Spectral analysis of sleep EEG in patients with chronic disorders of consciousness by multitaper discrete Fourier transform

Cover Page

Cite item

Full Text

Abstract

Background. In recent years, EEG spectral analysis has become increasingly popular due to the development of computer technologies. Among the methods of spectral analysis, various variants of the window Fourier transform are most often used, taking into account the non-stationary nature of the EEG signal.

Aims: study of the spectral composition of sleep EEG in patients with chronic disorders of consciousness by the method of discrete Fourier transform with windows in the form of spheroidal sequences.

Methods. In this article, the spectral composition of the sleep EEG of 32 patients with impaired consciousness was studied using a discrete Fourier transform with windows in the form of spheroidal sequences. For spectral analysis of EEG sleep, we used polysomnography data obtained overnight. To construct hypnospectrograms, visualize data and research results, we used software written in the Python programming language using the NumPy, scipy, matplotlib, mne, yasa libraries.

Results. The correlations between characteristic changes in the spectral composition of sleep EEG and the level of consciousness and the etiology of the disease were detected.

Conclusions. Consolidation of sleep and normalization of other circadian rhythms is an important component of both the somatic state of patients in intensive care and, possibly, will become a therapeutic target for the restoration of cognition in patients with chronic impairment of consciousness.

About the authors

Mikhail M. Kanarskii

Federal Scientific and Clinical Center of Intensive Care Medicine and Rehabilitology

Author for correspondence.
Email: kanarmm@yandex.ru
ORCID iD: 0000-0002-7635-1048
SPIN-code: 1776-1160
Russian Federation, 777, Building 1, Lytkino, Moscow region

Iuliia Y. Nekrasova

Federal Scientific and Clinical Center of Intensive Care Medicine and Rehabilitology; Moscow Aviation Institute (National Research University)

Email: nekrasova84@yandex.ru
ORCID iD: 0000-0002-4435-8501
SPIN-code: 8947-4230

Ph.D.

Russian Federation, 25-2, Petrovka street, Moscow, 107031; 4, Volokolamskoe shosse, Moscow, 125993

Ilya V. Borisov

Federal Scientific and Clinical Center of Intensive Care Medicine and Rehabilitology

Email: realzel@gmail.com
ORCID iD: 0000-0002-5707-118X
Russian Federation, 25-2, Petrovka street, Moscow, 107031

Dmitry S. Yankevich

Federal Scientific and Clinical Center of Intensive Care Medicine and Rehabilitology

Email: yanson_d@mail.ru
ORCID iD: 0000-0001-5143-7366
SPIN-code: 6506-8058

Ph.D

Russian Federation, 25-2, Petrovka street, Moscow, 107031

Dmitry L. Kolesov

Federal Scientific and Clinical Center of Intensive Care Medicine and Rehabilitology

Email: kolesov@fnkcrr.ru
ORCID iD: 0000-0002-8450-5211
Russian Federation, 25-2, Petrovka street, Moscow, 107031

Oleg B. Lukyanets

Federal Scientific and Clinical Center of Intensive Care Medicine and Rehabilitology

Email: lucyanec@fnkcrr.ru
Russian Federation, 25-2, Petrovka street, Moscow, 107031

Kirill M. Gorshkov

Federal Scientific and Clinical Center of Intensive Care Medicine and Rehabilitology

Email: kolesov@fnkcrr.ru
ORCID iD: 0000-0002-5443-2330
SPIN-code: 5991-9705
Russian Federation, 25-2, Petrovka street, Moscow, 107031

Nadezhda P. Shpichko

Federal Scientific and Clinical Center of Intensive Care Medicine and Rehabilitology

Email: shpicko@fnkcrr.ru
ORCID iD: 0000-0003-3289-6107
SPIN-code: 5092-0536
Russian Federation, 25-2, Petrovka street, Moscow, 107031

Tatyana N. Krylova

Federal Scientific and Clinical Center of Intensive Care Medicine and Rehabilitology

Email: Krylova@fnkcrr.ru
Russian Federation, 25-2, Petrovka street, Moscow, 107031

Nadezhda Y. Kovaleva

Federal Scientific and Clinical Center of Intensive Care Medicine and Rehabilitology

Email: kovalevanu@fnkcrr.ru
Russian Federation, 25-2, Petrovka street, Moscow, 107031

Oleg Y. Lutkin

Federal Scientific and Clinical Center of Intensive Care Medicine and Rehabilitology

Email: lutkin@fnkcrr.ru
Russian Federation, 25-2, Petrovka street, Moscow, 107031

Vitaly V. Evstifeev

Federal Scientific and Clinical Center of Intensive Care Medicine and Rehabilitology

Email: evstifeev@fnkcrr.ru
Russian Federation, 25-2, Petrovka street, Moscow, 107031

