CHEMICAL PRECIPITATION CHARACTERISTICS OF URANIUM ON CALCIUM PHOSPHATES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Groundwater purification from uranium compounds near sludge storages of nuclear fuel cycle (NFC) facilities by precipitation of apatite group minerals and/or directly uranium (IV, VI) phosphates is a sound method. In laboratory experiments, we demonstrated the efficiency of uranium immobilization in the solid phase of Ca-phosphates during neutralization of natural and technogenic wastewater from two nuclear plants with Na2HPO4 solutions with the removal of more than 98% of uranium. Analysis of the sediment by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy (SEM-EDS) confirms the formation of hydroxyapatite and the brushite mineral CaH(PO4)(H2O)2. When identifying the oxidation state of uranium by XPS, the presence of uranium in the oxidation state of U4+, U5+, and U6+ was observed, with U5+ for up to 30–35 at. %. Our study is the first to demonstrate the possibility of immobilization of uranium in three oxidation states from neutral technogenic and model solutions, which was represented at normal temperature, without oxidation-reduction manipulations and biota presence. Similar results were previously obtained during the oxidation of UO2 to UO2+x only. At the same time, a series of thermodynamic calculations showed that precipitation of U(VI) under atmospheric conditions (open system) can lead to the formation of surface minerals with distinct hyperstoichiometry, including U4O9 and U3O8.

About the authors

O. L Gas'kova

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

Email: gaskova@igm.nsc.ru
Novosibirsk, Russia

A. E Boguslavsky

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

S. M Sofronova

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

A. A Saraev

Synchrotron Radiation Facility SKIF

Koltsovo, Russia

Z. S Vinokurov

Synchrotron Radiation Facility SKIF; Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences

Koltsovo, Russia; Novosibirsk, Russia

References

  1. Martinez R.J., Beazley M.J., Sobecky P.A. Phosphate-mediated remediation of metals and radionuclides // Advances in Ecology. 2014. V. 2014. 786929. P. 1–14. http://dx.doi.org/10.1155/2014/786929
  2. Jiménez-Arroyo A., Gabitov R., Migdisov F., J. Lui, Strzelecki A., Zhao X., Guo X., Paul V., Mlsna T., Perez-Huerta A., Caporuscio F., Hongwu Xu, Roback R. Uranium uptake by phosphate minerals at hydrothermal conditions // Chemical Geology. 2023. V. 634. 121581. https://doi.org/10.1016/j.chemgeo.2023.121581
  3. Hilpmann S., Rossberg A., Steudtner R., Drobot B., Hübner R., Bok F., Prieur D., Bauters S., Kvashnina K.O., Stumpf T., Cherkouk A. Presence of uranium (V) during uranium (VI) reduction by Desulfosporosinus hippei DSM 8344T // Science of the Total Environment. 2023. V. 875. 162593. https://doi.org/10.1016/j.scitotenv.2023.162593
  4. Kvashnina K.O., Butorin S.M., Martin P., Glatzel P. Chemical state of complex uranium oxides // Physical Review Letters. 2013. V. 111. 253002. https://doi.org/10.1103/PhysRevLett.111.253002
  5. Ulrich K-U., Ilton E.S., Veeramani H., Sharp J.O., Bernier-Latmani R., Schofield E.J., Bargar J.R., Giammar D.E. Comparative dissolution kinetics of biogenic and chemogenic uraninite under oxidizing conditions in the presence of carbonate // Geochimica et Cosmochimica Acta. 2009. V. 73. № 20. P. 6065–6083. https://doi.org/10.1016/j.gca.2009.07.012
  6. Chen B., Wang J., Kong L., Mai X., Zheng N., Zhong Q., Liang J., Chen D. Adsorption of uranium from uranium mine contaminated water usingphosphate rock apatite (PRA): Isotherm, kinetic and characterization studies // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017. V. 520. № 5. P. 612–621. https://doi.org/10.1016/j.colsurfa.2017.01.055
  7. Fairley N., Fernandez V., Mireille Richard‐Plouet M., Guillot-Deudon C., Walton J., Smith E., Flahaut D., Greiner M., Biesinger M., Tougaard S., Morgan D., Baltrusaitis J. Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy // Applied Surface Science Advances. 2021. V. 5. 100112. https://doi.org/10.1016/j.apsadv.2021.100112
  8. Gates-Reactor S., Blanton T. The powder diffraction file: a quality materials characterization database // Powder Diffraction. 2019. V. 34. № 4. P. 352–360. https://doi.org/10.1017/S0885715619000812
  9. Lutterotti L. Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2010. V. 268. № 3–4. 334–340. https://doi.org/10.1016/j.nimb.2009.09.053
  10. Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data // Journal of Applied Crystallography. 2011. V. 44. P. 1272–1276. https://doi.org/10.1107/S0021889811038970
  11. Шваров Ю.В. HCh: Новые возможности термодинамического моделирования геохимических систем, предоставляемые Windows // Геохимия. 2008. № 8. С. 898–903.
  12. Ragoussi M.-E., Martinez J.S., Costa D. Second update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. Vol. 14: Chemical thermodynamics. Paris: OECD Nuclear Energy Agency, Data Bank Boulogne-Billancourt, 2021. https://doi.org/10.1787/bf86a907-en
  13. Tamimi F., Sheikh Z., Barralet J. Dicalcium phosphate cements: Brushite and monetite // Acta Biomaterialia. 2012. V. 8. № 2. P. 474–487. https://doi.org/10.1016/j.actbio.2011.08.005
  14. Солоненко А.П., Голованова О.А. Термодинамическое моделирование процессов образования ортофосфатов кальция // Бутлеровские сообщения. 2011. Т. 24. № 2. С. 106–112. http://butlerov.com/bh2011
  15. Солоненко А.П., Голованова О.А., Фильченко М.В., Ишутина В.С., Леонтьева Н.Н., Антоничева Н.В., Буяльская К.С., Савельева Г.Г. Физико-химическое исследование систем состава “гидроксилапатит – брушит”, полученных совместным осаждением // Вестник Омского ун-та. 2012. № 2. С. 135–142.
  16. Фильченко М.В., Голованова О.А., Солоненко А.П. Особенности кристаллизации в системе Ca(NO3)2–(NH4)2HPO4–NH4ОН–Н2О // Вестник ОНЗ РАН. 2011. № 3. NZ6095. https://doi.org/10.2205/2011NZ000225
  17. Wu W., Wang J. Adsorption removal of uranium from aqueous solution by hydroxyapatite: Recent advances and prospects // Annals of Nuclear Energy. 2024. V. 206. 110609. https://doi.org/10.1016/j.anucene.2024.110609
  18. Ardanova L.I., Getman E.I., Loboda S.N., Prisedsky V.V., Tkachenko T.V., Marchenko V.I., Antonovich V.P., Chivireva N.A., Chebishev K.A., Lyashenko A.S. Isomorphous substitutions of rare Earth elements for calcium in synthetic hydroxyapatites // Inorganic Chemistry. 2010. V. 49. № 22. P. 10687–10693. https://doi.org/10.1021/ic1015127
  19. Wu P., Zeng Y.Z., Wang C.M. Prediction of apatite lattice constants from their constituent elemental radii and artificial intelligence methods // Biomaterials. 2004. V. 25. № 6. P. 1123–1130. https://doi.org/10.1016/S0142-9612(03)00617-3
  20. Dale J.R. Cytochrome c maturation and redox homeostasis in uranium-reducing bacterium Shewanella putrefaciens / PhD Thesis. Georgia Institute of Technology, School of Biology, 2007. 152 p. https://www.researchgate.net/publication/27535241

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).