Эффективность экстракорпоральной ударно-волновой терапии в лечении гонартроза I–II степени: научный обзор
- Авторы: Нурпеисов Д.Б.1, Эм С.С.1, Куриленко Н.В.1
-
Учреждения:
- Медицинский университет Караганды
- Выпуск: Том 6, № 2 (2024)
- Страницы: 188-203
- Раздел: НАУЧНЫЙ ОБЗОР
- URL: https://ogarev-online.ru/2658-6843/article/view/259231
- DOI: https://doi.org/10.36425/rehab630518
- ID: 259231
Цитировать
Полный текст
Аннотация
Авторы обзорной статьи провели всесторонний анализ существующих исследований по применению экстракорпоральной ударно-волновой терапии в лечении гонартроза I–II степени, а также сравнили эффективность данного метода с традиционным лечением (плацебо, кортикостероиды, гиалуроновая кислота, фармакологические препараты). Основные результаты обзора указывают на значительные улучшения в виде снижения боли и повышения функционального состояния коленного сустава у пациентов, проходящих экстракорпоральную ударно-волновую терапию, по сравнению с другими методами лечения. Авторы подчёркивают неинвазивность и безопасность экстракорпоральной ударно-волновой терапии, отмечая отсутствие серьёзных побочных эффектов, что делает данную процедуру предпочтительной для клинического применения. Авторы проанализировали доступную литературу и сделали акцент на сравнительной эффективности экстракорпоральной ударно-волновой терапии, предоставляя врачам основу для рекомендаций. В то же время указали на необходимость дополнительных исследований для уточнения оптимальных параметров применения методики и подтверждения её долгосрочной эффективности, особенно в сравнении с другими современными методами лечения гонартроза. Таким образом, представленный материал призван не только информировать о текущем состоянии исследований в области лечения гонартроза, но и стимулировать дальнейшие научные разработки в этом направлении, подкрепляя клиническую практику методами, основанными на доказательствах.
Полный текст
Открыть статью на сайте журналаОб авторах
Д. Б. Нурпеисов
Медицинский университет Караганды
Email: nurpeisov707@mail.ru
резидент-реабилитолог
Казахстан, 100000, Караганда, ул. Гоголя, 40Сабина Сергеевна Эм
Медицинский университет Караганды
Email: sse11@mail.ru
резидент-реабилитолог
Казахстан, КарагандаН. В. Куриленко
Медицинский университет Караганды
Автор, ответственный за переписку.
Email: kkvvn@mail.ru
резидент-реабилитолог
Казахстан, КарагандаСписок литературы
- Zhang Y.F., Yang L.I., Shao-Wen C.H., Hao W.E. Dose-related effects of radial extracorporeal shock wave therapy for knee osteoarthritis: A randomized controlled trial // J Rehabil Med. 2021. Vol. 53, N 1. P. jrm00144. doi: 10.2340/16501977-2782
- Li W., Pan Y., Yang Q., et al. Extracorporeal shockwave therapy for the treatment of knee osteoarthritis: A retrospective study // Medicine. 2018. Vol. 97, N 27. P. e11418. doi: 10.1097/MD.0000000000011418
- Arden N.K,. Perry T.A., Bannuru R.R., et al. Non-surgical management of knee osteoarthritis: Comparison of ESCEO and OARSI 2019 guidelines // Nat Rev Rheumatol. 2021. Vol. 17, N 1. P. 59–66. EDN: QRHBOT doi: 10.1038/s41584-020-00523-9
- Silva A.C., Almeida V.S., Veras P.M., et al. Effect of extracorporeal shock wave therapy on pain and function in patients with knee osteoarthritis: A systematic review with meta-analysis and grade recommendations // Clin Rehabil. 2022. Vol. 37, N 6. P. 760–773. EDN: KBXRIV doi: 10.1177/02692155221146086
