Efferent methods of therapy for critical illness

封面

如何引用文章

全文:

详细

Extracorporeal blood purification is intended to eliminate dysregulation of the immune system. The concept of extracorporeal therapy is based on the nonspecific clearance of inflammatory mediators and triggers, which attenuates the systemic expression of inflammatory mediators. The main types of extracorporeal therapy are hemoadsorption and plasma exchange. Hemoadsorption is used primarily as an adjuvant treatment for septic shock and other severe inflammatory conditions, including severe forms of COVID-19 with cytokine storm.

Reliable data demonstrating the benefit of hemoadsorption in critically ill patientsis is limited. Recommendations for the use of hemoadsorption devices are often based on incomplete data or questionable interpretations of available data. Given the lack of evidence for the benefit of hemoadsorption in the treatment of severe inflammation, sepsis, liver failure and rhabdomyolysis, its routine use in clinical practice is not justified until the mechanisms underlying these findings are fully elucidated.

Plasma replacement is a potentially life-saving invasive extracorporeal blood purification procedure that replaces plasma with a substitute fluid (saline, albumin solution, fresh frozen plasma, or a combination of these) with the risk of side effects and complications. There is still uncertainty regarding the timing, type of plasma exchange, volume and frequency of plasma filtration. Although plasma replacement is considered to be relatively safe, there is still insufficient evidence to support its inclusion in sepsis treatment protocols.

Reports of the use of extracorporeal methods in the treatment of patients with severe refractory systemic inflammation provide evidence of decreased levels of inflammatory biomarkers, improved hemodynamic parameters, and decreased organ failure. However, according to the results of randomized clinical trials, extracorporeal therapy does not affect clinical outcomes, and in some even increases mortality. To clarify the effectiveness of extracorporeal therapy, it is necessary to study the mechanisms of interaction of the devices used with target and non-target blood components and large-scale randomized controlled trials assessing the ability of this therapy to improve clinical outcomes.

作者简介

Andrey Sarana

Saint-Petersburg State University; Health Committee of the Administration of St. Petersburg

Email: asarana@mail.ru
ORCID iD: 0000-0003-3198-8990
SPIN 代码: 7922-2751

MD, Cand. Sci. (Medicine), Associate Professor

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Sergey Shcherbak

Saint-Petersburg State University; Saint-Petersburg City Hospital № 40 of Kurortny District

Email: b40@zdrav.spb.ru
ORCID iD: 0000-0001-5036-1259
SPIN 代码: 1537-9822

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Dmitry Vologzhanin

Saint-Petersburg State University; Saint-Petersburg City Hospital № 40 of Kurortny District

Email: volog@bk.ru
ORCID iD: 0000-0002-1176-794X
SPIN 代码: 7922-7302

MD, Dr. Sci. (Medicine)

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Aleksandr Golota

Saint-Petersburg City Hospital № 40 of Kurortny District

编辑信件的主要联系方式.
Email: golotaa@yahoo.com
ORCID iD: 0000-0002-5632-3963
SPIN 代码: 7234-7870

MD, Cand. Sci. (Medicine), Associate Professor

俄罗斯联邦, Saint Petersburg

Tatyana Kamilova

Saint-Petersburg City Hospital № 40 of Kurortny District

Email: kamilovaspb@mail.ru
ORCID iD: 0000-0001-6360-132X
SPIN 代码: 2922-4404

Cand. Sci. (Biology)

俄罗斯联邦, Saint Petersburg

Stanislav Makarenko

Saint-Petersburg State University; Saint-Petersburg City Hospital № 40 of Kurortny District

