ТРЕХСЛОЙНАЯ СХЕМА ДЛЯ РЕШЕНИЯ УРАВНЕНИЯ ДИФФУЗИИ ИЗЛУЧЕНИЯ

Обложка

Цитировать

Полный текст

Аннотация

Разработан метод численного решения нелинейного уравнения, описывающего диффузионный перенос энергии излучения. Метод основан на введении в параболическое уравнение второй производной по времени с малым параметром и явной разностной схеме. Явная аппроксимация исходного уравнения позволяет реализовать на ее основе алгоритм, эффективно адаптируемый к архитектуре различных высокопроизводительных вычислительных систем. Новая схема обеспечивает, сравнительно с исходной схемой, более крупный шаг интегрирования по времени и достаточно высокое разрешение структуры решения, обеспечивая второй порядок точности. Предложен эвристический подход выбора параметров трехслойной разностной схемы. Перспективной областью приложений разработанного метода могут быть задачи физики плазмы и астрофизики.

Об авторах

Б. Н. Четверушкин

Институт прикладной математики им. М.В. Келдыша Российской академии наук

Email: olkhovsk@gmail.com
Россия, Москва

О. Г. Ольховская

Институт прикладной математики им. М.В. Келдыша Российской академии наук

Email: olkhovsk@gmail.com
Россия, Москва

В. А. Гасилов

Институт прикладной математики им. М.В. Келдыша Российской академии наук

Email: olkhovsk@gmail.com
Россия, Москва

Список литературы

  1. Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Физматлит, 2008. 653 с.
  2. Mihalas D., Mihalas B. Foundations of Radiation Hydrodynamics. Oxford University Press Inc., 1984. 718 p.
  3. Четверушкин Б.Н. Математическое моделирование задач динамики излучающего газа. М.: Наука, 1985, 304 с.
  4. Осипов В.П., Четверушкин Б.Н. Вычислительные алгоритмы для систем с экстрамассивным параллелизмом // Журнал вычислительной математики и математической физики. 2020. Т. 60. № 5. С. 802–814. Osipov V.P., Chetverushkin B.N. Numerical Algorithms for Systems with Extramassive Parallelism // Computational Mathematics and Mathematical Physics. 2020. V. 60. № 5. P. 783–794. https://doi.org/10.1134/S096554252005011510.1134/S0965542520050115https://doi.org/10.31857/S0044466920050117
  5. Жуков В.Т., Новикова Н.Д., Феодоритова О.Б. Адаптивный чебышевский итерационный метод // Математическое моделирование. 2018. Т. 30. № 10. С. 67–85. Zhukov V.T., Novikova N.D., Feodori-tova O.B. An adaptive Chebyshev iterative method // Mathematical Models and Computer Simulations. 2019. V. 11. Iss. 3. P. 426–437. https://doi.org/10.1134/S2070048219030165
  6. Gordon L. Olson, Lawrence H. Auer, Michael L. Hall Diffusion, P1, and other approximate forms of radiation transport // Journal of Quantitative Spectroscopy and Radiative Transfer. 15 March 2000. V. 64. Iss. 6. P. 619–634.https://doi.org/10.1016/S0022-4073(99)00150-8
  7. Самарский А.А., Гулин А.В. Устойчивость разностных схем. Изд. 3, стереот. М.: URSS. 2009. 384 с.
  8. Четверушкин Б.Н., Гулин А.В. Явные схемы и моделирование на вычислительных системах сверхвысокой производительности. // Доклады Академии наук. 2012. Т. 446. № 5. С. 501–503. Chetverushkin B.N., Gulin A.V. Explicit Schemes And Numerical Simulation Using Ultrahigh-Performance Computer Sys-tems // Doklady Mathematics. 2012. V. 86. № 2. P. 681–683. https://doi.org/10.1134/S1064562412050213
  9. Мышецкая Е.Е., Тишкин В.Ф. Оценки влияния гиперболизации для уравнения теплопроводности. // Журнал вычислительной математики и математической физики. 2015. Т. 55. № 8. С. 1299. Myshets-kaya E.E., Tishkin V.F. Estimates of the hyperbolization effect on the heat equation // Computational Mathematics and Mathematical Physics. 2015. V. 55. Iss. 8. P. 1270–1275. https://doi.org/10.1134/S096554251508013810.1134/S0965542515080138https://doi.org/10.7868/S004446691508013X
  10. Репин С.И., Четверушкин Б.Н. Оценки разности приближенных решений задач Коши для параболического диффузионного уравнения и гиперболического уравнения с малым параметром // Доклады Академии наук. 2013. Т. 451. № 3. С. 255. Repin S.I., Chetverushkin B.N. Estimates of the difference between approximate solutions of the cauchy problems for the parabolic diffusion equation and a hyperbolic equation with a small parameter // Doklady Mathematics. 2013. V. 88. № 1. P. 417–420. https://doi.org/10.1134/S106456241304015710.1134/S1064562413040157https://doi.org/10.7868/S0869565213210056
  11. Андреев Е.С., Козманов М.Ю., Рачилов Е.Б. Точные решения систем уравнений переноса излучения с разрывом на границе раздела сред // Журнал вычислительной математики и математической физики. 1984. Т. 24. Вып. 1. С. 161–163. Andreev E.S., Kozmanov M.Yu., Rachilov E.B. Exact solutions of sets of radiation transfer equations with a discontinuity at the boundary of two media // Computational Mathematics and Mathematical Physics. 1984. V. 24. № 1. P. 103–105. https://doi.org/10.1016/0041-5553(84)90126-5
  12. Козманов М.Ю., Рачилов Е.Б. О некоторых точных решениях системы уравнений диффузии излучения // Вопросы атомной науки и техники. Серия “Математическое моделирование физических процессов”. 1938. Т. 14. Вып. С. 65–67.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (45KB)
3.

Скачать (43KB)

© Б.Н. Четверушкин, О.Г. Ольховская, В.А. Гасилов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».