGarGaamioeiaaysW7caWG7qGaamOteiaadgdbcaWG+qGaam ipeiaayIW7caaMi8UaaGjbVlabeg7aHjabgIGioprr1ngBPrwtHrhA YaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHiLaaGOlaaaa@5F3A@                                                                  (2.129)

В силу (2.127), (2.129) для любого α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF DeIuaaa@45E2@  существует

ch 1 (α I ^ )= 1 chα I ^ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabI gadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaaMi8UaaGikaiabeg7a HjqadMeagaqcaiaaiMcacaaI9aWaaSaaaeaacaaIXaaabaGaae4yai aabIgacaaMi8UaeqySdegaaiqadMeagaqcaiaaiYcaaaa@4951@                                                                            (2.130)

следовательно, определен th(α I ^ )=sh(α I ^ ) ch 1 (α I ^ ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabI gacaaMi8UaaGikaiabeg7aHjqadMeagaqcaiaaiMcacaaI9aGaae4C aiaabIgacaaMi8UaaGikaiabeg7aHjqadMeagaqcaiaaiMcacaqGJb GaaeiAamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaaiIcacqaHXoqy ceWGjbGbaKaacaaIPaGaaGOlaaaa@4FC1@  Включение (2.122) доказано.

Далее, в силу (2.126), (2.128) для любого α, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF DeIucaaISaaaaa@4698@   α0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey iyIKRaaGimaiaaiYcaaaa@3CDD@  существует

sh 1 (α I ^ )= 1 shα I ^ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabI gadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaaIOaGaeqySdeMabmys ayaajaGaaGykaiaai2dadaWcaaqaaiaaigdaaeaacaqGZbGaaeiAai aayIW7cqaHXoqyaaGabmysayaajaGaaGilaaaa@47E0@                                                                             (2.131)

значит, определен cth(α I ^ )=ch(α I ^ ) sh 1 (α I ^ ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabs hacaqGObGaaGjcVlaaiIcacqaHXoqyceWGjbGbaKaacaaIPaGaaGyp aiaabogacaqGObGaaGjcVlaaiIcacqaHXoqyceWGjbGbaKaacaaIPa Gaae4CaiaabIgadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaaIOaGa eqySdeMabmysayaajaGaaGykaiaai6caaaa@50A7@

Включение (2.123) установлено. Включение (2.124) следует из (2.122), (2.123).

В силу леммы 2.5 справедливы соотношения (2.121).

В силу (2.126), (2.127), (2.130), (2.131)

th(α I ^ )= I ^ thαприлюбомα, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabI gacaaMi8UaaGikaiabeg7aHjqadMeagaqcaiaaiMcacaaI9aGabmys ayaajaGaaGjcVlaabshacaqGObGaaGjcVlabeg7aHjaaysW7caaMi8 UaaGjcVlaad+dbcaWGarGaamioeiaaysW7caWG7qGaamOteiaadgdb caWG+qGaamipeiaayIW7caaMi8UaaGjbVlabeg7aHjabgIGioprr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHiLaaGil aaaa@6753@

cth(α I ^ )= I ^ cthαприлюбомα,α0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabs hacaqGObGaaGjcVlaaiIcacqaHXoqyceWGjbGbaKaacaaIPaGaaGyp aiqadMeagaqcaiaayIW7caqGJbGaaeiDaiaabIgacaaMi8UaeqySde MaaGjbVlaayIW7caaMi8Uaam4peiaadcebcaWG4qGaaGjbVlaadUdb caWGorGaamymeiaad6dbcaWG8qGaaGjcVlaayIW7caaMe8UaeqySde MaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaa cqWFDeIucaaISaGaaGjbVlaaysW7cqaHXoqycqGHGjsUcaaIWaGaaG Olaaaa@7111@

Заметим, что th O ^ = O ^ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabI gacaaMi8Uabm4tayaajaGaaGypaiqad+eagaqcaiaaiYcaaaa@3EBF@   O ^ D cthZ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4tayaaja GaeyycI8SaamiramaabmaabaGaae4yaiaabshacaqGObGaaGjcVlaa dQfaaiaawIcacaGLPaaacaaISaaaaa@42B1@   th Z =thZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabI gacaaMi8+aaeWaaeaacqGHsislcaWGAbaacaGLOaGaayzkaaGaaGyp aiabgkHiTiaabshacaqGObGaaGjcVlaadQfacaaISaaaaa@458B@   cth Z =cthZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabs hacaqGObGaaGjcVpaabmaabaGaeyOeI0IaamOwaaGaayjkaiaawMca aiaai2dacqGHsislcaaMi8Uaae4yaiaabshacaqGObGaaGjcVlaadQ facaaIUaaaaa@48EA@