- Grazina R., Andrade R., Bastos R., et al. Clinical management in early OA // Adv Exp Med Biol. 2018. N 1059. P. 111–135. doi: 10.1007/978-3-319-76735-2_5
- Auersperg V., Trieb K. Extracorporeal shock wave therapy: An update // EFORT Open Rev. 2020. Vol. 5, N 10. P. 584–592. doi: 10.1302/2058-5241.5.190067
- Wang C.J. Extracorporeal shockwave therapy in musculoskeletal disorders // J Orthop Surg Res. 2019. N 7. P. 11. EDN: QULFTK doi: 10.1186/1749-799X-7-11
- Fu M., Zhou H., Li Y., et al. Global, regional, and national burdens of hip osteoarthritis from 1990 to 2019: Estimates from the 2019 Global Burden of Disease Study // Arthritis Res Ther. 2022. Vol. 24, N 1. P. 8. EDN: TIOWEE doi: 10.1186/s13075-021-02705-6
- Hawker G.A., King L.K. The burden of osteoarthritis in older adults // Clin Geriatr Med. 2022. Vol. 38, N 2. P. 181–192. EDN: AQFNCE doi: 10.1016/j.cger.2021.11.005
- Ochiai N., Ohtori S., Sasho T., et al. Extracorporeal shock wave therapy improves motor dysfunction and pain originating from knee osteoarthritis in rats // Osteoarthr Cartil. 2019. Vol. 15, N 9. P. 1093–1096. doi: 10.1016/j.joca.2007.03.011
- Spitaels D., Mamouris P., Vaes B., et al. Epidemiology of knee osteoarthritis in general practice: A registry-based study // BMJ Open. 2020. Vol. 10, N 1. P. e031734. EDN: OJAIES doi: 10.1136/bmjopen-2019-031734
- Li D., Li S., Chen Q., et al. The prevalence of symptomatic knee osteoarthritis in relation to age, sex, area, region, and body mass index in China: A systematic review and meta-analysis // Front Med. 2020. N 7. P. 304. doi: 10.3389/fmed.2020.00304
- Sulaiman S. Understanding chronic pain among people with knee osteoarthritis // Int J Care Scholars. 2021. Vol. 4, N 2. P. 93–94. doi: 10.31436/ijcs.v4i2.195
- Allen K.D., Thoma L.M., Golightly Y.M. Epidemiology of osteoarthritis // Osteoarthr Cartil. 2022. Vol. 30, N 2. P. 184–195. EDN: LHSHUZ doi: 10.1016/j.joca.2021.04.020
- Xia Y., Wu Q., Wang H., et al. Global, regional and national burden of gout, 1990–2017: A systematic analysis of the Global Burden of Disease Study // Rheumatology. 2019. Vol. 59, N 7. P. 1529–1538. EDN: LECNXH doi: 10.1093/rheumatology/kez476
- Abbott A., Gustafsson K., Zhou C., et al. Analgesic prescriptions received by patients before commencing the BOA model of care for osteoarthritis: A Swedish national registry study with matched reference and clinical guideline benchmarking // Acta Orthop. 2021. N 93. P. 51–58. EDN: UQOLIO doi: 10.1080/17453674.2021.1992932
- Yoshimura N., Muraki S., Iidaka T., et al. Prevalence and co-existence of locomotive syndrome, sarcopenia, and frailty: The third survey of Research on Osteoarthritis/Osteoporosis Against Disability (ROAD) study // J Bone Miner Metab. 2019. Vol. 37, N 6. P. 1058–1066. EDN: WDJOWS doi: 10.1007/s00774-019-01012-0
- Al Saleh J., Almoallim H., Elzorkany B., et al. Assessing the burden of osteoarthritis in africa and the middle east: A rapid evidence assessment // Open Access Rheumatol. 2023. N 15. P. 23–32. EDN: XMBDYM doi: 10.2147/OARRR.S390778
- Chou W.Y., Cheng J.H., Wang C.J., et al. Shockwave targeting on subchondral bone is more suitable than articular cartilage for knee osteoarthritis // Int J Med Sci. 2019. Vol. 16, N 1. P. 156–166. doi: 10.7150/ijms.26659
- Gao Y., Du L., Cai J., et al. Effects of functional limitations and activities of daily living on the mortality of the older people: A cohort study in China // Front Public Health. 2022. N 10. P. 1098794. EDN: ISPRLW doi: 10.3389/fpubh.2022.1098794
