BOUNDARY VALUE PROBLEM FOR THE STATIONARY THERMAL DIFFUSION MODEL WITH VARIABLE COEFFICIENTS
- Authors: Alekseev G.V1,2, Pukhnachev V.V3
-
Affiliations:
- Institute of Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences
- Far Eastern Federal University
- M.A. Lavrentiev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 526, No 1 (2025)
- Pages: 3-7
- Section: MATHEMATICS
- URL: https://ogarev-online.ru/2686-9543/article/view/364242
- DOI: https://doi.org/10.7868/S3034504925060013
- ID: 364242
Cite item
Abstract
The global solvability and local uniqueness of a new boundary value problem for a stationary thermal diffusion model with variable coefficients, taking into account the Soret effect, are proven. A priori estimates of the norms of the main components of the solution are derived and analyzed, depending on the norms of the problem data and the leading coefficients of the model. A special dependence of the solution on the modulus of the Soret coefficient is established.
About the authors
G. V Alekseev
Institute of Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences; Far Eastern Federal University
Email: alekseev@iam.dvo.ru
Vladivostok, Russia
V. V Pukhnachev
M.A. Lavrentiev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Sciences
Email: pukhnachev@gmail.com
Corresponding Member of the RAS Novosibirsk, Russia
References
- Lorca S.A., Boldrini J.L. The initial value problem for a generalized Boussinesq model // Nonlinear Anal. 1999. V. 36.№457. P. 457–480.
- Kim T. Steady Boussinesq system with mixed boundary conditions including friction conditions // Appl. Math. 2022. V. 12 № 391. P. 593–613.
- Alekseev G.V., Soboleva O.V. Solvability analysis for the Boussinesq model of heat transfer under the nonlinear Robin boundary condition for the temperature // Phil. Trans. R. Soc. 2024. V. 382. 20230301.
- Ландау Л.Д., Лифшиц Е.М. Теоретическая физика: Учебное пособие в 10 томах. Т. VI. Гидродинамика. М.: Наука, 1986. 736 с.
- Степанова И.В. Симметрии в уравнениях тепломассопереноса в вязких жидкостях (обзор) // Вестник Омского университета. 2019. Т. 24.№2. С. 51–65.
- Алексеев Г.В. Оптимизация в стационарных задачах тепломассопереноса и магнитной гидродинамики. М.: Научный мир, 2010. 411 с.
- Ладыженская О.А. Математические вопросы динамики вязкой несжимаемой жидкости. М.: Наука, 1970. 288 с.
- Serfozo R. Convergence of Lebesque integrals with varying measures // Sankhya: The Indian J. Stat. 1982. V. 44. P. 380–402.
Supplementary files