Пусть H A G . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha Xh0aaSbaaSqaaiaadEeaaeqaaOGaaGOlaaaa@4753@  В силу включения J A G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOsaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8ha Xh0aaSbaaSqaaiaadEeaaeqaaaaa@4691@  и леммы 2.3 JH A G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOsaiaadI eacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqb aiab=bq8bnaaBaaaleaacaWGhbaabeaaaaa@475E@  и JH 1 = H 1 J 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca qGkbGaamisaaGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGym aaaakiaai2dacaWGibWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaae OsamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@431E@  или в силу соотношений (0.7), (2.28)

JH 1 =J H 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca qGkbGaamisaaGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGym aaaakiaai2dacqGHsislcaqGkbGaamisamaaCaaaleqabaGaeyOeI0 IaaGymaaaakiaai6caaaa@42EE@                                                                               (2.132)

Теорема 2.8. Справедливы тождества:

tg JZ =JthZZD thZ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabE gacaaMi8+aaeWaaeaacaqGkbGaamOwaaGaayjkaiaawMcaaiaai2da caqGkbGaaGjcVlaabshacaqGObGaaGjcVlaadQfacaaMf8UaeyiaIi IaamOwaiabgIGiolaadseadaqadaqaaiaabshacaqGObGaaGjcVlaa dQfaaiaawIcacaGLPaaacaaISaaaaa@5240@                                                              (2.133)

ctg JZ =JcthZZD cthZ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabs hacaqGNbGaaGjcVpaabmaabaGaaeOsaiaadQfaaiaawIcacaGLPaaa caaI9aGaeyOeI0IaaeOsaiaayIW7caqGJbGaaeiDaiaabIgacaaMi8 UaamOwaiaaywW7cqGHaiIicaWGAbGaeyicI4SaamiramaabmaabaGa ae4yaiaabshacaqGObGaaGjcVlaadQfaaiaawIcacaGLPaaacaaISa aaaa@55DF@                                                          (2.134)

th JZ =JtgZZD tgZ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabI gacaaMi8+aaeWaaeaacaqGkbGaamOwaaGaayjkaiaawMcaaiaai2da caqGkbGaaGjcVlaabshacaqGNbGaaGjcVlaadQfacaaMf8UaeyiaIi IaamOwaiabgIGiolaadseadaqadaqaaiaabshacaqGNbGaaGjcVlaa dQfaaiaawIcacaGLPaaacaaISaaaaa@523F@                                                              (2.135)

cth JZ =JctgZZD ctgZ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabs hacaqGObGaaGjcVpaabmaabaGaaeOsaiaadQfaaiaawIcacaGLPaaa caaI9aGaeyOeI0IaaeOsaiaayIW7caqGJbGaaeiDaiaabEgacaaMi8 UaamOwaiaaywW7cqGHaiIicaWGAbGaeyicI4SaamiramaabmaabaGa ae4yaiaabshacaqGNbGaaGjcVlaadQfaaiaawIcacaGLPaaacaaIUa aaaa@55E0@                                                          (2.136)

Доказательство. Пусть ZD thZ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI GiolaadseadaqadaqaaiaabshacaqGObGaaGjcVlaadQfaaiaawIca caGLPaaacaaIUaaaaa@41C6@  В силу (2.100) существует

cos 1 JZ = ch 1 Z. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaubiaeqale qabaGaeyOeI0IaaGymaaGcbaGaci4yaiaac+gacaGGZbaaaiaayIW7 daqadaqaaiaabQeacaWGAbaacaGLOaGaayzkaaGaaGypaiaabogaca qGObWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaamOwaiaab6caaaa@47A2@                                                                            (2.137)