References

  1. Kohlschütter EO. Messung der festigkeit des schlafes. Zeitschrift für rationelle Medicin. 1863;3(17): 209–253.
  2. Berger H. Das Elektrenkephalogramm des menschen. Nova Acta Leopoldina. 1929;6(38):173–309.
  3. Loomis AL, Harvey EN, Hobart GA. Cerebral states during sleep, as studied by human brain potentials. J Exp Psychol. 1937;21(2):127–144. doi: 10.1037/h0057431.
  4. Aserinsky E, Kleitman N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science. 1953;118(3062):273–274. doi: 10.1126/science.118.3062.273.
  5. Rechtschaffen A, Kales A. A manual of standardized terminology, techniques, and scoring systems for sleep stages of human subjects. Washington, DC: Public Health Service; 1968.
  6. Rossi Sebastiano D, Visani E, Panzica F, et al. Sleep patterns associated with the severity of impairment in a large cohort of patients with chronic disorders of consciousness. Clin Neurophysiol. 2018;129(3):687–693. doi: 10.1016/ j.clinph.2017.12.012.
  7. Malinowska U, Chatelle C, Bruno MA, et al. Electroencephalographic profiles for differentiation of disorders of consciousness. Biomed Eng Online. 2013;12:109. doi: 10.1186/1475-925X-12-109.
  8. Pavlov YG, Gais S, Müller F, et al. Night sleep in patients with vegetative state. J Sleep Res. 2017;26(5):629–640. doi: 10.1111/jsr.12524.
  9. Mertel I, Pavlov Y, Barner C, et al. Sleep in severe disorders of consciousness: 24-h behavioral and polysomnographic recording. ResearchGate GmbH; 2020. doi: 10.1101/ 2020.05.21.20106807.
  10. Александров М.В., Иванов Л.Б., Лытаев С.А., и др. Электроэнцефалография: руководство / Под ред. М.В. Александрова. 3-е изд., перераб. и доп. — СПб.: СпецЛит, 2020. — 224 с. [Aleksandrov MV, Ivanov LB, Lytaev SA, et al. Ehlektroehntsefalografiya: rukovodstvo. Ed by M.V. Aleksandrov. 3rd revised and updated. Saint Petersburg: SpetsLit; 2020. 224 р. (In Russ.)]
  11. Slepian D. Prolate spheroidal wave functions, Fourier analysis, and uncertainty-V: the discrete case. Bell Sys Tech J. 1978; 57(5):1371–1430. doi: 10.1002/j.1538-7305.1978.tb02104.x.
  12. Thomson DJ. Spectrum estimation and harmonic analysis. Proc IEEE. 1982;70(9):1055–1096.
  13. Prerau MJ, Brown RE, Bianchi MT, et al. Sleep neurophysiological dynamics through the lens of multitaper spectral analysis. Physiology (Bethesda). 2017;32(1):60–92. doi: 10.1152/physiol.00062.2015
  14. Giacino JT, Kalmar K. CRS-R coma recovery scale-revised: administration and scoring guidelines. 2006. doi: 10.5281/zenodo.3818479
  15. Бакулин И.С., Кремнева Е.И., Кузнецов А.В., и др. Хронические нарушения сознания / Под ред. М.А. Пирадова. 2-е изд., перераб. и доп. — М.: Горячая линия — Телеком, 2020. — 288 с. [Bakulin IS, Kremneva EI, Kuznetsov AV, et al. Khronicheskie narusheniya soznaniya. Ed by M.A. Piradov. Moscow: Goryachaya liniya — Telekom; 2020. 288 p. (In Russ).]
  16. Vallat R, Jajcay N. [Raphael Vallat and Nikola Jajcay] raphaelvallat/yasa: v0.3.0 (Version v0.3.0). Zenodo; 2020. doi: 10.5281/zenodo.3818479
  17. Combrisson E, Vallat R, Baptiste EJ, et al. Sleep: an open-source python software for visualization, analysis, and staging of sleep data. Front Neuroinform. 2017;11:60. doi: 10.3389/fninf.2017.00060
  18. Avantaggiato P, Molteni E, Formica F, et al. Polysomnographic sleep patterns in children and adolescents in unresponsive wakefulness syndrome. J Head Trauma Rehabil. 2015;30(5): 334–346. doi: 10.1097/HTR.0000000000000122.
  19. Nekrasova J, Kanarski M, Yankevich D, et al. Retrospective analysis of sleep patterns in patients with chronic disorders of consciousness. Sleep Medicine: X. 2020;2:100024. doi: 10.1016/j.sleepx.2020.100024

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. An example of a hypnogram built according to the R&K method

Download (445KB)
3. Fig. 2. Spectrogram of night sleep (hypnospectrogram) of a healthy volunteer

Download (540KB)
4. Fig. 3. Scheme of applying the discrete Fourier transform using Slepyan sequences

Download (405KB)
5. Fig. 4. Demographic data of the study participants: A - distribution of patients by the level of consciousness, B - distribution of patients by etiology. Note. VS - vegetative state, SMS + / SMS- - the state of minimal consciousness plus / minus, CVA - acute cerebrovascular accident, POV - the consequences of surgery, APGM - anoxic brain damage, SAH - subarachnoid hemorrhage.

Download (396KB)
6. Fig. 5. A three-hour fragment of a hypnospectrogram of a healthy volunteer

Download (566KB)
7. Fig. 6. Six-hour fragment of the monophasic spectrum of patient 3

Download (542KB)
8. Fig. 7. Six-hour fragment of the biphasic spectrum of the patient 13

Download (537KB)
9. Fig. 8. Sixteen-hour fragment of the patient's three-phase spectrum 18

Download (506KB)

Copyright (c) 2020 Kanarskii M.M., Nekrasova I.Y., Borisov I.V., Yankevich D.S., Kolesov D.L., Lukyanets O.B., Gorshkov K.M., Shpichko N.P., Krylova T.N., Kovaleva N.Y., Lutkin O.Y., Evstifeev V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).