CHARACTERISTICS OF THE ANTARCTIC BOTTOM WATER TRANSPORT THROUGH THE VEMA FRACTURE ZONE BASED ON MEASUREMENTS AND NUMERICAL MODELING

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study presents the results of an investigation into the transport characteristics of Antarctic Bottom Water (AABW) through the Vema Fracture Zone in the equatorial Atlantic. The analysis is based on observational data primarily collected during expeditions conducted by the Shirshov Institute of Oceanology of the Russian Academy of Sciences and the Faculty of Geography of Moscow State University. The study incorporates direct current measurements, numerical modeling using the INMOM model, and the GLORYS12v1 reanalysis. A comparative analysis of the data from various sources was carried out to evaluate water transport through the fracture zone. The role of the Vema Fracture Zone in the spreading of AABW was examined, and the main characteristics of near-bottom flows were identified. According to direct measurements, modeling results, and reanalysis data, the transport of AABW through the Vema Fracture Zone — using the θ = 1.7°C isotherm as the upper boundary — amounts to 0.9 Sv (observations), 0.8 Sv (model), and 0.7 Sv (reanalysis). The near-bottom isotherms differ across the data sources. Nevertheless, all data types yield similar estimates of bottom water transport (with a maximum discrepancy of up to 20%), indicating good performance of the numerical modeling in the fracture zone.

About the authors

I. A. Potryakhaev

Lomonosov Moscow State University

Email: ilapotrahaev27574@gmail.com
Moscow, Russia

A. N. Demidov

Lomonosov Moscow State University

Moscow, Russia

D. I. Frey

Shirshov Institute of Oceanology, Russian Academy of Sciences

Moscow, Russia

S. A. Dobrolyubov

Lomonosov Moscow State University

Academician of the RAS Moscow, Russia

References

  1. Morozov E.G., Demidov A.N., Tarakanov R.Yu., Zenk W. Abyssal channels in the Atlantic Ocean: water structure and flows // Springer Science & Business Media. 2010. https://doi.org/10.1007/978-90-481-9358-5
  2. Mercier H., Speer K.G., Honnorez J. Flow pathways of bottom water through the Romanche and Chain Fracture Zones // Deep Sea Research. Part I: Oceanographic Research Papers. 1994. V. 41(10). P. 1457–1477. https://doi.org/10.1016/0967-0637(94)90055-8
  3. Mercier H., Speer K.G. Transport of Bottom Water in the Romanche Fracture Zone and the Chain Fracture Zone // Journal of Physical Oceanography. 1998. V. 28(5). P. 779–790. https://doi.org/10.1175/1520-0485(1998)028%3C0779:TOBWIT%3E2.0.CO;2
  4. Demidov A.N., Ivanov A.A., Gippius F.N., Dobroliubov S.A. Transport of Deep and Bottom Waters through the Mid-Atlantic Ridge in the Vema Fracture Zone // Doklady Earth Sciences. 2020. V. 494. P. 735–740. https://doi.org/10.1134/S1028334X20090068
  5. Wüst G. Deep Circulation in the Expanse of the North Atlantic Ocean // The International Hydrographic Review. 1936. V. 2. P. 23–31.
  6. Rhein M., Stramma L., Send U. The Atlantic Deep Western Boundary Current: Water masses and transports near the equator // Journal of Geophysical Research. 1995. V. 100(C2). P. 2441–2457. https://doi.org/10.1029/94JC02355
  7. Demidov A.N., Artamonova K.V., Krasheninnikova S.B., Dobrolubov S.A. Water Mass Structure and Variability in the Kane Gap (Equatorial Atlantic Ocean) // Doklady Earth Sciences. 2024. V. 519. Pt. 2. P. 2298–2307. https://doi.org/10.1134/S1028334X24604280
  8. Frey D.I., Morozov E.G., Smirnova D.A. Sea level anomalies affect the ocean circulation at abyssal depths // Scientific Reports. 2023. V. 13. 20829. https://doi.org/10.1038/s41598-023-48074-9
  9. Krasheninnikova S.B., Demidov A.N., Ivanov A.A. Variability of the Characteristics of the Antarctic Bottom Water in the Subtropical North Atlantic // Oceanology. 2021. V. 61. P. 151–158. https://doi.org/10.1134/s0001437021020090
  10. Morozov E.G., Tarakanov R.Yu., Frey D.I. et al. Bottom water flows in the tropical fractures of the Northern Mid-Atlantic Ridge // Journal of Oceanography. 2018. V. 74. P. 147–167. https://doi.org/10.1007/s10872-017-0445-x
  11. Morozov E.G., Frey D.I., Zuev O.A. et al. Antarctic bottom water in the Vema fracture zone // Journal of Geophysical Research: Oceans. 2023. V. 128. e2023JC019967. https://doi.org/10.1029/2023JC019967
  12. EEgbert G.D., Erofeeva S.Yu. Efficient Inverse Modeling of Barotropic Ocean Tides // Journal of Atmospheric and Oceanic Technology. 2002. V. 19(2). P. 183–204. https://doi.org/10.1175/1520-0426(2002)0190183:EIMOBO2.0.CO;2
  13. Ryan W.B.F. et al. Global Multi-Resolution Topography synthesis // Geochemistry, Geophysics, Geosystems. 2009. V. 10. Q03014. https://doi.org/10.1029/2008GC002332
  14. Ocean Data View. Available online: https://odv.awi.de (date of application: October 31, 2024).
  15. Frey D.I., Morozov E.G., Fomin V.V. et al. Regional modeling of Antarctic bottom water flows in the key passages of the Atlantic // Journal of Geophysical Research: Oceans. 2019. V. 124. P. 8414–8428. https://doi.org/10.1029/2019JC015315
  16. Lellouche J., Greiner E., Bourdallé-Badie R. et al. The Copernicus Global 1/12° Oceanic and Sea Ice GLORYS12 Reanalysis // Earth Sciences. 2021. V. 9. 698876. https://doi.org/10.3389/feart.2021.698876
  17. Gorbushkin A.R., Demidov A.N. Variability of Thermohaline Characteristics at 26.5° N in Reanalyses and Oceanographic Section Data // Russian Meteorology and Hydrology. 2019. V. 44. P. 474–483. https://doi.org/10.3103/S1068373919070069

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).