- Liao C.D., Chen H.C., Huang M.H., et al. Comparative efficacy of intra-articular injection, physical therapy, and combined treatments on pain, function, and sarcopenia indices in knee osteoarthritis: A network meta-analysis of randomized controlled trials // Int J Mol Sci. 2023. Vol. 24, N 7. P. 6078. doi: 10.3390/ijms24076078
- Noor N.A., Nurul A.A., Zain MR, et al. Extracellular vesicles from mesenchymal stem cells as potential treatments for osteoarthritis // Cells. 2021. Vol. 10, N 6. P. 1287. EDN: UJEAGO doi: 10.3390/cells10061287
- Olsson S., Akbarian E., Lind A., et al. Automating classification of osteoarthritis according to Kellgren-Lawrence in the knee using deep learning in an unfiltered adult population // BMC Musculoskelet Disord. 2021. Vol. 22, N 1. P. 844. EDN: RDZZSH doi: 10.1186/s12891-021-04722-7
- Martins M., Araújo R., Pinheiro R., et al. Beyond gonarthrosis in the elderly: A case report of subchondral insufficiency fracture of the knee // Cureus. 2023. Vol. 15, N 1. P. e34366. EDN: PMUTJW doi: 10.7759/cureus.34366
- Atukorala I., Hunter D.J. A review of quality-of-life in elderly osteoarthritis // Expert Rev Pharmacoecon Outcomes Res. 2023. Vol. 23, N 4. P. 365–381. EDN: OEBSXV doi: 10.1080/14737167.2023.2181791
- Messina O.D., Wilman V.M., Neira LF. Nutrition, osteoarthritis and cartilage metabolism // Aging Clin Exp Res. 2019. Vol. 31, N 6. P. 807–813. EDN: XLXZMU doi: 10.1007/s40520-019-01191-w
- Anil U., Markus D.H., Hurley E.T., et al. The efficacy of intra-articular injections in the treatment of knee osteoarthritis: A network meta-analysis of randomized controlled trials // The Knee. 2021. N 32. P. 173–182. EDN: METTTN doi: 10.1016/j.knee.2021.08.008
- Tognolo L., Maccarone M.C., de Trane S., et al. Therapeutic exercise and conservative injection treatment for early knee osteoarthritis in athletes: A scoping review // Medicina. 2022. Vol. 58, N 1. P. 69. EDN: KHPFWV doi: 10.3390/medicina58010069
- Alexander L.A., Denisov L.N., Zotkin E.G., et al. Pharmacological management of osteoarthritis with a focus on symptomatic slow-acting drugs: Recommendations from leading Russian experts // J Clin Rheumatol. 2021. Vol. 27, N 8. P. e533–e539. EDN: EIFVLN doi: 10.1097/RHU.0000000000001507
- Quicke J.G., Holden M.A., Bennell K.L., et al. Where to from here? Is there a role for physical therapists in enacting evidence-based guidelines for weight loss in adults with osteoarthritis who are overweight? // Physical Therapy. 2020. Vol. 100, N 1. P. 3–7. doi: 10.1093/ptj/pzz135
- Peng H., Ou A., Huang X., et al. Osteotomy around the knee: The surgical treatment of osteoarthritis // Orthop Surg. 2021. Vol. 13, N 5. P. 1465–1473. doi: 10.1111/os.13021
- Atar S., Demirhan E., Cabuk H., et al. Comparison of pain, muscle strength, and functional status following unicompartmental knee arthroplasty, Total knee arthroplasty, and conservative management of gonarthrosis // Indian J Orthop. 2022. Vol. 56, N 3. P. 464-472. EDN: BMJHGL doi: 10.1007/s43465-021-00549-5
- Han S.B., Seo I.W., Shin Y.S. Intra-articular injections of hyaluronic acid or steroids associated with better outcomes than platelet-rich plasma, adipose mesenchymal stromal cells, or placebo in knee osteoarthritis: A network meta-analysis // Arthroscopy. 2021. Vol. 37, N 1. P. 292–306. doi: 10.1016/j.arthro.2020.03.041