Используя соотношения (2.99), (2.137), получаем

tg JZ =sin JZ cos 1 JZ =JshZ ch 1 Z=JthZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabE gacaaMi8+aaeWaaeaacaqGkbGaamOwaaGaayjkaiaawMcaaiaai2da ciGGZbGaaiyAaiaac6gadaqadaqaaiaabQeacaWGAbaacaGLOaGaay zkaaWaaubiaeqaleqabaGaeyOeI0IaaGymaaGcbaGaci4yaiaac+ga caGGZbaaamaabmaabaGaaeOsaiaadQfaaiaawIcacaGLPaaacaaI9a GaaeOsaiaayIW7caqGZbGaaeiAaiaayIW7caWGAbGaaGjcVlaaboga caqGObWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaamOwaiaai2daca qGkbGaaGjcVlaabshacaqGObGaaGjcVlaadQfacaaIUaaaaa@634A@

Тождество (2.133) доказано.

Пусть ZD cthZ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI GiolaadseadaqadaqaaiaabogacaqG0bGaaeiAaiaayIW7caWGAbaa caGLOaGaayzkaaGaaGOlaaaa@42AC@  В силу (2.99), (2.132) существует

sin 1 JZ = Jsh 1 Z. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaubiaeqale qabaGaeyOeI0IaaGymaaGcbaGaci4CaiaacMgacaGGUbaaaiaayIW7 daqadaqaaiaabQeacaWGAbaacaGLOaGaayzkaaGaaGypaiabgkHiTi aabQeacaqGZbGaaeiAamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaa dQfacaaIUaaaaa@4978@                                                                          (2.138)

Применяя соотношения (0.7), (2.100), (2.138), имеем

ctg JZ =cos JZ sin 1 JZ =chZ J sh 1 Z =JchZ sh 1 Z=JcthZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabs hacaqGNbGaaGjcVpaabmaabaGaaeOsaiaadQfaaiaawIcacaGLPaaa caaI9aGaci4yaiaac+gacaGGZbWaaeWaaeaacaqGkbGaamOwaaGaay jkaiaawMcaamaavacabeWcbeqaaiabgkHiTiaaigdaaOqaaiGacoha caGGPbGaaiOBaaaadaqadaqaaiaabQeacaWGAbaacaGLOaGaayzkaa GaaGypaiaabogacaqGObGaaGjcVlaadQfadaqadaqaaiabgkHiTiaa bQeacaaMi8Uaae4CaiaabIgadaahaaWcbeqaaiabgkHiTiaaigdaaa GccaWGAbaacaGLOaGaayzkaaGaaGypaiabgkHiTiaabQeacaaMi8Ua ae4yaiaabIgacaaMi8UaamOwaiaabohacaqGObWaaWbaaSqabeaacq GHsislcaaIXaaaaOGaamOwaiaai2dacqGHsislcaqGkbGaaGjcVlaa bogacaqG0bGaaeiAaiaayIW7caWGAbGaaGOlaaaa@73DA@

Тождество (2.134) установлено.

Пусть ZD tgZ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI GiolaadseadaqadaqaaiaabshacaqGNbGaaGjcVlaadQfaaiaawIca caGLPaaacaaIUaaaaa@41C5@  В силу (2.102) существует

ch 1 JZ = cos 1 Z. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabI gadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaqadaqaaiaabQeacaWG AbaacaGLOaGaayzkaaGaaGypamaavacabeWcbeqaaiabgkHiTiaaig daaOqaaiGacogacaGGVbGaai4CaaaacaWGAbGaaGOlaaaa@4618@                                                                            (2.139)

Используя соотношения (2.101), (2.139), получаем

th JZ =sh JZ ch 1 JZ =JsinZ cos 1 Z=JtgZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabI gacaaMi8+aaeWaaeaacaqGkbGaamOwaaGaayjkaiaawMcaaiaai2da caqGZbGaaeiAaiaayIW7daqadaqaaiaabQeacaWGAbaacaGLOaGaay zkaaGaae4yaiaabIgadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaaM i8+aaeWaaeaacaqGkbGaamOwaaGaayjkaiaawMcaaiaai2dacaqGkb Gaci4CaiaacMgacaGGUbGaamOwamaavacabeWcbeqaaiabgkHiTiaa igdaaOqaaiGacogacaGGVbGaai4CaaaacaWGAbGaaGypaiaabQeaca aMi8UaaeiDaiaabEgacaaMi8UaamOwaiaai6caaaa@61B9@