Email: st.makarenko@gmail.com
ORCID iD: 0000-0002-1595-6668
SPIN 代码: 8114-3984

Assistant Lecturer

俄罗斯联邦, Saint Petersburg; Saint Petersburg

参考

  1. Mehta Y, Paul R, Ansari AS, et al. Extracorporeal blood purification strategies in sepsis and septic shock: An insight into recent advancements. World J Crit Care Med. 2023;12(2):71-88. doi: 10.5492/wjccm.v12.i2.71
  2. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801-810. EDN: EVYMIC doi: 10.1001/jama.2016.0287
  3. Li Y, Li H, Guo J, et al. Coupled plasma filtration adsorption for the treatment of sepsis or septic shock: A systematic review and meta-analysis. BMC Infect Dis. 2022;22(1):714. doi: 10.1186/s12879-022-07689-5
  4. Ronco C, Chawla L, Husain-Syed F, Kellum JA. Rationale for sequential extracorporeal therapy (SET) in sepsis. Crit Care. 2023;27(1):50. doi: 10.1186/s13054-023-04310-2
  5. Monard C, Abraham P, Schneider A, Rimmelé T. New targets for extracorporeal blood purification therapies in sepsis. Blood Purif. 2023;52(1):1-7. EDN: VWGANS doi: 10.1159/000524973
  6. Supady А, Brodie D, Wengenmayer T. Extracorporeal haemoadsorption: Does the evidence support its routine use in critical care? Lancet Respir Med. 2022;10(3):307-312. EDN: EPSLWL doi: 10.1016/S2213-2600(21)00451-3
  7. Friesecke S, Träger K, Schittek GA, et al. International registry on the use of the CytoSorb adsorber in ICU patients: Study protocol and preliminary results. Med Klin Intensivmed Notfmed. 2019;114(8): 699-707. doi: 10.1007/s00063-017-0342-5
  8. Wei S, Zhang Y, Zhai K, et al. CytoSorb in patients with coronavirus disease 2019: A rapid evidence review and meta-analysis. Front Immunol. 2023:(14):1067214. doi: 10.3389/fimmu.2023.1067214
  9. CytoSorb [Internet]. The Adsorber-CytoSorbents Europe GmbH. Available from: https://CytoSorb-therapy.com/en/the-adsorber/. Accessed: 15.01.2024.
  10. CytoSorb [Internet]. Authorized by FDA for Emergency Treatment of COVID-19. Available from: https://www.fda.gov/media/136866/download. Accessed: 15.01.2024.
  11. Brouwer WP, Duran S, Ince C. Improved survival beyond 28 days up to 1 year after CytoSorb treatment for refractory septic shock: A propensity-weighted retrospective survival analysis. Blood Purif. 2021;50(4-5):539-545. EDN: DAOTJR doi: 10.1159/000512309
  12. Paul R, Sathe P, Kumar S, et al. Multicentered prospective investigator initiated study to evaluate the clinical outcomes with extracorporeal cytokine adsorption device (CytoSorb) in patients with sepsis and septic shock. World J Crit Care Med. 2021;10(1):22-34. doi: 10.5492/wjccm.v10.i1.22
  13. Supady A, Weber E, Rieder M, et al. Cytokine adsorption in patients with severe COVID-19 pneumonia requiring extracorporeal membrane oxygenation (CYCOV): A single centre, open-label, randomised, controlled trial. Lancet Respir Med. 2021;9(7):755-762. doi: 10.1016/S2213-2600(21)00177-6
  14. Akin M, Garcheva V, Sieweke JT, et al. Early use of hemoadsorption in patients after out-of hospital cardiac arrest--a matched pair analysis. PLoS One. 2020;15(11):e0241709. doi: 10.1371/journal.pone.0241709
  15. Garcia PD, Hilty MP, Held U, et al. Cytokine adsorption in severe, refractory septic shock. Intensive Care Med. 2021;47(11):1334-1336. EDN: EOSRJT doi: 10.1007/s00134-021-06512-0
  16. Garbero E, Livigni S, Ferrari F, et al. High dose coupled plasma filtration and adsorption in septic shock patients results of the COMPACT-2: A multicentre, adaptive, randomised clinical trial. Intensive Care Med. 2021;47(11):1303-1311. doi: 10.1007/s00134-021-06501-3
  17. Kohler T. Does adjunctive hemoadsorption with CytoSorb affect survival of COVID-19 patients on ECMO? A critical statement. J Crit Care. 2021:(66):187-188. doi: 10.1016/j.jcrc.2021.07.011
