ON THE GALOIS CONNECTION FOR CLOSED CLASSES OF INFINITARY FUNCTIONS
- Authors: Polyakov N.L1, Shamolin M.V2
-
Affiliations:
- HSE University
- Moscow State University named after M. V. Lomonosov
- Issue: Vol 525, No 1 (2025)
- Pages: 135–143
- Section: MATHEMATICS
- URL: https://ogarev-online.ru/2686-9543/article/view/356796
- DOI: https://doi.org/10.7868/S3034504925050188
- ID: 356796
Cite item
Abstract
Keywords
About the authors
N. L Polyakov
HSE University
Email: produktov@hse.ru
Moscow, Russia
M. V Shamolin
Moscow State University named after M. V. Lomonosov
Email: shamolin@imec.msu.ru
Corresponding member of the RAS Moscow, Russia
References
- Geiger D. Closed systems of functions and predicates // Pacific journal of mathematics. 1968. V. 27. № 1. P. 95–100.
- Bodnarchuk V.G., Kaluzhnin L.A., Kotov V.N. et al. Galois theory for Post algebras. I–II // Cybern Syst Anal. 1969. V. 5. P. 243–252 and 531–539.
- Lau D. Function Algebras on Finite Sets. A Basic Course on Many-Valued Logic and Clone Theory. Berlin–Heidelberg: Springer-Verlag, 2006.
- Pöschel R., Kaluznin L.A. Funktionenund Relationenalgebren. Berlin: WEB Deutscher Verlag der Wissenschaften, 1979.
- Parvatov N.G. Galois correspondence for closed classes of discrete functions // Prikl. Diskr. Mat. 2010. V. 2. № 8. P. 10–15 (Russian).
- Polyakov N.L. Functional Galois connections and a classification of symmetric conservative clones with a finite carrier / arXiv:1810.02945. 2018.
- Zhuk D.N. The predicate method to construct the Post lattice // Discrete Math. Appl. 2011. V. 21. № 3. P. 329–344.
- Поляков Н.Л., Шамолин М.В. Об одном обобщении теоремы Эрроу // Доклады РАН. 2014. T. 456. № 2. C. 143–145.
- Slominski J. Theory of models with infinitary operations and relations // Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys. 1958. V. 6. P. 449–456.
- Slominski J. The theory of abstract algebras with infinitary operations // Rozprawy Mat. 18. 1959.
- Hansoul G.E. The Frattini subalgebra of an infinitary algebra. Bull. Soc. Roy. Sci. Liège 49 (1980), 423–424.
- Lipparini P. Non-generators in extensions of infinitary algebras // Reports on Math. Logic. 2022. V. 57. P. 31–43.
- Diener K.H. An application of infinitary universal algebra to set theory // Algebra Universalis. 1994. V. 32. P. 297–306.
- Bucciarelli A. and Salibra A. An algebraic theory of clones // Algebra Universalis. 2022. V. 83. № 2. P. 1–30.
- Bucciarelli A., Curienet P.-L. et al. Birkhoff-style Theorems Through Infinitary Clone Algebras / arXiv:2411.16386. 2024.
- Polyakov N.L. Closed classes of infinitary functions and their applications in ultrafilter theory // Algebra and Model Theory. 2023. V. 14. P. 102–112 (Russian).
- Grätzer G. General Lattice Theory (second edition). Birkhäuser Basel, Birkhäuser Verlag, 2003.
- Jeh T. Set Theory. Springer Monographs in Mathematics (third millennium ed.). Berlin, New York, 2003.
- Comfort W.W., Negrepontis S. The theory of ultrafilters. Berlin: Springer, 1974.
- Kartashova A.V. On lattices of topologies of unary algebras // J. of Math. Sci. 2003. V. 114. № 2. P. 1086–1118.
- Juhász I. Cardinal functions in topology // Mathematical Centre Tracts No. 34. Mathematisch Centrum Amsterdam, 1971.
Supplementary files