Тождество (2.135) доказано. Пусть ZD ctgZ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI GiolaadseadaqadaqaaiaabogacaqG0bGaae4zaiaayIW7caWGAbaa caGLOaGaayzkaaGaaGOlaaaa@42AB@  В силу (2.101), (2.132) существует

sh 1 JZ =J sin 1 Z. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabI gadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaqadaqaaiaabQeacaWG AbaacaGLOaGaayzkaaGaaGypaiabgkHiTiaabQeadaqfGaqabSqabe aacqGHsislcaaIXaaakeaaciGGZbGaaiyAaiaac6gaaaGaamOwaiaa i6caaaa@47E7@                                                                          (2.140)

Применяя соотношения (0.7), (2.102), (2.140), имеем

cth JZ =ch JZ sh 1 JZ =cosZ(J sin 1 Z)=JcosZ sin 1 Z=JctgZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabs hacaqGObGaaGjcVpaabmaabaGaaeOsaiaadQfaaiaawIcacaGLPaaa caaI9aGaae4yaiaabIgacaaMi8+aaeWaaeaacaqGkbGaamOwaaGaay jkaiaawMcaaiaabohacaqGObWaaWbaaSqabeaacqGHsislcaaIXaaa aOGaaGjcVpaabmaabaGaaeOsaiaadQfaaiaawIcacaGLPaaacaaI9a Gaci4yaiaac+gacaGGZbGaamOwaiaaiIcacqGHsislcaqGkbWaaubi aeqaleqabaGaeyOeI0IaaGymaaGcbaGaci4CaiaacMgacaGGUbaaai aadQfacaaIPaGaaGypaiabgkHiTiaabQeaciGGJbGaai4Baiaacoha caWGAbWaaubiaeqaleqabaGaeyOeI0IaaGymaaGcbaGaci4CaiaacM gacaGGUbaaaiaadQfacaaI9aGaeyOeI0IaaeOsaiaayIW7caqGJbGa aeiDaiaabEgacaaMi8UaamOwaiaai6caaaa@72A9@

Тождество (2.136) установлено.

Для любого ZD(thZ)D(cthZ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI GiolaadseacaaIOaGaaeiDaiaabIgacaaMi8UaamOwaiaaiMcacqGH PiYXcaWGebGaaGikaiaabogacaqG0bGaaeiAaiaayIW7caWGAbGaaG ykaaaa@49EE@  

thZcthZ= I ^ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabI gacaaMi8UaamOwaiaayIW7caqGJbGaaeiDaiaabIgacaaMi8UaamOw aiaai2daceWGjbGbaKaacaaISaaaaa@457D@                                                                                 (2.141)

thZ= cth 1 Z,cthZ= th 1 Z. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabI gacaaMi8UaamOwaiaai2dacaqGJbGaaeiDaiaabIgadaahaaWcbeqa aiabgkHiTiaaigdaaaGccaWGAbGaaGilaiaaywW7caqGJbGaaeiDai aabIgacaaMi8UaamOwaiaai2dacaqG0bGaaeiAamaaCaaaleqabaGa eyOeI0IaaGymaaaakiaadQfacaaIUaaaaa@5041@                                                                 (2.142)

Тождество (2.141) доказывается так же, как тождество (2.65). Доказательство равенств (2.142) аналогично доказательству соотношений (2.72).

Комплексные операторные гиперболические функции секанс и косеканс определяются равенствами

sechZ= ch 1 Z,cosechZ= sh 1 Z. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4Caiaabw gacaqGJbGaaeiAaiaayIW7caWGAbGaaGypaiaabogacaqGObWaaWba aSqabeaacqGHsislcaaIXaaaaOGaaGjcVlaadQfacaaISaGaaGzbVl aabogacaqGVbGaae4CaiaabwgacaqGJbGaaeiAaiaayIW7caWGAbGa aGypaiaabohacaqGObWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaG jcVlaadQfacaqGUaaaaa@56F0@