  18. Putzu A, Schorer R. Hemoadsorption in critically ill patients with or without COVID-19: A word of caution. J Crit Care. 2021:(65): 140-141. EDN: KOFDJV doi: 10.1016/j.jcrc.2021.06.007
  19. Biever P, Staudacher DL, Sommer MJ, et al. Hemoadsorption eliminates remdesivir from the circulation: Implications for the treatment of COVID-19. Pharmacol Res Perspect. 2021;9(2):e00743. doi: 10.1002/prp2.743
  20. Matson J, Lange P, Honore PM, Chung KK. Adverse outcomes with extracorporeal adsorbent blood treatments in toxic systemic inflammation: A perspective on possible mechanisms. Ann Intensive Care. 2022;12(1):105. EDN: RKCQRL doi: 10.1186/s13613-022-01078-6
  21. Junhai Z, Beibei C, Jing Y, Li L. Effect of high-volume hemofiltration in critically ill patients: A systematic review and meta-analysis. Med Sci Monit. 2019:(25):3964-3975. doi: 10.12659/MSM.916767
  22. Monard C, Rimmelé T, Ronco C. Extracorporeal blood purification therapies for sepsis. Blood Purif. 2019;47(Suppl 3):1-14. EDN: TCYTNP doi: 10.1159/000499520
  23. Zhang L, Feng Y, Fu P. Blood purification for sepsis: An overview. Precis Clin Med. 2021;4(1):45-55. EDN: NNTGNV doi: 10.1093/pcmedi/pbab005
  24. Andersson M, Östholm-Balkhed Å, Fredrikson M, et al. Delay of appropriate antibiotic treatment is associated with high mortality in patients with community-onset sepsis in a Swedish setting. Eur J Clin Microbiol Infect Dis. 2019;38(7):1223-1234. EDN: GFSAUN doi: 10.1007/s10096-019-03529-8
  25. Niazi NS, Nassar TI, Stewart IJ, et al. A review of extracorporeal blood purification techniques for the treatment of critically ill Coronavirus Disease 2019 Patients. ASAIO J. 2022;68(10):1219-1227. EDN: VJCVSQ doi: 10.1097/MAT.0000000000001761
  26. Seffer MT, Cottam D, Forni LG, Kielstein JT. Heparin 2.0: A new approach to the infection crisis. Blood Purif. 2021;50(1):28-34. doi: 10.1159/000508647
  27. Rifkin BS, Stewart IJ. Seraph-100 hemoperfusion in SARS- CoV-2-infected patients early in critical illness: A case series. Blood Purif. 2022;51(4):317-320. doi: 10.1159/000517430
  28. Schmidt JJ, Borchina DN, van’t Klooster M, et al. Interim analysis of the COSA (COVID-19 patients treated with the Seraph 100 Microbind Affinity filter) registry. Nephrol Dial Transplant. 2022;37(4):673-680. doi: 10.1093/ndt/gfab347
  29. Bellomo R, Ronco C. Clinical applications of adsorption: the new era of Jafron sorbents. Contrib Nephrol. 2023:(200):25-31. doi: 10.1159/000529845
  30. Sazonov V, Abylkassov R, Tobylbayeva Z, et al. Case series: Efficacy and safety of hemoadsorption with HA-330 adsorber in septic pediatric patients with cancer. Front Pediatr. 2021:(9):672260. EDN: RTASRO doi: 10.3389/fped.2021.672260
  31. Hartomuljono A, Sugiarto A, Jennefer. Hemoperfusion techniques using Jafron HA330 cartridge combined with BBraun Dialog+ dialysis machine in patient with coronavirus disease 2019 pneumonia and septic shock: A case report. J Med Case Rep. 2023;17(1):156. doi: 10.1186/s13256-023-03851-y
  32. Lesbekov T, Nurmykhametova Z, Kaliyev R, et al. Hemadsorption in patients requiring V-A ECMO support: Comparison of Cytosorb versus Jafron HA330. Artif Organs. 2023;47(4):721-730. EDN: PJVCJS doi: 10.1111/aor.14457
  33. De Cal M, Lorenzin A, Risino B, et al. Extracorporeal therapy in the treatment of sepsis: In vitro assessment of the effect of an absorbent cartridge on the circulating bacterial concentration and its interaction with the antibiotic therapy. Int J Artif Organs. 2023;46(6):344-350. doi: 10.1177/03913988231168155
