ON ANALOGUES OF HERBRAND’S AND HARROP’S THEOREMS FOR THE JOINT LOGIC OF PROBLEMS AND PROPOSITIONS QHC

Cover Page

Cite item

Full Text

Abstract

In this paper analogues of Herbrand’s and Harrop’s theorems for the logic QHC are proved.

About the authors

A. A. Onoprienko

HSE University

Author for correspondence.
Email: ansidiana@yandex.ru
Russia, Moscow

References

  1. Melikhov S.A. “A Galois connection between classical and intuitionistic logics. I: Syntax”, 2013/22 arX-iv:1312.2575.
  2. Melikhov S.A. “A Galois connection between classical and intuitionistic logics. II: Semantics”, 2015/22 a-rXiv:1504.03379.
  3. Колмогоров А.Н. О принципе tertium non datur // Математический сборник. 1925. Т. 32. № 4. С. 646–667.
  4. Heyting A. Intuitionism: An Introduction. Amsterdam: North-Holland Publishing Company, 1956.
  5. Медведев Ю.Т. Финитные задачи //Доклады Академии наук. Российская академия наук, 1962. Т. 142. № 5. С. 1015–1018.
  6. Артёмов С.Н. Подход Колмогорова и Гёделя к интуиционистской логике и работы последнего десятилетия в этом направлении //Успехи математических наук. 2004. Т. 59. № 2 (356). С. 9–36.
  7. Оноприенко А.А. Предикатный вариант совместной логики задач и высказываний //Математический сборник. 2022. Т. 213. № 7. С. 97–120.
  8. Плиско В.Е., Хаханян В.Х. Интуиционистская логика //М.: Изд-во при мех.-мат. ф-те МГУ. 2009. Т. 159. С. 357–371.
  9. Клини С.К. Математическая логика. М.: Мир, 1973.
  10. Драгалин А.Г. Математический интуиционизм. Введение в теорию доказательств. M.: Наука, 1979.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 А.А. Оноприенко

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).