Для этих функций

D sechZ = ZA:chZ A G , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaabm aabaGaae4CaiaabwgacaqGJbGaaeiAaiaayIW7caWGAbaacaGLOaGa ayzkaaGaaGypamaacmaabaGaamOwaiabgIGioprr1ngBPrwtHrhAXa qeguuDJXwAKbstHrhAG8KBLbacfaGae8haXhKaaGOoaiaabogacaqG ObGaaGjcVlaadQfacqGHiiIZcqWFaeFqdaWgaaWcbaGaam4raaqaba aakiaawUhacaGL9baacaaISaaaaa@5B0C@

D cosechZ = ZA:shZ A G . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaabm aabaGaae4yaiaab+gacaqGZbGaaeyzaiaabogacaqGObGaaGjcVlaa dQfaaiaawIcacaGLPaaacaaI9aWaaiWaaeaacaWGAbGaeyicI48efv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaI 6aGaae4CaiaabIgacaaMi8UaamOwaiabgIGiolab=bq8bnaaBaaale aacaWGhbaabeaaaOGaay5Eaiaaw2haaiaai6caaaa@5CF6@

Таким образом, D sechZ =D thZ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaabm aabaGaae4CaiaabwgacaqGJbGaaeiAaiaayIW7caWGAbaacaGLOaGa ayzkaaGaaGypaiaadseadaqadaqaaiaabshacaqGObGaaGjcVlaadQ faaiaawIcacaGLPaaacaaISaaaaa@4899@   D cosechZ =D cthZ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaabm aabaGaae4yaiaab+gacaqGZbGaaeyzaiaabogacaqGObGaaGjcVlaa dQfaaiaawIcacaGLPaaacaaI9aGaamiramaabmaabaGaae4yaiaabs hacaqGObGaaGjcVlaadQfaaiaawIcacaGLPaaacaaIUaaaaa@4B59@  Следовательно, в силу леммы 2.5 для любого α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF DeIuaaa@45E2@  выполнено

α I ^ D sechZ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMabm ysayaajaGaeyicI4SaamiramaabmaabaGaae4CaiaabwgacaqGJbGa aeiAaiaayIW7caWGAbaacaGLOaGaayzkaaGaaGilaaaa@452F@

а любого α, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF DeIucaaISaaaaa@4698@   α0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey iyIKRaaGimaaaa@3C27@  выполнено

α I ^ D cosechZ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMabm ysayaajaGaeyicI4SaamiramaabmaabaGaae4yaiaab+gacaqGZbGa aeyzaiaabogacaqGObGaaGjcVlaadQfaaiaawIcacaGLPaaacaaISa aaaa@4707@

α I ^ D sechZ D cosechZ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMabm ysayaajaGaeyicI4SaamiramaabmaabaGaae4CaiaabwgacaqGJbGa aeiAaiaayIW7caWGAbaacaGLOaGaayzkaaGaeyykICSaamiramaabm aabaGaae4yaiaab+gacaqGZbGaaeyzaiaabogacaqGObGaaGjcVlaa dQfaaiaawIcacaGLPaaacaaISaaaaa@5116@

и для таких значений аргумента в силу (2.130), (2.131) получаем

sech(α I ^ )= I ^ sechα,cosech(α I ^ )= I ^ cosechα. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4Caiaabw gacaqGJbGaaeiAaiaayIW7caaIOaGaeqySdeMabmysayaajaGaaGyk aiaai2daceWGjbGbaKaacaaMi8Uaae4CaiaabwgacaqGJbGaaeiAai aayIW7cqaHXoqycaaISaGaaGzbVlaabogacaqGVbGaae4Caiaabwga caqGJbGaaeiAaiaayIW7caaIOaGaeqySdeMabmysayaajaGaaGykai aai2daceWGjbGbaKaacaaMi8Uaae4yaiaab+gacaqGZbGaaeyzaiaa bogacaqGObGaaGjcVlabeg7aHjaai6caaaa@6521@

