HIDDEN COHERENT STRUCTURE AND PHASE CORRELATIONS OF UNPOLARIZED LIGHT IN MULTIPLE SCATTERING
- Authors: Meglinski I.V.1,2, Tuchin V.V.3,4,5
-
Affiliations:
- Aston Institute of Photonic Technologies, College of Engineering & Physical Sciences, Aston University
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenovskiy University)
- Institute of Physics, Saratov State University
- Science Medical Center, Saratov State University
- Institute of Precision Mechanics and Control, FRC "Saratov Scientific Center of the Russian Academy of Sciences"
- Issue: Vol 524, No 1 (2025)
- Pages: 23-32
- Section: ФИЗИКА
- URL: https://ogarev-online.ru/2686-7400/article/view/356208
- DOI: https://doi.org/10.7868/S3034508125050044
- ID: 356208
Cite item
Abstract
A new conceptual interpretation of the nature of depolarized light is presented. According to this view, light undergoing multiple scattering in a turbid, disordered medium, although formally unpolarized, retains a hidden coherent structure. In contrast to light from incoherent sources (e.g., natural sunlight), which consists of short, uncorrelated wave packets, scattered coherent laser light can be understood as a systematically organized superposition of circularly polarized components with opposite helicities and stable phase relationships. It is shown that the apparent depolarization of scattered light arises not from complete randomization, but from a structured overlap of left- and right-circularly polarized wave packet pairs, indicating the presence of macroscopic phase correlations in the scattered field within optically dense dispersive medium, such as a biological tissue. These findings significantly expand the potential of biomedical polarimetry, revealing its capability to act as a functional analogue of quantum sensing, capable of detecting and exploiting entangled phase states that emerge naturally from coherent scattering events in biological medium.
About the authors
I. V. Meglinski
Aston Institute of Photonic Technologies, College of Engineering & Physical Sciences, Aston University; I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenovskiy University)
Email: tuchinvy@mail.ru
Birmingham, The United Kingdom; Moscow, Russia
V. V. Tuchin
Institute of Physics, Saratov State University; Science Medical Center, Saratov State University; Institute of Precision Mechanics and Control, FRC "Saratov Scientific Center of the Russian Academy of Sciences"Saratov, Russia
References
- Meglinski I., Novikova T., Dholakia K. Polarization and orbital angular momentum of light in biomedical applications: Feature issue introduction // Biomed. Opt. Express. 2021. V. 12. 6255.
- He C., He H., Chang J. et al. Polarisation optics for biomedical and clinical applications: a review // Light Sci. Appl. 2021. V. 10. 194.
- Qi J., Elson D.S. Mueller polarimetric imaging for surgical and diagnostic applications: a review // J. Biophoton. 2017. V. 10. P. 950–982.
- Tuchin V.V. Polarized light interaction with tissues // J. Biomed. Opt. 2016. V. 21 (7). 071114.
- Kunnen B., Macdonald C., Doronin A., Jacques J., Eccles M., Meglinski I. Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media // J. Biophoton. 2015. V. 8. P. 317–323.
- Кузьмин В.Л., Меглинский И.В. Зависимость круговой поляризации обратно-рассеянного света в случайных средах от анизотропии рассеивателей // Оптика и спектроскопия. 2010. Т. 108. № 1. C. 105–112.
- Кузьмин В.Л., Меглинский И.В. Аномальные поляризационные эффекты при рассеянии света в случайных средах // ЖЭТФ. 2010. Т. 137. № 5. C. 848–860.
- Macdonald C.M., Jacques S.L., Meglinski I.V. Circular polarization memory in polydisperse scattering media // Phys. Rev. E. 2015. V. 91. 033204.
- Bicout D., Brosseau C., Martinez A.S., Schmitt J.M. Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter // Phys. Rev. E. 1994. V. 49. 1767.
- Hielscher A.H., Mourant J.R., Bigio I.J. Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions // Appl. Opt. 1997. V. 36. 125.
- Rojas-Ochoa L.F., Lacoste D., Lenke R., Schurtenberger P., Scheffold F. Depolarization of backscattered linearly polarized light // J. Opt. Soc. Am. A. 2004. V. 21. 1799.
- Goldstein D. Polarized Light. N.Y.: Dekker, 2003.
- Compact Polarimeter PAX1000 Operation Manual. Bergkirchen, Ger.: Thorlabs GmbH, 2022.
- Collett E., Schaefer B. Polarized Light for Scientists and Engineers. Polawave Group, Incorporated, 2012.
- Zhmyakov D.A., Sinichkin Y.P., Zakharov P.V., Agafonov D.N. Residual polarization of non-coherently backscattered linearly polarized light: the influence of the anisotropy parameter of the scattering medium // Waves in Random Media. 2001. V. 11 (4). P. 395–412.
- Meglinski I. et al. Shedding the Polarized Light on Biological Tissues. Singapore: Springer, 2021. (Springer Briefs in Applied Sciences and Technology).
- Городищев Е.Е., Кузовцев А.И., Роговиц Д.Б. Условия сохранения циркулярной поляризации света в сильно рассеивающих средах // Квантовая электроника. 2016. V. 46 (10). P. 947–952.
- MacKintosh F.C., Zhu J.X., Pine D.J., Weitz D.A. Polarization memory of multiply scattered light // Phys. Rev. B. 1989. V. 40 (13). P. 9342–9345.
- Zimnyakov D.A. On some manifestations of similarity in multiple scattering of coherent light // Waves in Random Media. 2000. V. 10 (4). P. 417–434.
- Zimnyakov D.A., Tuchin V.V., Yodh A.G. Characteristic scales of optical field depolarization and decorrelation for multiple scattering media and tissues // J. Biomed. Opt. 1999. V. 4. P. 157–163.
- Lopushenko I., Bykov A., Meglinski I. Depolarization composition of the back-scattered circularly polarized light // Phys. Rev. A. 2023. V. 108. LO41502.
- Lopushenko I., Sieryi O., Bykov A., Meglinski I. Exploring the evolution of circular polarized light backscattered from turbid tissue-like disperse medium utilizing generalized Monte Carlo modeling approach with a combined use of Stokes and Jones-Mueller formalisms // J. Biomed. Opt. 2024. V. 29 (5). 052913.
- Wolf E. Coherence properties of partially polarized electromagnetic radiation // Nuovo Cim. 1959. V. 13. P. 1165–1181.
- Бори М., Волоф Э. Основы оптики. М.: Наука, 1973. 719 с.
- Meglinski I., Lopushenko I., Sdobnov A., Bykov A. Phase preservation of orbital angular momentum of light in multiple scattering environment // Light Sci. Appl. 2024. V. 13. 214.
- Khanom F., Mohamed N., Lopushenko I., Sdobnov A., Doronin A., Bykov A., Rafailov E. Meglinski I. Twists Through Turbidity: Propagation of Light Carrying Orbital Angular Momentum through a Complex Scattering Medium // Sci. Rep. 2024. V. 14. 20662.
- Zhang Y. et al. Quantum imaging of biological organisms through spatial and polarization entanglement // Sci. Adv. 2024. № 10. eadk1495.
Supplementary files