- Sargin S., Guler N.Ş., Sahin N., Aslan A. Effects of total knee arthroplasty on balance and fall risk in elderly patients with severe gonarthrosis: An age-and sex-matched comparative study // Niger J Clin Pract. 2022. Vol. 25, N 9. P. 1445–1451. EDN: NSJWZI doi: 10.4103/njcp.njcp_1856_21
- Notarnicola A., Moretti L., Baglioni M., et al. Efficacy of shock waves combined with adjuvant therapy with tendon supplement in the treatment of plantar fasciitis: A prospective randomized study // J Food Nutr Res. 2021. Vol. 9, N 3. P. 148–153. doi: 10.12691/jfnr-9-3-7
- An S., Li J., Xie W., et al. Extracorporeal shockwave treatment in knee osteoarthritis: Therapeutic effects and possible mechanism // Biosci Rep. 2020. Vol. 40, N 11. P. BSR20200926. doi: 10.1042/BSR20200926
- Sokolakis I., Dimitriadis F., Teo P., et al. The basic science behind low-intensity extracorporeal shockwave therapy for erectile dysfunction: A systematic scoping review of pre-clinical studies // J Sex Med. 2019. Vol. 16, N 2. P. 168–194. doi: 10.1016/j.jsxm.2018.12.016
- Xu D., Jiang W., Huang D., et al. Comparison between extracorporeal shock wave therapy and local corticosteroid injection for plantar fasciitis // Foot Ankle Int. 2020. Vol. 41, N 2. P. 200–205. doi: 10.1177/1071100719891111
- Ma H., Zhang W., Shi J., et al. The efficacy and safety of extracorporeal shockwave therapy in knee osteoarthritis: A systematic review and meta-analysis // Int J Surg. 2020. N 75. P. 24–34. doi: 10.1016/j.ijsu.2020.01.017
- Zhao Z., Li J., Bai X., et al. Microfracture augmentation with direct in situ radial shockwave stimulation with appropriate energy has comparable repair performance with tissue engineering in the porcine osteochondral defect model // Am J Sports Med. 2022. Vol. 50, N 13. P. 3660–3670. EDN: KZKWKV doi: 10.1177/03635465221125936
- Jhan S.W., Wang C.J., Wu K.T., et al. Comparison of extracorporeal shockwave therapy with non-steroid anti-inflammatory drugs and intra-articular hyaluronic acid injection for early osteoarthritis of the knees // Biomedicines. 2022. Vol. 10, N 2. P. 202. EDN: KVJMVO doi: 10.3390/biomedicines10020202
- Aguilera-Saez J., Munoz P., Serracanta J., et al. Extracorporeal shock wave therapy role in the treatment of burn patients: A systematic literature review // Burns. 2020. Vol. 46, N 7. P. 1525–1532. doi: 10.1016/j.burns.2019.07.023
- Ho K.D., Yang C.L., Lo H.Y., et al. Extracorporeal shockwave therapy with a modified technique on tendon and ligament for knee osteoarthritis: A randomized controlled trial // Am J Phys Med Rehabil. 2022. Vol. 101, N 1. P. 11–17. doi: 10.1097/PHM.0000000000001730
- Cheng J.H., Wang C.J. Biological mechanism of shockwave in bone // Int J Surg. 2015. Vol. 24, Pt. B. P. 143–146. doi: 10.1016/j.ijsu.2015.06.059
- Moya D., Ramón S., Schaden W., et al. The role of extracorporeal shockwave treatment in musculoskeletal disorders // JBJS. 2018. Vol. 100, N 3. P. 251–263. doi: 10.2106/JBJS.17.00661
- Holfeld J., Tepeköylü C., Kozaryn R., et al. Shockwave therapy differentially stimulates endothelial cells: Implications on the control of inflammation via toll-like receptor 3 // Inflammation. 2014. Vol. 37, N 1. P. 65–70. EDN: FSAVLD doi: 10.1007/s10753-013-9712-1
- Chang C.N., Ko N.Y., Hu Y.N., et al. Extracorporeal shock wave therapy in the treatment of knee osteoarthritis: A review of mechanism of action and clinical efficacy // Int J Gerontol. 2020. Vol. 14, N 3. P. 154–158. doi: 10.6890/IJGE.202008_14(3).0001
