Новый подход к синтезу высокодисперсных двойных фосфатов лития–никеля и лития–кобальта с заданной морфологией

Обложка

Цитировать

Полный текст

Аннотация

В работе представлен новый низкотемпературный метод синтеза высокодисперсных порошков двойных фосфатов LiCoPO4 и LiNiPO4 по малоотходной технологии. Показано, что морфология и гранулометрический состав полученных материалов определяются типом используемых прекурсоров. Полученные соединения охарактеризованы методами химического, рентгенофазового, СЭМ‑анализа, циклической вольтамперометрии, циклической хронопотенциометрии. Новый подход к синтезу субмикронных порошков двойных фосфатов лития и переходного металла (никеля или кобальта) является более эффективным по сравнению с существующими традиционными методами.

Об авторах

Н. В. Жаров

Институт химии и технологии редких элементов
и минерального сырья им. И.В. Тананаева

Автор, ответственный за переписку.
Email: n.zharov@ksc.ru
Россия, 184209, Апатиты

М. В. Маслова

Институт химии и технологии редких элементов
и минерального сырья им. И.В. Тананаева

Email: n.zharov@ksc.ru
Россия, 184209, Апатиты

А. И. Николаев

Институт химии и технологии редких элементов
и минерального сырья им. И.В. Тананаева

Email: n.zharov@ksc.ru
Россия, 184209, Апатиты

Список литературы

  1. Kraytsberg A., Ein-Eli Y. // Adv. Energy Mater. 2012. V. 2. № 8. P. 922–939. https://doi.org/10.1002/aenm.201200068
  2. Song S., Peng X., Huang K., Zhang H., Wu F., Xiang Y., Zhang X. // Nanoscale Res. Lett. 2020. V. 15. P. 110. https://doi.org/10.1186/s11671-020-03335-8
  3. Кулова Т.Л. // Электрохимия. 2013. Т. 49. № 1. С. 3–28. https://doi.org/10.7868/S0424857013010118
  4. Örnek A. // J. Colloid Interface Sci. 2017. V. 504. P. 468–478. https://doi.org/10.1016/j.jcis.2017.05.118
  5. Tolganbek N., Yerkinbekova Y., Kalybekkyzy S., Bake-nov Zh., Mentbayeva A. // J. Alloys Compd. 2021.V. 882. P. 160774. https://doi.org/10.1016/j.jallcom.2021.160774
  6. Cheng Q., Zhao X., Yang G., Mao L., Liao F., Chen L., He P., Pan D., Chen Sh. // Energy Stor. Mater. 2021. V. 41. P. 842–882. https://doi.org/10.1016/j.ensm.2021.07.017
  7. Kosova N.V., Podgornova O.A., Devyatkina E.T., Podugolnikov V.R., Petrov S.A. // J. Mater. Chem. A. 2014. V. 2. P. 20697–20705. https://doi.org/10.1039/C4TA04221B
  8. Herle P., Ellis B., Coombs N., Nazar L.F. // Nat. Mater. 2004. V. 3. № 3. P. 147–152. https://doi.org/10.1038/nmat1063
  9. Biendicho J.J., West A.R. // Solid State Ion. 2011. V. 203. № 1. P. 33–36. https://doi.org/10.1016/j.ssi.2011.08.006
  10. Truong Q.D., Devaraju M.K., Tomai T., Honma I. // ACS Appl. Mater. Interfaces. 2013. V. 5. № 20. P. 9926–9932. https://doi.org/10.1021/am403018n
  11. Kempaiah Devaraju M., Duc Truong Q., Hyodo H., Sasaki Y., Honma I. // Sci. Rep. 2015. V. 5. P. 11041. https://doi.org/10.1038/srep11041
  12. Pourhakkak P., Taghizadeh A., Taghizadeh M., Ghaedi M., Haghdoust S. // Interface Sci. Technol. 2021. V. 33. P. 1–70. https://doi.org/10.1016/B978-0-12-818805-7.00001-1
  13. Li Z., Peng Z., Zhang H., Hu T., Hu M., Zhu K., Wang X. // Nano Lett. 2016. V. 16. №. 1. P. 795–799. https://doi.org/10.1021/acs.nanolett.5b04855
  14. Ludwig J., Nilges T. // J. Power Sources. 2018. V. 382. P. 101–115. https://doi.org/10.1016/j.jpowsour.2018.02.038
  15. Karafiludis S., Buzanich A.G., Heinekamp C., Zimathies A., Smales J.G., Hodoroaba V.-D., ten Elshof J.E., Emmerling F., Stawski T.M. // Nanoscale. 2023. V. 15. № 8. P. 3952–3966. https://doi.org/10.1039/D2NR05630E
  16. Zhang M., Garcia-Araez N., Hector A. L. // J. Mater. Chem. A. 2018. V.6 № 30. P. 14483–14517. https://doi.org/10.1039/C8TA04063J
  17. Sreedeep S., Natarajan S., Aravindan V. // Curr. Opin. Electrochem. 2022. V. 31. P. 100868. https://doi.org/10.1016/j.coelec.2021.100868
  18. Markevich E., Sharabi R., Gottlieb H., Borgel V., Fridman K., Salitra G., Aurbach D., Semrau G., Schmidt M.A., Schall N., Bruenig C. // Electrochem. Commun. 2012. V. 15. № 1. P. 22–25. https://doi.org/10.1016/j.elecom.2011.11.014
  19. Маслова М.В., Жаров Н.В., Иваненко В.И. Способ получения двойного ортофосфата лития и переходного металла. Патент RU 2022 120 287 A от 01.03.2023 г.

Дополнительные файлы


© Н.В. Жаров, М.В. Маслова, А.И. Николаев, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».