Nitriding of iron under conditions of thermal coupling of self-propagating high-temperature synthesis processes: phase and elemental composition, magnetic properties

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Direct nitriding of micron-sized carbonyl iron powders with spherical particles was carried out under conditions of thermal coupling of self-propagating high-temperature synthesis processes. Urea was used for iron nitriding. The nitriding products are composite materials based on the α-Fe, ε-Fe3Nx, Fe3C and Fe4N phases. X-ray phase analysis and chemical analysis methods showed that when the urea content is more than 15 wt. %, iron carbonitride ε-Fe3NxC1-x is formed in a mixture with iron, in which the nitrogen atoms in the ε-Fe3Nx crystal lattice are partially replaced by carbon. The iron nitriding products are soft magnetic ferromagnetic materials and have high values of specific magnetization from 142 to 157 emu/g.

作者简介

T. Barinova

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences

Email: tbarinova@ism.ac.ru
Chernogolovka, Moscow Region, Russian Federation

E. Volchenko

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences

Email: volchenko_ei@ism.ac.ru
Chernogolovka, Moscow Region, Russian Federation

Yu. Morozov

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences

Email: volchenko_ei@ism.ac.ru
Chernogolovka, Moscow Region, Russian Federation

G. Nigmatullina

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences

Email: volchenko_ei@ism.ac.ru
Chernogolovka, Moscow Region, Russian Federation

V. Semenova

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences

Email: volchenko_ei@ism.ac.ru
Chernogolovka, Moscow Region, Russian Federation

M. Alymov

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences

编辑信件的主要联系方式.
Email: volchenko_ei@ism.ac.ru

Corresponding Member of the RAS

Chernogolovka, Moscow Region, Russian Federation

参考

  1. Zhao N. et al. Synthesis, structure and magnetic properties of Fe3N nanoparticles // Journal of Materials Science: Materials in Electronics. Springer New York LLC. 2017. V. 28. № 20. P. 15 701–15 707.
  2. Bhattacharyya S. Iron nitride family at reduced dimensions: A review of their synthesis protocols and structural and magnetic properties // J. Physical Chemistry C. American Chemical Society. 2015. V. 119. № 4. P. 1601–1622.
  3. Prikhna T.O. et al. Properties and Applications of Iron Oxide Nanopowders Produced by Electroerosion Dispersion // Powder Metallurgy and Metal Ceramics. Springer. 2022. V. 61. № 3–4. P. 155–161.
  4. Kurian S., Gajbhiye N.S. Low temperature and in-field Mössbauer spectroscopic studies of ε-Fe3N particles synthesized from iron-citrate complex // Chem Phys Lett. 2010. V. 493. № 4–6. P. 299–303.
  5. Zieschang A.M. et al. Nanoscale Iron Nitride, ε-Fe3N: Preparation from Liquid Ammonia and Magnetic Properties // Chemistry of Materials. American Chemical Society. 2017. V. 29. № 2. P. 621–628.
  6. Atiq S. et al. HR 08 Epitaxial Growth and Magnetic Characterization of γ’-Fe4N Thin Films. 2015.
  7. Wang L.L. et al. Structural and magnetic properties of nanocrystalline Fe–N thin films and their thermal stability // J. Alloys Compd. Elsevier. 2007. V. 443. № 1–2. P. 43–47.
  8. Wriedt H.A., Gokcen N.A., Nafziger R.H. The Fe-N (Iron-Nitrogen) system // Bulletin of Alloy Phase Diagrams. Springer US. 1987. V. 8. № 4. P. 355–377.
  9. Li S.J. et al. Characterization of cementite films prepared by electron-shower-assisted PVD method // Thin Solid Films. Elsevier. 1998. V. 316. № 1–2. P. 100–104.
  10. Dobrzański L.A. et al. Tribological properties of the PVD and CVD coatings deposited onto the nitride tool ceramics // J. Mater Process Technol. Elsevier. 2006. V. 175. № 1–3. P. 179–185.
  11. Widenmeyer M., Hansen T.C., Niewa R. Formation and decomposition of metastable α′′-Fe 16N2 from in situ powder neutron diffraction and thermal analysis // Z. Anorg Allg Chem. 2013. V. 639. № 15. P. 2851–2859.
  12. Li J. et al. Synthesis of fine α-Fe16N2 powders by low-temperature nitridation of α-Fe from magnetite nanoparticles // AIP Adv. American Institute of Physics Inc. 2016. V. 6. № 12.
  13. Ковалев Е.П. и др. Низкотемпературный синтез микронных порошков нитридов системы Fe-N // Перспективные материалы. 2013. № 7. С. 61–66.
  14. Kovalev, E.P. et al. Low-Temperature Synthesis of Micron Iron Nitride Powders of the Fe–N System. Perspektivnye Materialy, 2013, No. 7, p. 61–66.
  15. Крупицкий В. А. Основы термической обработки. Л.: Лениздат, 1959. 121 с.
  16. Азотирование порошка железа в режиме СВС // Металлы. 2024. № 4. С. 35–40. doi: 10.31857/S0869573324043540
  17. Krupitsky, V.A. Fundamentals of Heat Treatment. Leningrad: Lenizdat, 1959, 121 pp.
  18. Barinova T.V. et al. Direct Nitriding of Iron Powder by means of Chemical Oven Technique // Intern. J. Self-Propagating High-Temperature Synthesis. Allerton Press, Inc. 2025. V. 34. № 2. P. 89–94.
  19. Petrova L.G. Control of Phase Composition of Nitrided Layers in Multicomponent Alloys // Termicheskaya Obrabotka Metallov. 2002. № 4. P. 13–19.
  20. Лахтин Ю.М. Химико-термическая обработка металлов. M.: Металлургия, 1985. 256 с.
  21. Lakhtin, Yu.M. Chemical–Thermal Treatment of Metals. Moscow: Metallurgiya, 1985, 256 pp.
  22. Petrícek V., Dušek M., Palatinus L. Crystallographic computing system JANA2006: General features // Zeitschrift fur Kristallographie. R. Oldenbourg Verlag GmbH, 2014. V. 229. № 5. P. 345–352.
  23. Schaber P.M. et al. Thermal decomposition (pyrolysis) of urea in an open reaction vessel // Thermochim Acta. 2004. V. 424. № 1–2. P. 131–142.
  24. Zhang G. et al. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts // J. Mater Chem. 2012. V. 22. № 16. P. 8083–8091.
  25. Woehrle T., Leineweber A., Mittemeijer E.J. Multicomponent interstitial diffusion in and thermodynamic characteristics of the interstitial solid solution ε-Fe3(N, C)1+x: Nitriding and nitrocarburizing of pure α-Iron // Metall Mater Trans A Phys Metall Mater Sci. Springer. 2013. V. 44. № 6. P. 2548–2562.
  26. Rounaghi S.A. et al. Synthesis, characterization and thermodynamic stability of nanostructured ε-iron carbonitride powder prepared by a solid-state mechanochemical route // J. Alloys Compd. Elsevier Ltd, 2019. V. 778. P. 327–336.
  27. Ye Z. et al. Iron Carbides and Nitrides: Ancient Materials with Novel Prospects // Chemistry – A European Journal. Wiley-VCH Verlag, 2018. V. 24. № 36. P. 8922–8940.
  28. Zhao X. et al. Synthesis and characterization of iron carbonitride ultrafine particles // J. Appl Phys. 1996. V. 79. P. 7911–7915.
  29. Takahashi N., Toda Y., Nakamura T. Preparation of FeN thin films by chemical vapor deposition using a chloride source // Materials Letters – MATER LETT. 2000. V. 42. P. 380–382.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).