XENOLITHS OF MAFIC GRANULITES FROM UDACHNAYA-EAST KIMBERLITE: EVIDENCE OF METAMORPHIC EVOLUTION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We present data on petrography, bulk chemical composition and specifics of composition of coexisting minerals for 12 crustal xenoliths from Udachnaya-East kimberlite pipe. According to their mineral composition the xenoliths are mostly garnet-clinopyroxene-plagioclase (±orthopyroxene, quartz, and Fe–Ti-oxides) mafic granulites. Bulk composition of five of the studied samples fall into the “uncertainty zone” between meta-igneous and meta-sedimentary rocks. Estimates of the TP-parameters of mineral equilibria that take into account compositional heterogeneity of coexisting minerals give ~860–910°C/10–14 kbar for the metamorphic peak, and 560–800°C/4–8 kbar for retrogression. The results indicate that the xenoliths were not mechanically coupled with underlying ultramafic upper mantle at the time of kimberlite intrusion (late Devonian), but had been tectonically exhumed to upper horisons in the crust during ancient metamorphic event.

About the authors

A. S Morozova

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Email: nastyamor2019@mail.ru
Moscow, Russia

L. Ya Aranovich

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Academician of the RAS Moscow, Russia

D. A Varlamov

D.S. Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences

Chernogolovka, Russia

L. N Pokhilenko

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

References

  1. Rudnick R.L., Gao S. Composition of the Continental Crust / In: Eds H.D. Holland, K.K. Turekian. Treatise on Geochemistry (Second Edition). 2014. P. 1–51. https://doi.org/10.1016/ B978-0-08-095975-7.00301-6
  2. Jin T., Wang Q., Shatsky V., Liao Y. Water Content and Deformation of the Lower Crust beneath the Siberian Craton: Evidence from Granulite Xenoliths // Journal of Geology. 2021. V. 129. P. 475–498.
  3. Perchuk A.L., Sapegina A.V., Safonov O.G. et al. Reduced amphibolite facies conditions in the Precambrian continental crust of the Siberian craton recorded by mafic granulite xenoliths from the Udachnaya kimberlite pipe, Yakutia // Precambrian Research. 2021. V. 357. P. 106–122. https://doi.org/10.1016/j.precamres.2021.10612
  4. Koreshkova M.Y., Downes H., Levsky L.K., Vladykin N.V. Petrology and geochemistry of granulite xenoliths from Udachnaya and Komsomolskaya kim­ber­lite pipes, Siberia // Journal of Petrology. 2011. V. 52(10). P. 1857–1885. https://doi.org/10.1093/petrology/egr033
  5. Shatsky V.S., Buzlukova L.V., Jagoutz E., Koz’menko O.A., Mityukhin S.I. Structure and evolution of the lower crust of the Daldyn-Alakit district in the Yakutian Diamond Province (from data on xenoliths) // Russian Geology and Geophysics. 2005. V. 46. P. 1252–1270.
  6. Koreshkova M.Yu., Downes H., Nikitina L.P. et al. Trace element and age characteristics of zircons in granulite xenoliths from the Udachnaya kimberlite pipe, Siberia // Precambrian Research. 2009. V. 168. P. 197–212. https://doi.org/10.1016/j.precamres.2008.09.007
  7. Whitney D.L., Evans B.W. Abbreviations for names of rock-forming minerals // American Mineralogist. 2010. V. 95(1). P. 185–187. https://doi.org/10.2138/am.2010.3371
  8. Shaw D.M. The origin of the Apsley gneiss, Ontario // Canadian Journal of Earth Sciences. 1972. V. 9. № 1. P. 18–35.
  9. Великославинский С.Д., Глебовицкий В.А., Крылов Д.П. Разделение силикатных осадочных и магматических пород по содержанию петрогенных элементов с помощью дискриминантного анализа // ДАН. 2013. Т. 453. № 3. С. 310–313.
  10. Aranovich L.Ya, Safonov O.G. Halogens in High-Grade Metamorphism / In: Eds D.E. Harlov and L. Aranovich The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. Springer Geochemistry. 2018. P. 713–757. https://doi.org/10.1007/978-3-319-61667-4_11
  11. Berman R.G., Aranovich L.Ya. Optimized standard state and solution properties of minerals. I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO–MgO–CaO–Al2O3–TiO2–SiO2 // Contrib. Mineral. Petrol. 1996. V. 126. P. 1–24.
  12. Аранович Л.Я., Козловский В.М. Роль подвижности кремнезема в образовании “зарождающихся” эклогитов // Геохимия. 2009. № 2. С. 210–215.
  13. Fuhrman M.L., Lindsley D.H. Ternary-feldspar modeling and thermometry // American Mineralogist. 1988. V. 73. Р. 201–215.
  14. Tajčmanovà L., Connolly J.A.D., Cesare B. A thermodynamic model for titanium and ferric iron solution in biotite // Journal of metamorphic Geology. 2009. V. 27. P. 153–165. https://doi.org/10.1111/j.1525-1314.2009.00812.x
  15. Koreshkova M., Downes H., Stifeeva M. et al. Metamorphic history of the Precambrian lower cratonic crust from U–Pb dating of granulite xenoliths (Anabar province, Siberia) // Contrib Mineral Petrology. 2024. 179/ 74. https://doi.org/10.1007/s00410-024-02156-7
  16. Perchuk L.L., Aranovich L.Ya., Podlesskii K.K. et al. Precambrian granulites of the Aldan shield, eastern Siberia, USSR // Journal of Metamorphic Geology. 1985. V. 3. P. 265–310.
  17. Chen L., Liu X., Wang W., Liu J. Ultrahigh-Temperature Mafic Granulites in the Rauer Group, East Antarctica: Evidence from Conventional Thermobarometry, Phase Equilibria Modeling, and Rare Earth Element Thermometry // Journal of Petrology. 2023. V. 64. Iss. 4. egad014. https://doi.org/10.1093/petrology/egad014
  18. Harley S.L. The origins of granulites: a metamorphic perspective // Geological Magazine. 1989. V. 126(3). P. 215–247.
  19. Locock A.J. An Excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets // Computers & Geosciences. 2008. V. 34. P. 1769–1780.
  20. Gündüz M., Kürşad A. MagMin_PT: An Excel-based mineral classification and geothermobarometry program for magmatic rocks // Mineralogical Magazine. 2023. V. 87. P. 1–9.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).