Заметим, что

sech O ^ = I ^ , O ^ D cosechZ ,sech Z =sechZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4Caiaabw gacaqGJbGaaeiAaiaayIW7ceWGpbGbaKaacaaI9aGabmysayaajaGa aGilaiaaywW7ceWGpbGbaKaacqGHjiYZcaWGebWaaeWaaeaacaqGJb Gaae4BaiaabohacaqGLbGaae4yaiaabIgacaaMi8UaamOwaaGaayjk aiaawMcaaiaaiYcacaaMf8Uaae4CaiaabwgacaqGJbGaaeiAaiaayI W7daqadaqaaiabgkHiTiaadQfaaiaawIcacaGLPaaacaaI9aGaae4C aiaabwgacaqGJbGaaeiAaiaayIW7caWGAbGaaGilaaaa@613C@

cosech Z =cosechZ,chZsechZ= I ^ ,shZcosechZ= I ^ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaab+ gacaqGZbGaaeyzaiaabogacaqGObGaaGjcVpaabmaabaGaeyOeI0Ia amOwaaGaayjkaiaawMcaaiaai2dacqGHsislcaaMi8Uaae4yaiaab+ gacaqGZbGaaeyzaiaabogacaqGObGaaGjcVlaadQfacaaISaGaaGzb VlaabogacaqGObGaaGjcVlaadQfacaaMi8Uaae4CaiaabwgacaqGJb GaaeiAaiaayIW7caWGAbGaaGypaiqadMeagaqcaiaaiYcacaaMf8Ua ae4CaiaabIgacaaMi8UaamOwaiaabogacaqGVbGaae4Caiaabwgaca qGJbGaaeiAaiaayIW7caWGAbGaaGypaiqadMeagaqcaiaai6caaaa@6E73@

Для любого ZD(sechZ)D(cosechZ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgI GiolaadseacaaIOaGaae4CaiaabwgacaqGJbGaaeiAaiaayIW7caWG AbGaaGykaiabgMIihlaadseacaaIOaGaae4yaiaab+gacaqGZbGaae yzaiaabogacaqGObGaaGjcVlaadQfacaaIPaGaaGilaaaa@4F30@  используя лемму 2.3, получаем

sechZcosechZ= shZchZ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4Caiaabw gacaqGJbGaaeiAaiaayIW7caWGAbGaae4yaiaab+gacaqGZbGaaeyz aiaabogacaqGObGaaGjcVlaadQfacaaI9aWaaeWaaeaacaqGZbGaae iAaiaadQfacaqGJbGaaeiAaiaadQfaaiaawIcacaGLPaaadaahaaWc beqaaiabgkHiTiaaigdaaaaaaa@4FB2@

или в силу формулы shZchZ =2 1 sh2Z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabI gacaWGAbGaae4yaiaabIgacaWGAbGaaGypaiaaikdadaahaaWcbeqa aiabgkHiTiaaigdaaaGccaqGZbGaaeiAaiaabkdacaWGAbaaaa@444E@  

sechZcosechZ=2 sh 1 2Z. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4Caiaabw gacaqGJbGaaeiAaiaayIW7caWGAbGaae4yaiaab+gacaqGZbGaaeyz aiaabogacaqGObGaaGjcVlaadQfacaaI9aGaaGOmaiaabohacaqGOb WaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaeOmaiaadQfacaaIUaaa aa@4DAC@

Следующим этапом в изучении комплексных операторных функций из семейства (0.14) является построение обратных функций LnZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeitaiaab6 gacaaMi8UaamOwaiaaiYcaaaa@3CED@   ArcsinZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyqaiaabk hacaqGJbGaae4CaiaabMgacaqGUbGaaGjcVlaadQfacaaISaaaaa@409F@   ArccosZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyqaiaabk hacaqGJbGaae4yaiaab+gacaqGZbGaaGjcVlaadQfacaaISaaaaa@409A@   ArctgZ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyqaiaabk hacaqGJbGaaeiDaiaabEgacaaMi8UaamOwaiaaiYcaaaa@3FAD@   ArcctgZ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyqaiaabk hacaqGJbGaae4yaiaabshacaqGNbGaaGjcVlaadQfacaaIUaaaaa@4095@  Эти функции являются многозначными как функции, обратные периодическим функциям.

В перспективе естественный интерес представляет исследование вопросов, связанных с дифференцированием и интегрированием комплексных операторных функций семейства (0.14), в частности, конкретных функций из этого семейства, рассмотренных в данной работе.

В более отдаленной перспективе видится создание теории комплексных операторных функций нескольких комплексных операторных переменных.

Результаты данной работы анонсированы в [11, 12].

