On an invariant of pure braids

Cover Page

Cite item

Full Text

Abstract

Using the recoupling theory, we define a representation of the pure braid group and show that it is not trivial.

About the authors

V. O. Manturov

Moscow Institute of Physics and Technology; Nosov Magnitogorsk State Technical University

Author for correspondence.
Email: vomanturov@yandex.ru

Moscow Center for Fundamental and Applied Mathematics 

Russian Federation, Moscow; Magnitogorsk

I. M. Nikonov

Moscow Institute of Physics and Technology; Nosov Magnitogorsk State Technical University; Lomonosov Moscow State University

Email: vomanturov@yandex.ru

Moscow Center for Fundamental and Applied Mathematics 

Russian Federation, Moscow; Magnitogorsk; Moscow

References

  1. Мантуров В.О. Теория узлов, М.–Ижевск: Институт компьютерных исследований, 2005.
  2. Artin E. Theory of Braids // Ann. Math. 1947. V. 48. N 1. P. 101–126.
  3. Manturov V.O., Fedoseev D., Kim S., Nikonov I. Invariants And Pictures: Low-dimensional Topology And Combinatorial Group Theory. Series On Knots And Everything. V. 66. World Scientific, 2020.
  4. Manturov V.O., Nikonov I.M. On braids and groups Gkn // J. Knot Theory and Ramifications. 2015. V. 24. N 13. 1541009.
  5. Fortune S. Voronoi diagrams and Delaunay triangulations // Computing in Euclidean Geometry. Singapore: World Scientific Publishing Co, 1992. P. 193–233.
  6. Racah G. Theory of complex spectra II // Phys. Rev. 1942. V. 62. P. 438–462.
  7. Turaev, V.G., Viro O. Ya. State sum invariants of 3-manifolds and quantum 6j-symbols // Topology. 1992. V. 31. P. 865–902.
  8. Корепанов И.Г. SL(2)-решение уравнения пентагона и инварианты трехмерных многообразий // ТМФ. 2004. Т. 138. № 1. С. 23–34.
  9. Корепанов И.Г. Геометрия евклидовых тетраэдров и инварианты узлов // Фундамент. и прикл. матем. 2005. T. 11. № 4. С. 105–117.
  10. Manturov V.O., Fedoseev D., Kim S., Nikonov I. On groups Gkn and Гkn: A study of manifolds, dynamics, and invariants // Bull. Math. Soc. 2021. V. 11. N 2. 2150004.
  11. Penner R. The decorated Teichmuller space of punctured surfaces // Comm. Math. Phys. 1987. V. 113. N 2. 299–339.
  12. Kauffman L.H., Lins S. Temperley–Lieb Recoupling Theory and Invariants of 3-Manifolds. Princeton University Press, 1994.
  13. Тураев В.Г. Модули Конвея и Кауфмана полнотория // Зап. научн. сем. ЛОМИ. 1988. Т. 167. С. 79–89.
  14. Понарин Я.П. Элементарная геометрия. Т. 1. М.: МЦМНО, 2004.
  15. Birman J. Braids, Links, and Mapping Class Groups. Princeton University Press, 1974.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).