- Poenaru D., Sandulescu M.I., Cinteza D. Biological effects of extracorporeal shockwave therapy in tendons: A systematic review // Biomed Rep. 2023. Vol. 18, N 2. P. 15. EDN: SUOQHA doi: 10.3892/br.2022.1597
- Cheng J.H., Jhan S.W., Hsu C.C., et al. Extracorporeal shockwave therapy modulates the expressions of proinflammatory cytokines IL33 and IL17A, and their receptors ST2 and IL17RA, within the articular cartilage in early avascular necrosis of the femoral head in a rat model // Mediators Inflamm. 2021. Vol. 2021. P. 9915877. doi: 10.1155/2021/9915877
- Zhao W., Gao Y., Zhang S., et al. Extracorporeal shock wave therapy for bone marrow edema syndrome in patients with osteonecrosis of the femoral head: A retrospective cohort study // J Orthop Surg Res. 2021. Vol. 16, N 1. P. 21. EDN: CESZUH doi: 10.1186/s13018-020-02159-7
- Fan Y., Feng Z., Cao J., et al. Efficacy of extracorporeal shock wave therapy for achilles tendinopathy: A meta-analysis // Orthop J Sports Med. 2020. Vol. 8, N 2. P. 2325967120903430. doi: 10.1177/2325967120903430
- Ma H., Zhang W., Shi J., et al. The efficacy and safety of extracorporeal shockwave therapy in knee osteoarthritis: A systematic review and meta-analysis // Int J Surg. 2020. N 75. P. 24–34. doi: 10.1016/j.ijsu.2020.01.017
- Ashmwe M., Posa K., Rührnößl A., et al. Effects of extracorporeal shockwave therapy on functional recovery and circulating miR-375 and miR-382-5p after subacute and chronic spinal cord contusion injury in rats // Biomedicines. 2022. Vol. 10, N 7. P. 1630. EDN: BKJUER doi: 10.3390/biomedicines10071630
- Paterson K.L., Gates L. Clinical assessment and management of foot and ankle osteoarthritis: A review of current evidence and focus on pharmacological treatment // Drugs Aging. 2019. Vol. 36. P. 203–211. EDN: BSIQDO doi: 10.1007/s40266-019-00639-y
- Abbott J.H., Wilson R., Pinto D., et al. Incremental clinical effectiveness and cost effectiveness of providing supervised physiotherapy in addition to usual medical care in patients with osteoarthritis of the hip or knee: 2-year results of the MOA randomised controlled trial // Osteoarthritis Cartilage. 2019. Vol. 27, N 3. P. 424–434. doi: 10.1016/j.joca.2018.12.004
- Migliorini F., Driessen A., Quack V., et al. Comparison between intra-articular infiltrations of placebo, steroids, hyaluronic and PRP for knee osteoarthritis: A Bayesian network meta-analysis // Arch Orthop Trauma Surg. 2021. Vol. 141, N 9. P. 1473–1490. EDN: LOWMTH doi: 10.1007/s00402-020-03551-y
- Rodríguez-Merchán E.C. Intraarticular injections of mesenchymal stem cells in knee osteoarthritis: A review of their current molecular mechanisms of action and their efficacy // Int J Mol Sci. 2022. Vol. 23, N 23. P. 14953. EDN: UUSXOP doi: 10.3390/ijms232314953
- Ko N.Y., Chang C.N., Cheng C.H., et al. Comparative effectiveness of focused extracorporeal versus radial extracorporeal shockwave therapy for knee osteoarthritis: Randomized controlled study // Int J Environ Res Public Health. 2022. Vol. 19, N 15. P. 9001. EDN: FMBUDA doi: 10.3390/ijerph19159001
- Elgendy M.H., Elsamahy S.A., Mostafa M.S., et al. Efficacy of shockwave therapy versus intra-articular platelet-rich plasma injection in management of knee osteoarthritis: A randomized controlled trial // Int J Pharm Res. 2020. Vol. 12, N 4. P. 4283–4289. doi: 10.31838/ijpr/2020.12.04.589