×

About the authors

Vasiliy I. Fomin

Derzhavin Tambov State University

Author for correspondence.
Email: vasiliyfomin@bk.ru
ORCID iD: 0000-0003-3846-4882

Candidate of Physics and Mathematics, Associate Professor

Russian Federation, 33 Internatsionalnaya St., Tambov 392000

References

  1. В. И. Фомин, “Об общем решении линейного однородного дифференциального уравнения в банаховом пространстве в случае комплексных характеристических операторов”, Вестник Тамбовского университета. Серия: Естественные и технические науки, 24:126 (2019), 211–217. [V. I. Fomin, “About a general solution of a linear homogeneous differential equations in a Banach space in the case of complex characteristic operators”, Vestnik Tambovskogo universiteta. Seriya: estestvennye i tekhnicheskie nauki = Tambov University Reports. Series: Natural and Technical Sciences, 24:126 (2019), 211–217 (In Russian)].
  2. В. И. Фомин, “О случае комплексных корней характеристического операторного полинома линейного однородного дифференциального уравнения n -го порядка в банаховом пространстве”, Дифференциальные уравнения, 56:8 (2020), 1045–1054; англ. пер.:V. I. Fomin, “On the case of complex roots of the characteristic operator polynomial of a linear n th-order homogeneous differential equation in a banach space”, Differential Equations, 56:8 (2020), 1021–1030.
  3. Н. Данфорд, Дж. Шварц, Линейные опеарторы. Общая теория, Иностранная литература, М., 1962. [N. Dunford, J. Schwartz, Linear Operators. General Theory, Inostrannaya Literatura Publ., Moscow, 1962 (In Russian)].
  4. А. Н. Колмогоров, С. В. Фомин, Элементы теории функций и функционального анализа, Наука, М., 1976. [A. N. Kolmogorov, S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Nauka Publ., Moscow, 1976 (In Russian)].
  5. В. А. Садовничий, Теория операторов, Дрофа, М., 2001. [V. A. Sadovnichy, Theory of Operators, Drofa Publ., Moscow, 2001 (In Russian)].
  6. В. И. Фомин, “Об операторных функциях операторного переменного”, Вестник российских университетов. Математика, 28:141 (2023), 68–89. [V. I. Fomin, “About operator functions of an operator variable”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 28:141 (2023), 68–89 (In Russian)].
  7. А. Н. Талдыкин, Элементы прикладного функционального анализа, Высш. школа, М., 1982. [A. N. Taldykin, Elements of Applied Functional Analysis, Vyssh. Shkola Publ., Moscow, 1982 (In Russian)].
  8. Л. Шварц, Анализ. Т.1, Мир, М., 1972. [L. Schwartz, Analysis. V.1, Mir Publ., Moscow, 2002 (In Russian)].
  9. В. Д. Морозова, Теория функций комплексного переменного, Издательство МГТУ им. Н. Э. Баумана, М., 2002. [V. D. Morozova, Theory of Functions of a Complex Variable, MGTU N. E. Bauman Publ., Moscow, 2002 (In Russian)].
  10. В. А. Треногин, Функциональный анализ, Наука, М., 1980. [V. A. Trenogin, Functional Analysis, Nauka Publ., Moscow, 1980 (In Russian)].
  11. В. И. Фомин, “О периодичности комплексной операторной экспоненциальной функции”, Современные методы теории функций и смежные проблемы, Материалы международной конференции «Воронежская зимняя математическая школа С. Г. Крейна» (27 января – 1 февраля 2023), Издательский дом ВГУ, Воронеж, 2023, 326–327. [V. I. Fomin, “On the periodicity of the complex operator exponential function”, Modern Methods of Function Theory and Related Problems, Proceedings of the International Conference “Voronezh Winter Mathematical School of S. G. Krein” (January 27 – February 1, 2023), VSU Publishing House, Voronezh, 2023, 326–327 (In Russian)].
  12. В. И. Фомин, “О комплексной операторной формуле Эйлера”, Современные методы теории краевых задач. Понтрягинские чтения, Материалы международной конференции «Воронежская весенняя математическая школа» (3–9 мая 2023), Издательский дом ВГУ, Воронеж, 2023, 411–413. [V. I. Fomin, “On the complex operator formula of Euler”, Modern Methods of the Theory of Boundary Value Problems. Pontryagin Readings, Proceedings of the International Conference “Voronezh Spring Mathematical School” (May 3–9, 2023), VSU Publishing House, Voronezh, 2023, 411–413 (In Russian)].

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».