STRUCTURE OF THE AUTOTROPHIC COMPONENT OF THE BIOLOGICAL CARBON PUMP IN THE WESTERN PERIPHERY OF THE CENTRAL ARCTIC BASIN IN THE SUMMER OF 2021

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the summer of 2021, during the 84th cruise of the R/V “Akademik Mstislav Keldysh”, unique data on the structure of the biological carbon pump in the near-surface ice zone and in the open water of the deep Arctic Ocean (Fram Strait and the southern Nansen Basin up to 82° N) were obtained. The interaction of cold Arctic and warm Atlantic water masses near the drifting ice edge forms a vertical thermohaline structure that determines the species composition and quantitative indicators of phytoplankton. A characteristic feature of the phytoplankton structure was the dominance of large diatom algae Rhizosolenia hebetata f. hebetata and Rhizosolenia styliformis rather than small celled species of spring bloom. It is shown for the first time that in the late summer period at most stations of the studied area the mixoplankton trophic strategy prevails in the formation of phytoplankton biomass. The main role in the transfer of organic matter from small forms (bacteria and phytoplankton) to large forms was played by the dinoflagellates Gyrodinium lachryma and the infusoria Mesodinium rubrum confined to the upper water layers (0–10 m). Large autotrophic diatoms, whose biomass correlated with nitrogen concentration (r = 0.44), accumulated near the lower boundary of the euphotic zone. As a consequence, the biological carbon pump in the western periphery of the Central Arctic Basin is vertically differentiated: in the upper layers it is a system with a high degree of organic matter transformation, while in the lower layers it is a system with high organic matter export.

About the authors

V. A Silkin

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: silkin.va@ocean.ru
Moscow, Russia

L. A Pautova

Shirshov Institute of Oceanology, Russian Academy of Sciences

Moscow, Russia

M. D Kravchishina

Shirshov Institute of Oceanology, Russian Academy of Sciences

Moscow, Russia

A. A Klyuvitkin

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: klyuvitkin@ocean.ru
Moscow, Russia

L. I Lobkovsky

Shirshov Institute of Oceanology, Russian Academy of Sciences

Academician of the RAS Moscow, Russia

References

  1. Falkowski P. Ocean Science: the power of plankton // Nature. 2012. V. 483. P. S17–S20.
  2. Boyd P.W., Claustre H., Levy M. et al. Multifaceted particle pumps drive carbon sequestration in the ocean // Nature. 2019. V. 568. P. 327–335.
  3. Nowicki M., DeVries T., Siegel D.A. Quantifying the carbon export and sequestration pathways of the ocean’s biological carbon pump // Global Biogeochemical Cycles. 2022. V. 36. P. e2021GB007083.
  4. Onarheim T., Eldevik I.H., Smedsrud L.H. et al. Seasonal and regional manifestation of Arctic sea ice loss // Journal of Climate. 2018. V. 31. P. 4917–4932.
  5. Polyakov I.V., Pnyushkov A.V., Alkire M.B. et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean // Science. 2017. V. 356. P. 285–291.
  6. Polyakov I.V., Alkire M.B., Bluhm B.A. et al. Borealization of the Arctic Ocean in response to anomalous advection from sub-arctic seas // Front. Mar. Sci. 2020. V. 7. P. 491.
  7. von Quillfeldt C.H. Common diatom species in Arctic spring blooms: their distribution and abundance // Bot. Mar. 2000. V. 43. P. 499–515.
  8. Rat’kova T.N., Wassmann P. Seasonal variation and spatial distribution of phyto- and protozooplankton in the central Barents Sea // J. Mar. Syst. 2002. V. 38. P. 47–75.
  9. Макаревич П.Р., Дружкова Е.И., Ларионов В.В. Пелагические альгоценозы Баренцева моря в области ледовой кромки в весенний период // Журнал общей биологии. 2025. Т. 86. № 1. С. 48–62.
  10. Pautova L., Silkin V., Kravchishina M. et al. Phytoplankton of the high-latitude Arctic: intensive growth large diatoms Porosira glacialis in the Nansen Basin // J. Mar. Sci. Eng. 2023. V. 11. P. 453.
  11. Flores H., David C., Ehrlich J. et al. Sea-ice properties and nutrient concentration as drivers of the taxonomic and trophic structure of high-Arctic protist and metazoan communities // Polar Biology. 2019. V. 42. P. 1377–1395.
  12. Pautova L., Kravchishina M., Silkin V. et al. The influence of the Atlantic Water Boundary Current on the phytoplankton composition and biomass in the Northern Barents Sea and the adjacent Nansen Basin // J. Mar. Sci. Eng. 2024. V. 12. P. 1678.
  13. Silkin V., Pautova L., Giordano M. et al. Interannual variability of Emiliania huxleyi blooms in the Barents Sea: In situ data 2014–2018 // Marine Pollution Bulletin. 2020. V. 158. P. 111392.
  14. Flynn K.J., Mitra A., Anestis K. et al. Mixotrophic protists and a new paradigm for marine ecology where does plankton research go now? // Journal of Plankton Research. 2019. V. 41. P. 375–391.
  15. Ardyna M., Mundy C.J., Mayot N. et al. Under-Ice phytoplankton blooms: shedding light on the “Invisible” part of Arctic primary production // Front. Mar. Sci. 2020. V. 7. P. 608032.
  16. Mitra A., Flynn K.J., Stoecker D.K. et al. Trait trade-offs in phagotrophic microalgae: the mixoplankton conundrum // European Journal of Phycology. 2023. V. 59(1). P. 51–70.
  17. Orkney A., Platt T., Narayanaswamy B.E. et al. Bio-optical evidence for increasing Phaeocystis dominance in the Barents Sea // Philos. Trans. r. Soc. Math. Phys. Eng. Sci. 2020. V. 378. P. 20190357.
  18. Stoecker D.K., Lavrentyev P.J. Mixotrophic Plankton in the polar seas: a Pan-Arctic review // Front. Mar. Sci. 2018. V. 5. P. 292.
  19. Turner J.T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump // Progress in Oceanography. 2015. V. 130. P. 205–248.
  20. Kaiser P., Hagen W., Schukat A. et al. Phytoplankton diversity and zooplankton diet across Fram Strait: Spatial patterns with implications for the future Arctic Ocean // Progress in Oceanography. 2025. V. 220. P. 103423.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).