EXPANSIONS IN PAPKOVICH—FADLE FUNCTIONS IN THE PROBLEM FOR A HALF-STRIP WITH A CLAMPED END
- Authors: Kovalenko M.D.1, Kerzhaev A.P.2, Menshova I.V.2,3, Vlasov D.A.4
-
Affiliations:
- Institute of Applied Mechanics, Russian Academy of Sciences
- Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
- Bauman Moscow State Technical University
- Moscow State University of Civil Engineering
- Issue: Vol 524, No 1 (2025)
- Pages: 63-68
- Section: МЕХАНИКА
- URL: https://ogarev-online.ru/2686-7400/article/view/356214
- DOI: https://doi.org/10.7868/S3034508125050102
- ID: 356214
Cite item
Abstract
About the authors
M. D. Kovalenko
Institute of Applied Mechanics, Russian Academy of Sciences
Email: kov08@inbox.ru
Moscow, Russia
A. P. Kerzhaev
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of SciencesMoscow, Russia
I. V. Menshova
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences; Bauman Moscow State Technical UniversityMoscow, Russia
D. A. Vlasov
Moscow State University of Civil EngineeringMoscow, Russia
References
- Bogy D.B. Solution of the plane end problem for a semi-infinite elastic strip // Z. Angew. Math. Phys. 1975. V. 26. P. 749–769.
- Razvitie teorii kontaktnykh zadach v SSSR / Pod red. L.A. Galina. M.: Nauka, 1976. 493 s.
- Menshykov O., Reut O., Reut V., Vaysfeld N., Zhuravlova Z. The plane mixed problem for an elastic semistrip under different load types at its short edge // Intern. J. Mech. Sci. 2018. V. 144. P. 526–530.
- Papkovich P.F. Ob odnoi forme resheniia ploskoi zadachi teorii uprugosti dlia priamougol'noi polosy // DAN SSSR. 1940. T. 27. № 4. S. 335–339.
- Kovalenko M.D., Menshova I.V., Shuliakovskaya T.D. Razlozheniia po funktsiiam Fadlia—Papkovicha. Primery reshenii v polupolose // Izv. RAN. MTT. 2013. № 5. S. 121–144.
- Kovalenko M.D., Shuliakovskaya T.D. Razlozheniia po funktsiiam Fadlia—Papkovicha v polose. Osnovy teorii // Izv. RAN. MTT. 2011. № 5. S. 78–98.
- Levin B.Ia. Raspredelenie kornei tselykh funktsii. M.: GITTL, 1956. 632 s.
- Timoshenko S.P., Gud'er Dzh. Teoriia uprugosti. M.: Nauka, 1979. 560 s.
- Vlasov V.V. Metod nachal'nykh funktsii v zadachakh teorii uprugosti i stroitel'noi mekhaniki. M.: Stroiizdat, 1975. 224 s.
- Kev V., Teodoresku P. Vvedenie v teoriiu obobshchennykh funktsii s prilozheniiami v tekhnike. M.: Mir, 1978. 518 s.
- Markushevich A.I. Tselye funktsii. M.: Nauka, 1975. 120 s.
- Prudnikov A.P., Brychkov Iu.A., Marichev O.I. Integraly i riady. T. 1. Elementarnye funktsii. M.: Fizmatlit, 2002. 632 s.
- Benthem J.P. A Laplace transform method for the solution of semi-infinite and finite strip problems in stress analysis // Q. J. Mech. Appl. Math. 1963. V. 16. № 4. P. 413–429.
- Gupta G.D. An integral equation approach to the semi-infinite strip problem // J. Appl. Mech. 1973. V. 40. № 4. P. 948–954.
- Ufliand Ia.S. Integral'nye preobrazovaniia v zadachakh teorii uprugosti. L.: Nauka, 1967. 402 s.
Supplementary files