  34. Dellinger RP, Bagshaw SM, Antonelli M, et al. Effect of targeted polymyxin B hemoperfusion on 28-day mortality in patients with septic shock and elevated endotoxin level: The EUPHRATES randomized clinical trial. JAMA. 2018;320(14):1455-1463. doi: 10.1001/jama.2018.14618
  35. Klein DJ, Foster D, Walker PM, et al. Polymyxin B hemoperfusion in endotoxemic septic shock patients without extreme endotoxemia: A post hoc analysis of the EUPHRATES trial. Intensive Care Med. 2018;44(12):2205-2212. EDN: WKWWOP doi: 10.1007/s00134-018-5463-7
  36. Chen JJ, Lai PC, Lee TH, et al. Blood purification for adult patients with severe infection or sepsis/septic shock: A network meta-analysis of randomized controlled trials. Crit Care Med. 2023;51(12):1777-1789. doi: 10.1097/CCM.0000000000005991
  37. Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Crit Care Med. 2021;49(11):e1063-e1143. EDN: FIHTGK doi: 10.1097/CCM.0000000000005337
  38. Egi M, Ogura H, Yatabe T, et al. The Japanese clinical practice guidelines for management of sepsis and septic shock 2020 (J-SSCG 2020). J Intensive Care. 2021;9(1):53. EDN: LVBDXC doi: 10.1186/s40560-021-00555-7
  39. Li X, Liu C, Mao Z, et al. Effectiveness of polymyxin B-immobilized hemoperfusion against sepsis and septic shock: A systematic review and meta-analysis. J Crit Care. 2021:(63):187-195. doi: 10.1016/j.jcrc.2020.09.007
  40. Amundson DE, Shah US, de Necochea-Campion R, et al. Removal of COVID-19 spike protein, whole virus, exosomes, and exosomal microRNAs by the Hemopurifier Lectin-Affinity Cartridge in critically ill patients with COVID-19 infection. Front Med (Lausanne). 2021:(8):744141. doi: 10.3389/fmed.2021.744141
  41. Gooldy M, Roux CM, LaRosa SP, et al. Removal of clinically relevant SARS-CoV-2 variants by an affinity resin containing Galanthus nivalis agglutinin. PLoS One. 2022;17(7):e0272377. EDN: KZFWPP doi: 10.1371/journal.pone.0272377
  42. Goldstein SL, Askenazi DJ, Basu RK, et al. Use of the selective cytopheretic device in critically Ill children. Kidney Int Rep. 2020;6(3):775-784. doi: 10.1016/j.ekir.2020.12.010
  43. Srisawat N, Tungsanga S, Lumlertgul N, et al. The effect of polymyxin B hemoperfusion on modulation of human leukocyte antigen DR in severe sepsis patients. Crit Care. 2018;22(1):279. EDN: KGYLAF doi: 10.1186/s13054-018-2077-y
  44. Lee OP, Kanesan N, Leow EH, et al. Survival benefits of therapeutic plasma exchange in severe sepsis and septic shock: A systematic review and meta-analysis. J Intensive Care Med. 2023;38(7):598-611. doi: 10.1177/08850666231170775.
  45. David S, Bode C, Putensen C, et al.; EXCHANGE Study Group. Adjuvant therapeutic plasma exchange in septic shock. Intensive Care Med. 2021;47(3):352-354. EDN: HDUYAR doi: 10.1007/s00134-020-06339-1
  46. Stahl K, Wand P, Seeliger B, et al. Clinical and biochemical endpoints and predictors of response to plasma exchange in septic shock: Results from a randomized controlled trial. Crit Care. 2022;26(1):134. EDN: SRJZAX doi: 10.1186/s13054-022-04003-2
  47. Luo X, Li X, Lai X, et al.; Chinese Critical Care Nutrition Trials Group (CCCNTG). Therapeutic plasma exchange in patients with sepsis: Secondary analysis of a cluster-randomized controlled trial. J Clin Apher. 2023;38(1):55-62. EDN: CWYOVA doi: 10.1002/jca.22027
  48. Zhang L, Zhao XY, Guo SY, et al. An inquiry into the treatment of sepsis using plasma exchange therapy: A systematic review and meta-analysis. Int Wound J. 2023;20(6):1979-1986. doi: 10.1111/iwj.14059
  49. Weng J, Chen M, Fang D, et al. Therapeutic plasma exchange protects patients with sepsis-associated disseminated intravascular coagulation by improving endothelial function. Clin Appl Thromb Hemost. 2021;(27):10760296211053313. doi: 10.1177/10760296211053313