- Bernardo-Filho M., Sañudo B., Seixas A., et al. Integrated role of nonpharmacological interventions for rehabilitation of individuals with musculoskeletal disorders // BioMed Res Int. 2020. Vol. 2020. P. 9493623. doi: 10.1155/2020/9493623
- Ishijima M., Nakamura T., Shimizu K., et al. Intra-articular hyaluronic acid injection versus oral non-steroidal anti-inflammatory drug for the treatment of knee osteoarthritis: A multi-center, randomized, open-label, non-inferiority trial // Arthritis Res Ther. 2014. Vol. 16, N 1. P. R18. EDN: TRIYTV doi: 10.1186/ar4446
- Lee J.K., Lee B.Y., Shin W.Y., et al. Effect of extracorporeal shockwave therapy versus intra-articular injections of hyaluronic acid for the treatment of knee osteoarthritis // Ann Rehabil Med. 2017. Vol. 41, N 5. P. 828–835. doi: 10.5535/arm.2017.41.5.828
- Vetrano M., Ranieri D., Nanni M., et al. Hyaluronic acid (HA), platelet-rich plasm and extracorporeal shock wave therapy (ESWT) promote human chondrocyte regeneration in vitro and ESWT-mediated increase of CD44 expression enhances their susceptibility to HA treatment // PLoS One. 2019. Vol. 14, N 6. P. e0218740. doi: 10.1371/journal.pone.0218740
- Li T., Ma J., Zhao T., et al. Application and efficacy of extracorporeal shockwave treatment for knee osteoarthritis: A systematic review and meta-analysis // Exp Ther Med. 2019. Vol. 18, N 4. P. 2843–2850. doi: 10.3892/etm.2019.7897
- Karaca İ., Gül H., Erel S. Comparison of extracorporeal shock wave therapy and high-intensity laser therapy on pain, grip strength, and function in patients with lateral epicondylalgia: A randomized controlled study // Lasers Med Sci. 2022. Vol. 37, N 8. P. 3309–3317. EDN: FMDDOI doi: 10.1007/s10103-022-03631-y
- Thammajaree C., Theapthong M., Palee P., et al. Effects of radial extracorporeal shockwave therapy versus high intensity laser therapy in individuals with plantar fasciitis: A randomised clinical trial // Lasers Med Sci. 2023. Vol. 38, N 1. P. 127. EDN: TMSSUH doi: 10.1007/s10103-023-03791-5
- ElMeligie M.M., Gbreel M.I., Yehia R.M., et al. Clinical efficacy of high-intensity laser therapy on lateral epicondylitis patients: A systematic review and meta-analysis // Am J Phys Med Rehabil. 2023. Vol. 102, N 1. P. 64–70. doi: 10.1097/PHM.0000000000002039
- Lian J., Mohamadi A., Chan J.J., et al. Comparative efficacy and safety of nonsurgical treatment options for enthesopathy of the extensor carpi radialis brevis: A systematic review and meta-analysis of randomized placebo-controlled trials // Am J Sports Med. 2019. Vol. 47, N 12. P. 3019–3029. EDN: OUSCBU doi: 10.1177/0363546518801914
- Xu D., Ma W., Jiang W., et al. A randomized controlled trial: Comparing extracorporeal shock wave therapy versus local corticosteroid injection for the treatment of carpal tunnel syndrome // Int Orthop. 2020. Vol. 44, N 1. P. 141–146. EDN: RGSHBX doi: 10.1007/s00264-019-04432-9
- Zhao Z., Jing R., Shi Z., et al. Efficacy of extracorporeal shockwave therapy for knee osteoarthritis: A randomized controlled trial // J Surg Res. 2013. Vol. 185, N 2. P. 661–666. doi: 10.1016/j.jss.2013.07.004
- Liao C.D., Tsauo J.Y., Liou T.H., et al. Clinical efficacy of extracorporeal shockwave therapy for knee osteoarthritis: A systematic review and meta-regression of randomized controlled trials // Clin Rehabil. 2019. Vol. 33, N 9. P. 1419–1430. doi: 10.1177/0269215519846942
Дополнительные файлы
