Влияние почвенных гелей на устойчивость почв

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Процесс ветровой и водной эрозии почв часто рассматривают как три последовательные стадии: отрыва, переноса и осаждения частиц. Такой подход не учитывает на почвах влияние на эрозию органоминеральных почвенных гелей, которые покрывают и связывают элементарные почвенные частицы между собой. Целью работы являлась проверка наличия связи между почвенными гелями и устойчивостью почв. В работе использовали метод определения водоустойчивости почв, растровую электронную микроскопию и определение прочности воздушно-сухих почвенных агрегатов при помощи вибрационного рассева. Исследованиями установлено, что при воздействии воздушного потока со скоростью 2 м/с на почвы разных типов, находящихся в состоянии естественной влажности, происходит испарение влаги с одновременным снижением их водоустойчивости примерно в 1.5 раза по сравнению с иссушением без движения воздуха. Для изучения почвенных элементов, которые обеспечивают водоустойчивость и могут выноситься воздухом из агрегатов провели барботирование через воду проб воздуха, после его воздействия на почву. Исследование полученных суспензий на растровом электронном микроскопе показало, что в них содержатся фрагменты почвенных гелей и органические надмолекулярные образования (НМО). Также было установлено, что НМО выдуваются не только из влажных, но и из воздушносухих почв. Показано, что внесение в почвы поливинилового спирта упрочняет гели и повышает механическую прочность почвенных агрегатов. Причём эффективность полимера на влажныхпочвах выше, чем на воздушно-сухих.

Об авторах

Г. Н. Федотов

Московский государственный университет им. М.В. Ломоносова

Email: gennadiy.fedotov@gmail.com
Москва, Россия

В. В. Демидов

Московский государственный университет им. М.В. Ломоносова

Москва, Россия

С. А. Шоба

Московский государственный университет им. М.В. Ломоносова

Москва, Россия

И. В. Горепекин

Московский государственный университет им. М.В. Ломоносова

Москва, Россия

Д. А. Тарасенко

Московский государственный университет им. М.В. Ломоносова

Москва, Россия

О. А. Салимгареева

Московский государственный университет им. М.В. Ломоносова

Москва, Россия

А. И. Сухарев

Московский государственный университет им. М.В. Ломоносова

Москва, Россия

М. Н. Егорова

Московский государственный университет им. М.В. Ломоносова

Москва, Россия

Список литературы

  1. Jarrah M., Mayel S., Tatarko J., Funk R., Kuka K. A review of wind erosion models: Data requirements, processes, and validity // Catena. 2020. V. 187. P. 104388.
  2. García Ruiz J.M., Beguería S., Lana-Renault N., Nadal-Romero E., Cerdà A. Ongoing and emerging questions in water erosion studies // Land Degradation & Development. 2017. V. 28. № 1. P. 5–21.
  3. Гендугов В.М., Глазунов Г.П. О единстве механизмов водной и ветровой эрозии почвы // Почвоведение. 2009. № 5. С. 598–605.
  4. Zezin A.B., Mikheikin S.V., Rogacheva V.B., Zansokhova M.F., Sybachin A.V., Yaroslavov A.A. Polymeric stabilizers for protection of soil and ground against wind and water erosion // Advances in colloid and interface science. 2015. V. 226. P. 17–23.
  5. Антипов-Каратаев И.Н., Келлерман В.В., Хан Д.В. О почвенном агрегате и методах его исследования. Л.: Изд-во АН СССР, 1948. 84 с.
  6. Тюлин А.Ф. Органо-минеральные коллоиды в почве, их генезис и значение для корневого питания высших растений. М.: Изд-во АН СССР, 1958. 52 с.
  7. Angelico R., Colombo C., Di Iorio E., Brtnický M., Fojt J. Conte P. Humic substances: from supramolecular aggregation to fractal conformation – Is there time for a new paradigm? // Applied Sciences. 2023. V. 13. № 4. P. 2236.
  8. Оsterberg R., Mortensen K. Fractal dimension of humic acids. A small angle neutron scattering study // European Biophysics J. 1992. V. 21. № 3. P. 163–167.
  9. Senesi N., Rizzi F.R., Dellino P., Acquafredda P. Fractal humic acids in aqueous suspensions at various concentrations, ionic strengths, and pH values. Colloids and Surfaces A. // Physicochemical and Engineering Aspects. 1997. V. 127. Iss. 1–3. P. 57–68.
  10. Senesi N., Rizzi F.R., Dellino P., Acquafredda P. Fractal dimension of humic acids in aqueous suspension as a function of pH and time // Soil Science Society of Am. J. 1996. V. 60. № 6. P. 1613–1678.
  11. Fasurova N., Cechlovska H., Kucerik J. A comparative study of South Moravian lignite and standard IHSS humic acids’ optical and colloidal properties // Petroleum and Coal. 2006. V. 48. № 2. P. 24–32.
  12. Philippe A., Schaumann G.E. Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review // Environmental science & technology. 2014. V. 48. № 16. P. 8946–8962.
  13. Andersson E., Meklesh V., Gentile L., Bhattacharya A., Stålbrand H., Tunlid A., Persson P., Olsson U. Generation and properties of organic colloids extracted by water from the organic horizon of a boreal forest soil // Geoderma. 2023. V. 432. P. 116386.
  14. Федотов Г.Н., Тарасенко Д.А., Демидов В.В., Горепекин И.В., Егорова М.Н., Сухарев А.И. Взаимосвязь механизмов формирования эрозионной стойкости и водоустойчивости почв // Вестник Московского Университета. Серия 17. Почвоведение. 2024. Т. 79. № 3. C. 80–87.
  15. Федотов Г.Н., Шеин Е.В., Ушкова Д.А. Салимгареева О.А., Горепекин И.В., Потапов Д.И. Надмолекулярные образования из молекул гуминовых веществ и их фрактальная организация // Почвоведение. 2023. № 8. С. 903–910.
  16. Lyu X., Li X., Wang H., Gong J., Li S., Dou H., Dang D. Soil wind erosion evaluation and sustainable management of typical steppe in Inner Mongolia, China // Journal of Environmental Management. 2021. V. 277. P. 111488.
  17. Segovia C., Gómez J.D., Gallardo P., Lozano F.J., Asensio C. Soil nutrients losses by wind erosion in a citrus crop at southeast Spain // Eurasian Soil Science. 2017. V. 50. P. 756–763.
  18. Yan Y., Xin X., Xu X., Wang X., Yang G., Yan R., Chen B. Quantitative effects of wind erosion on the soil texture and soil nutrients under different vegetation coverage in a semiarid steppe of northern China // Plant and soil. 2013. V. 369. P. 585–598.
  19. Mirian I., Pahlavanravi A., Khalilimoghadam B. Effects of Land Use Change on Soil Wind Erodibility in the Horul Azim Marshland // Eurasian Soil Science. 2024. V. 57. № 4. P. 677–691.
  20. Ушкова Д.А., Горепекин И.В., Федотов Г.Н., Батырев Ю.П. Уточнение представлений о механизме водоустойчивости почв // Лесной вестник. 2024. Т. 28. № 3. С. 78–86.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».