  50. Bauer PR, Ostermann M, Russell L, et al. Plasma exchange in the intensive care unit: A narrative review. Intensive Care Med. 2022;48(10):1382-1396. EDN: SLLKZN doi: 10.1007/s00134-022-06793-z
  51. Stahl K, Hillebrand UC, Kiyan Y, et al. Effects of therapeutic plasma exchange on the endothelial glycocalyx in septic shock. Intensive Care Med Exp. 2021;9(1):57. EDN: BMEMXO doi: 10.1186/s40635-021-00417-4
  52. Memish ZA, Faqihi F, Alharthy A, et al. Plasma exchange in the treatment of complex COVID-19-related critical illness: Controversies and perspectives. Int J Antimicrob Agents. 2021;57(2):106273. doi: 10.1016/j.ijantimicag.2020.106273
  53. Uysal S, Merter M, Uysal A, Akbulut A. Effects of cytokine hemadsorption as salvage therapy on common laboratory parameters in patients with life-threatening COVID-19. Transfus Apher Sci. 2023;62(3):103701. doi: 10.1016/j.transci.2023.103701
  54. Darban M, Yarmohamadi M, Mohammadkhani MM, Jazaeri SM. Outcome and complications of hemoperfusion in patients with COVID-19 in intensive care unit: A cross-sectional study. Cardiovasc Hematol Agents Med Chem. 2023;21(1):60-66. doi: 10.2174/1871525720666220514164855
  55. Nassiri AA, Hakemi MS, Miri MM, et al. Blood purification with CytoSorb in critically ill COVID-19 patients: A case series of 26 patients. Artif Organs. 2021;45(11):1338-1347. EDN: WJENRE doi: 10.1111/aor.14024
  56. Erkurt MA, Sarici A, Özer AB, et al. The effect of HA330 hemoperfusion adsorbent method on inflammatory markers and end-organ damage levels in sepsis: A retrospective single center study. Eur Rev Med Pharmacol Sci. 2022;26(21):8112-8117. doi: 10.26355/eurrev_202211_30165
  57. Mikaeili H, Taghizadieh A, Nazemiyeh M, et al. The early start of hemoperfusion decreases the mortality rate among severe COVID-19 patients: A preliminary study. Hemodial Int. 2022;26(2):176-182. EDN: ZLKWHS doi: 10.1111/hdi.12982
  58. Surasit K, Srisawat N. The efficacy of early additional hemoperfusion therapy for severe COVID-19 patients: A prospective cohort study. Blood Purif. 2022;51(11):879-888. EDN: BEVIEW doi: 10.1159/000521713
  59. Akil A, Ziegeler S, Rehers S, et al. Blood purification therapy in patients with severe COVID-19 requiring veno-venous ECMO therapy: A retrospective study. Int J Artif Organs. 2022;45(7):615-622. EDN: AGBZOM doi: 10.1177/03913988221103287
  60. Peng JY, Li L, Zhao X, Ding F, et al. Hemoperfusion with CytoSorb in Critically Ill COVID-19 Patients. Blood Purif. 2022;51(5):410-416. doi: 10.1159/000517721
  61. Fernandez J, Gratacos-Ginès J, Olivas P, et al. Plasma exchange: An effective rescue therapy in critically ill patients with coronavirus disease 2019 infection. Crit Care Med. 2020;48(12):e1350-e1355. doi: 10.1097/CCM.0000000000004613
  62. Doevelaar AA, Bachmann M, Hölzer B, et al. von Willebrand factor multimer formation contributes to immunothrombosis in coronavirus disease 2019. Crit Care Med. 2021;49(5):e512-e520. doi: 10.1097/CCM.0000000000004918
  63. Faqihi F, Alharthy A, Abdulaziz S, et al. Therapeutic plasma exchange in patients with life-threatening COVID-19: A randomised controlled clinical trial. Int J Antimicrob Agents. 2021;57(5):106334. doi: 10.1016/j.ijantimicag.2021.106334
  64. Food and Drug Administration [Internet]. COVID-19 emergency use authorizations for medical devices. Available from: https://www.fda.gov/search?s=Coronavirus+disease+2019+%28COVID-19%29+emergency+use+authorizations+for+medical+devices. Accessed: 15.01.2024.
  65. Diab M, Lehmann T, Bothe W, et al. Cytokine hemoadsorption during cardiac surgery versus standard surgical care for infective endocarditis (REMOVE): Results from a multicenter randomized controlled trial. Circulation. 2022;145(13):959-968. doi: 10.1161/CIRCULATIONAHA.121.056940
