О СВОЙСТВАХ ФУНДАМЕНТАЛЬНОГО РЕШЕНИЯ ОДНОМЕРНОГО ВОЛНОВОГО ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНОГО ОПЕРАТОРА С ДРОБНО-ЭКСПОНЕНЦИАЛЬНОЙ ФУНКЦИЕЙ ПАМЯТИ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследуются свойства фундаментального решения линейного вольтеррова интегро-дифференциального оператора, который представляет собой одномерный волновой линейный дифференциальный оператор с частными производными, возмущенный интегральным оператором вольтеровой свертки. Функция ядра интегрального оператора представляет собой сумму дробно-экспоненциальных функций (функций Работнова) с положительными коэффициентами. Для линейных вольтерровых интегро-дифференциальных операторов с частными производными второго порядка вводится понятие гиперболичности относительно конуса. Устанавливается, что гиперболичность относительно конуса эквивалентна локализации носителя фундаментального решения линейного вольтеррова интегро-дифференциального оператора второго порядка в сопряженном конусе. Устанавливается гиперболичность относительно конуса одномерного волнового интегро-дифференциального оператора с дробно-экспоненциальной функцией памяти.

Об авторах

Н. А Раутиан

Московский государственный университет им. М.В. Ломоносова; Московский центр фундаментальной и прикладной математики

Email: naderhda.rautian@math.msu.ru
Москва, Россия; Москва, Россия

Список литературы

  1. Работнов Ю.Н. Элементы наследственной механики твердых тел. М.: Наука, 1977. 384 с.
  2. Gurtin M.E., Pipkin A.C. General theory of heat conduction with finite wave speed // Arch. Rat. Mech. Anal. 1968. V. 31. P. 113–126.
  3. Владимиров В.С. Обобщенные функции в математической физике. М.: Наука, 1979. 320 с.
  4. Владимиров В.С. Уравнения математической физики. М.: Наука, 1988. 512 с.
  5. Дрожжинов Ю.Н., Завьялов Б.И. Лекционные курсы НОЦ /Математический институт им. В.А. Стеклова. Вып. 5 Введение в теорию обобщенных функций. М.: МИАН, 2006. 164 с.
  6. Amendola G., Fabrizio M., Golden J.M. Thermodynamics of Materials with memory. Theory and applications. Springer New-York–Dordrecht–Heidelberg–London, 2012. 576 p.
  7. Kopachevsky N.D., Krein S.G. Operator Approach to Linear Problems of Hydrodynamics. Vol. 2: Nonself-adjoint Problems for Viscous Fluids // Operator Theory: Advances and Applications (Birkhauser Verlag, Basel/Switzerland). 2003. V. 146. 444 p.
  8. Власов В.В. Раутиан Н.А. Спектральный анализ функционально-дифференциальных уравнений. М.: МАКС Пресс, 2016. 488 с.
  9. Георгиевский Д.В. Модели теории вязкоупругости. М.: ЛЕНАНД, 2023. 144 с.
  10. Санчес-Паленсия Э. Неоднородные среды и теория колебаний. M.: Мир, 1984.
  11. Skubachevskii A.L. Boundary-value problems for elliptic functional-differential equations and their applications // Russian Mathematical Surveys. 2016. V. 71. № 5. P. 801–906.
  12. Rautian N.A. On the Properties of Semigroups Generated by Volterra Integro-Differential Equations with Kernels Representable by Stieltjes Integrals // Differential Equations. 2021. V. 57. № 9. P. 1231–1248.
  13. Vlasov V.V., Rautian N.A. Well-Posed Solvability of Volterra Integro-Differential Equations in Hilbert Spaces // Differential Equations. 2022. V. 58. № 10. P. 1410–1426.
  14. Rautian N.A., Vlasov V.V. Spectral Analysis of the Generators for Semigroups Associated with Volterra Integro-Differential Equations // Lobachevskii Journal of Mathematics. 2023. V. 44. № 3. P. 926–935.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).