ВЫЯВЛЕНИЕ ЗНАЧИМЫХ РНК-СВЯЗЫВАЮЩИХ БЕЛКОВ В ПРОЦЕССЕ СПЛАЙСИНГА CD44 С ПОМОЩЬЮ АЛГОРИТМА УСИЛЕННОЙ БЕТА-РЕГРЕССИИ

Обложка
  • Авторы: Новосад В.О.1,2
  • Учреждения:
    1. Факультет биологии и биотехнологии, Национальный исследовательский университет “Высшая школа экономики“
    2. Федеральное государственное бюджетное учреждение науки Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук
  • Выпуск: Том 510, № 1 (2023)
  • Страницы: 316-321
  • Раздел: Статьи
  • URL: https://ogarev-online.ru/2686-7389/article/view/135704
  • DOI: https://doi.org/10.31857/S2686738922601023
  • EDN: https://elibrary.ru/QFUIKM
  • ID: 135704

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Экспрессия РНК-связывающих белков и их взаимодействие со сплайсируемой пре-мРНК являются ключевым фактором в определении итогового профиля изоформ. Трансмембранный белок CD44 участвует в дифференцировании, инвазии, подвижности, росте и выживании опухолевых клеток, а также является общепринятым маркером раковых стволовых клеток и эпителиально-мезенхимального перехода. При этом функции изоформ этого белка значительно различаются. В настоящей работе разработан основанный на алгоритме усиленной бета-регрессии метод определения значимых в процессе сплайсинга РНК-связывающих белков с помощью моделирования соотношения изоформ. Применение данного метода к анализу сплайсинга CD44 в клетках колоректального рака выявило 20 значимых РНК-связывающих белков. Многие из них ранее были показаны как регуляторы ЭМП, однако впервые представлены как потенциальные факторы сплайсинга CD44.

Об авторах

В. О. Новосад

Факультет биологии и биотехнологии,
Национальный исследовательский университет “Высшая школа экономики“; Федеральное государственное бюджетное
учреждение науки Институт биоорганической химии
им. академиков М.М. Шемякина и Ю.А. Овчинникова
Российской академии наук

Автор, ответственный за переписку.
Email: vnovosad@hse.ru
Россия, Москва; Россия, Москва

Список литературы

  1. Pan Q., Shai O., Lee L.J., Frey B.J., Blencowe B.J., Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing // Nat. Genet. 2008. V. 40. P. 1413–1415.
  2. Wang Z., Burge C.B., Splicing regulation: From a parts list of regulatory elements to an integrated splicing code, // RNA. 2008. V. 14. P. 802–813.
  3. Wang Z., Xiao X., Van Nostrand E., Burge C.B., General and Specific Functions of Exonic Splicing Silencers in Splicing Control // Mol. Cell. 2006. V. 23. P. 61–70.
  4. Xiong H.Y., Barash Y., Frey B.J., Bayesian prediction of tissue-regulated splicing using RNA sequence and cellular context // Bioinformatics. 2011. V. 27. P. 2554–2562.
  5. Hartmann B., Valcárcel J., Decrypting the genome’s alternative messages // Curr. Opin. Cell Biol. 2009. V. 21. P. 377–386.
  6. Xiong H.Y., Alipanahi B., Lee L.J., Bretschneider H., Merico D., Yuen R.K.C., Hua Y., Gueroussov S., Najafabadi H.S., Hughes T.R., Morris Q., Barash Y., Krainer A.R., Jojic N., Scherer S.W., Blencowe B.J., Frey B.J., The human splicing code reveals new insights into the genetic determinants of disease // Science. 2015. № 80. P. 347.
  7. Barash Y., Calarco J.A., Gao W., Pan Q., Wang X., Shai O., Blencowe B.J., Frey B.J., Deciphering the splicing code // Nature. 2010. V. 465. P. 53–59.
  8. Cereda M., Pozzoli U., Rot G., Juvan P., Schweitzer A., Clark T., Ule J., RNAmotifs: prediction of multivalent RNA motifs that control alternative splicing, // Genome Biol. 2014. V. 15. P. R20.
  9. Leung M.K.K., Xiong H.Y., Lee L.J., Frey B.J., Deep learning of the tissue-regulated splicing code, // Bioinformatics. 2014. V. 3. P. i121–i129.
  10. Xu H., Niu M., Yuan X., Wu K., Liu A., CD44 as a tumor biomarker and therapeutic target., // Exp. Hematol. Oncol. 2020. V. 9. P. 36.
  11. Robinson M.D., McCarthy D.J., Smyth G.K., edgeR: a Bioconductor package for differential expression analysis of digital gene expression data., // Bioinformatics. 2010. V. 26. P. 139–40.
  12. Giudice G., Sánchez-Cabo F., Torroja C., Lara-Pezzi E., ATtRACT–a database of RNA-binding proteins and associated motifs, Database. 2016 (2016) baw035.
  13. Giulietti M., Piva F., D’Antonio M., D’Onorio De Meo P., Paoletti D., Castrignanò T., D’Erchia A.M., Picardi E., Zambelli F., Principato G., Pavesi G., Pesole G., SpliceAid-F: a database of human splicing factors and their RNA-binding sites, // Nucleic Acids Res. 2013. V. 41. P. D125–D131.
  14. Novosad V.O., Polikanova I.S., Tonevitsky E.A., Mal’tseva D.V., Expression of CD44 isoforms in human colorectal cancer patient samples and cell lines, // Cell Technol. Biol. Med. 2022. V. 1. P. 49–54.
  15. Bühlmann P., Hothorn T., Boosting Algorithms: Regularization, Prediction and Model Fitting, Stat. Sci. 2007. V. 22.
  16. Hofner B., Mayr A., Schmid M., gamboostLSS : An R Package for Model Building and Variable Selection in the GAMLSS Framework, J. Stat. Softw. 2016. V. 74.
  17. Kim E.J., Kim J.S., Lee S., Lee H., Yoon J., Hong J.H., Chun S.H., Sun D.S., Won H.S., Hong S.A., Kang K., Jo J.Y., Choi M., Shin D.H., Ahn Y., Ko Y.H., QKI, a miR-200 target gene, suppresses epithelial-to-mesenchymal transition and tumor growth, // Int. J. Cancer. 2019. V. 145. P. 1585–1595.
  18. Liang R., Zhang J., Liu Z., Liu Z., Li Q., Luo X., Li Y., Ye J., Lin Y., Mechanism and Molecular Network of RBM8A-Mediated Regulation of Oxaliplatin Resistance in Hepatocellular Carcinoma, // Front. Oncol. 2021. V. 10.
  19. Harvey S.E., Xu Y., Lin X., Gao X.D., Qiu Y., Ahn J., Xiao X., Cheng C., Coregulation of alternative splicing by hnRNPM and ESRP1 during EMT, // RNA. 2018. V. 24. P. 1326–1338.
  20. Xie C., Zhou M., Lin J., Wu Z., Ding S., Luo J., Zhan Z., Cai Y., Xue S., Song Y., EEF1D Promotes Glioma Proliferation, Migration, and Invasion through EMT and PI3K/Akt Pathway, // Biomed Res. Int. 2020 (2020) 1–12.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (92KB)
3.

Скачать (105KB)

© В.О. Новосад, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».