  66. Stockmann H, Thelen P, Stroben F, et al. CytoSorb rescue for COVID-19 patients with vasoplegic shock and multiple organ failure: A prospective, open-label, randomized controlled pilot study. Crit Care Med. 2022;50(6):964-976. EDN: OXTWDL doi: 10.1097/CCM.0000000000005493
  67. Jarczak D, Roedl K, Fischer M, et al. Effect of hemadsorption therapy in critically ill patients with COVID-19 (CYTOCOV-19): A prospective randomized controlled pilot trial. Blood Purif. 2022;52(2):183-192. doi: 10.1159/000526446
  68. Darazam AI, Kazempour M, Pourhoseingholi MA, et al. Efficacy of hemoperfusion in severe and critical cases of COVID-19. Blood Purif. 2022;52(1):8-16. EDN: HDWDKN doi: 10.1159/000524606
  69. Rieder M, Wengenmayer T, Staudacher D, et al. Cytokine adsorption in patients with severe COVID-19 pneumonia requiring extracorporeal membrane oxygenation. Crit Care. 2020;24(1):435. EDN: DVYHOM doi: 10.1186/s13054-020-03130-y
  70. Alharthy A, Faqihi F, Balhamar A, et al. Continuous renal replacement therapy with the addition of CytoSorb cartridge in critically ill patients with COVID-19 plus acute kidney injury: A case-series. Artif Organs. 2021;45(5):E101-E112. EDN: MAYYSK doi: 10.1111/aor.13864
  71. Faqihi F, Alharthy A, Alshaya R, et al. Reverse takotsubo cardiomyopathy in fulminant COVID-19 associated with cytokine release syndrome and resolution following therapeutic plasma exchange: A case-report. BMC Cardiovasc Disord. 2020;20(1):389. EDN: CHHWWN doi: 10.1186/s12872-020-01665-0
  72. Yessayan L, Szamosfalvi B, Napolitano L, et al. Treatment of cytokine storm in COVID-19 patients with immunomodulatory therapy. ASAIO J. 2020;66(10):1079-1083. doi: 10.1097/MAT.0000000000001239
  73. Schneider AG, Andre P, Buclin T, et al. Pharmacokinetics of anti-infective agents during CytoSorb hemoadsorption. Sci Rep. 2021;11(1):10493. EDN: DGKHKA doi: 10.1038/s41598-021-89965-z
  74. Padmanabhan A, Connelly-Smith L, Aqui N, et al. Guidelines on the use of therapeutic apheresis in clinical practice--evidence-based approach from the Writing Committee of the American Society for Apheresis: The eighth special issue. J Clin Apher. 2019;34(3):171-354. EDN: PDVDXL doi: 10.1002/jca.21705
  75. Peetermans M, Meyers S, Liesenborghs L, et al. Von Willebrand factor and ADAMTS13 impact on the outcome of staphylococcus aureus sepsis. J Thromb Haemost. 2020;18(3):722-731. doi: 10.1111/jth.14686
  76. Aydin K, Korkmaz S, Erkurt MA, et al. Apheresis in patients with sepsis: A multicenter retrospective study transfusion and apheresis science. J Eur Soc Haemapheresis. 2021;60(5):103239. EDN: GGQLGS doi: 10.1016/j.transci.2021.103239
  77. Devine PN, Howard RM, Kumar R, et al. Extending the application of biocatalysis to meet the challenges of drug development. Nat Rev Chem. 2018;2(12):409-421. EDN: PGPOCL doi: 10.1038/s41570-018-0055-1
  78. Abusukhun M, Winkler MS, Pohlmann S, et al. Activation of sphingomyelinase-ceramide-pathway in COVID-19 purposes its inhibition for therapeutic strategies. Front Immunol. 2021:(12):784989. doi: 10.3389/fimmu.2021.784989
  79. Shulgin B, Helmlinger G, Kosinsky Y. A Generic mechanism for enhanced cytokine signaling via cytokine-neutralizing antibodies. PLoS One. 2016;11(2):e0149154. EDN: WURGZT doi: 10.1371/journal.pone.0149154
  80. Baghela A, Pena OM, Lee AH, et al. Predicting sepsis severity at first clinical presentation: The role of endotypes and mechanistic signatures. EBioMedicine. 2022;(75):103776. EDN: PCMETS doi: 10.1016/j.ebiom.2021.103776

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».