Новая спектральная мера сложности и её возможности по обнаружению сигналов в шуме

Обложка

Цитировать

Полный текст

Аннотация

Настоящая статья посвящена совершенствованию методов распознавания сигналов на основе информационных характеристик спектра. Установлена дискретная функция нормированного упорядоченного спектра для единичной оконной функции, входящей в ДПФ. Доказаны леммы об оценках энтропии, дисбаланса и статистической сложности при обработке временного ряда независимых гауссовских величин. Предложены новые понятия одномерной и двумерной спектральных сложностей. Полученные теоретические результаты верифицированы численными экспериментами, которые подтвердили эффективность новой информационной характеристики при детектировании сигнала в смеси с белым шумом при малых отношениях сигнал/помеха.

Об авторах

А. А. Галяев

Институт проблем управления им. В.А. Трапезникова Российской академии наук

Автор, ответственный за переписку.
Email: galaev@ipu.ru

Corresponding Member of the RAS

Россия, Москва

В. Г. Бабиков

Институт проблем управления им. В.А. Трапезникова Российской академии наук

Email: babikov@ipu.ru
Россия, Москва

П. В. Лысенко

Институт проблем управления им. В.А. Трапезникова Российской академии наук

Email: pavellysen@ipu.ru
Россия, Москва

Л. М. Берлин

Институт проблем управления им. В.А. Трапезникова Российской академии наук

Email: berlin.lm@phystech.edu
Россия, Москва

Список литературы

  1. Amigo J.M. Ordinal methods: Concepts, applications, new developments, and challengesIn memory of Karsten Keller (19612022) / J. M. Amigo, O. A. Rosso // Chaos: An Interdisciplinary Journal of Nonlinear Science. 2023. Vol. 33, no. 8. P. 080401. https://pubs.aip.org/cha/article/33/8/080401/2905538/ Ordinal-methods-Concepts-applications-new.
  2. Distinguishing Noise from Chaos / O.A. Rosso, H.A. Larrondo, M. T. Martin et al. // Phys. Rev. Lett. 2007. Oct. V. 99. P. 154102. https://link.aps.org/doi/10.1103/PhysRevLett.99.154102.
  3. Perkey S. Using Fourier Coefficients and Wasserstein Distances to Estimate Entropy in Time Series / S. Perkey, A. Carvalho, A. Krone-Martins // 2023 IEEE 19th International Conference on e-Science (e-Science). Limassol, Cyprus: IEEE, 2023. P. 1–2. https://ieeexplore.ieee.org/document/10254949/.
  4. Statistical Distributions / C. Forbes, M. Evans, N. Hastings, B. Peacock. 1 edition. Wiley, 2010. https: //onlinelibrary.wiley.com/doi/book/10.1002/9780470627242.
  5. Klenke A. Probability Theory: A Comprehensive Course / A. Klenke. Universitext. London: Springer London, 2014. https://link.springer.com/10.1007/978-1-4471-5361-0.
  6. Галяев А.А. Статистическая сложность как критей рий задачи обнаружения полезного сигнала / А.А. Галяев, П.В. Лысенко, Л.М. Берлин // Автоматика и телемеханика. 2023. С. 121–145.
  7. Distances in Probability Space and the Statistical Complexity Setup / A. M. Kowalski, M. T. Mart’ın, A. Plastino et al. // Entropy. 2011. V. 13. №. 6. P. 1055–1075. http://www.mdpi.com/1099-4300/13/6/1055.
  8. Richards M.A. The Discrete-Time Fourier Transform and Discrete Fourier Transform of Windowed Stationary White Noise / M.A. Richards // Technical Memorandum. 2013. P. 1–24.
  9. Kay S.M. Fundamentals Of Statistical Processing, Volume 2: Detection Theory / S.M. Kay. Prentice-Hall signal processing series. Pearson Education, 2009. https://books.google.ru/books?id=wwmnY9xyt9MC.
  10. Орлов И.Я. Оценка потерь обнаружения сигналов приемнёком с адаптивным порогом на основе метода порядковых статистик / И.Я. Орлов, Е.С. Фитасов // Известия вузов. Радиофизика. 2018. Т. 61. № 7. С. 596–604
  11. Cazelles E. The Wasserstein-Fourier Distance for Stationary Time Series / E. Cazelles, A. Robert, F. Tobar // IEEE Transactions on Signal Processing. 2021. V. 69. P. 709–721. https://ieeexplore.ieee.org/document/9303405/.
  12. Berlin L.M. Comparison of Information Criteria for Detection of Useful Signals in Noisy Environments / L.M. Berlin, A.A. Galyaev, P.V. Lysenko // Sensors. 2023. V. 23. № 4. https://www.mdpi.com/1424-8220/23/4/2133.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).