Post-stroke hand synergy formation variant. Clinical case
- Authors: Klochkov A.S.1, Khizhnikova A.E.1, Bakulin I.S.1, Kremneva E.I.1, Poydasheva A.G.1, Fuks A.A.1, Gorlachev D.V.1, Gnedovskaya E.V.1, Suponeva N.A.1
-
Affiliations:
- Research Center of Neurology
- Issue: Vol 4, No 4 (2022)
- Pages: 292-303
- Section: CASE REPORT
- URL: https://ogarev-online.ru/2658-6843/article/view/232723
- DOI: https://doi.org/10.36425/rehab111987
- ID: 232723
Cite item
Full Text
Abstract
Pathological synergies are a frequent consequence of cerebrovascular accidents and hinders further recovery. The existing concept of the formation of pathological synergies considers them as a compensatory strategy in response to damage to the pyramidal tract, which, due to paresis and increased muscle tone, has acquired a pathological character. Recent studies in primates have shown that the contralateral hemisphere, in particular the reticulospinal and rubrospinal tracts, may be involved in motor control of the hand. The current hypothesis presents the corticoreticulospinal and corticorubrospinal tracts as a back-up system for neuronal reorganization due to injury.
This clinical case describes the role of the white matter of the contralateral hemisphere in the mechanism of formation of pathological flexion synergy, based on data from the analysis of movements and neuroimaging.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Anton S. Klochkov
Research Center of Neurology
Email: klochkov@neurology.ru
ORCID iD: 0000-0002-4730-3338
SPIN-code: 3445-8770
MD, Cand. Sci. (Med.)
Russian Federation, MoscowAnastasiya E. Khizhnikova
Research Center of Neurology
Author for correspondence.
Email: nastushkapal@gmail.com
ORCID iD: 0000-0003-1395-6645
SPIN-code: 4824-1240
MD, Cand. Sci. (Med.)
Russian Federation, MoscowIlya S. Bakulin
Research Center of Neurology
Email: bakulin@neurology.ru
ORCID iD: 0000-0003-0716-3737
SPIN-code: 7756-6427
MD, Cand. Sci. (Med.)
Russian Federation, MoscowElena I. Kremneva
Research Center of Neurology
Email: kremneva@neurology.ru
ORCID iD: 0000-0001-9396-6063
SPIN-code: 8799-8092
MD, Cand. Sci. (Med.)
Russian Federation, MoscowAlexandra G. Poydasheva
Research Center of Neurology
Email: poydasheva@neurology.ru
ORCID iD: 0000-0003-1841-1177
SPIN-code: 4040-1184
Russian Federation, Moscow
Anna A. Fuks
Research Center of Neurology
Email: myfannamail@gmail.com
ORCID iD: 0000-0002-4335-6344
SPIN-code: 8236-1787
Russian Federation, Moscow
Dmitry V. Gorlachev
Research Center of Neurology
Email: gooorlachev@gmail.com
ORCID iD: 0000-0002-0735-080X
Russian Federation, Moscow
Elena V. Gnedovskaya
Research Center of Neurology
Email: gnedovskaya@mail.ru
ORCID iD: 0000-0001-6026-3388
SPIN-code: 7248-1282
MD, Dr. Sci. (Med.)
Russian Federation, MoscowNatalia A. Suponeva
Research Center of Neurology
Email: nasu2709@mail.ru
ORCID iD: 0000-0003-3956-6362
SPIN-code: 3223-6006
MD, Dr. Sci. (Med.), Corresponding Member of the Russian Academy of Sciences
Russian Federation, MoscowReferences
- Knutsson E, Martensson A. Dynamic motor capacity in spastic paresis and its relation to prime mover dysfunction, spastic reflexes and antagonist co-activation. Scand J Rehabil Med. 1980;12(3):93–106.
- Knutsson E, Dewalde PJ, Younge RR. Studies of gait control in patients with spastic paresis. Clinical Neurophysiology in Spasticity. New York: Elsevier; 1985. Р. 175–184.
- Chen J, Friesen WO, Iwasaki T. Mechanisms underlying rhythmic locomotion: interactions between activation, tension and body curvature waves. J Exp Biol. 2012;215(2):211–219. doi: 10.1242/jeb.058669
- Owen M, Ingo C, Dewald JP. Upper extremity motor impairments and microstructural changes in bulbospinal pathways in chronic hemiparetic stroke. Front Neurol. 2017;13(8):257. doi: 10.3389/fneur.2017.00257
- Mori S, Matsuyama K, Mori F, Nakajima K. Supraspinal sites that induce locomotion in the vertebrate central nervous system. Adv Neurol. 2001;(87):25–40.
- Schepens B, Stapley P, Drew T. Neurons in the pontomedullary reticular formation signal posture and movement both as an integrated behavior and independently. J Neurophysiol. 2008;100(4):2235–2253. doi: 10.1152/jn.01381.2007
- Drew T, Dubuc R, Rossignol S. Discharge patterns of reticulospinal and other reticular neurons in chronic, unrestrained cats walking on a treadmill. J Neurophysiol. 1986;55(2):375–401. doi: 10.1152/jn.1986.55.2.375
- Matsuyama K, Drew T. Vestibulospinal and reticulospinal neuronal activity during locomotion in the intact cat. I. Walking on a level surface. J Neurophysiol. 2000;84(5):2237–2256. doi: 10.1152/jn.2000.84.5.2237
- Prentice SD, Drew T. Contributions of the reticulospinal system to the postural adjustments occurring during voluntary gait modifications. J Neurophysiol. 2001;85(2):679–698. doi: 10.1152/jn.2001.85.2.679
- Schepens B, Drew T. Independent and convergent signals from the pontomedullary reticular formation contribute to the control of posture and movement during reaching in the cat. J Neurophysiol. 2004;92(4):2217–2238. doi: 10.1152/jn.01189.2003
- Riddle CN, Edgley SA, Baker SN. Direct and indirect connections with upper limb motoneurons from the primate reticulospinal tract. J Neurosci. 2009;29(15):4993–4999. doi: 10.1523/JNEUROSCI.3720-08.2009
- Owen M, Ingo C, Dewald JP. Upper extremity motor impairments and microstructural changes in bulbospinal pathways in chronic hemiparetic stroke. Front Neurol. 2017;(8):257. doi: 10.3389/fneur.2017.00257
- Davidson AG, Buford JA. Bilateral actions of the reticulospinal tract on arm and shoulder muscles in the monkey: stimulus triggered averaging. Exp Brain Res. 2006;173(1):25–39. doi: 10.1007/s00221-006-0374-1
- Baker SN. The primate reticulospinal tract, hand function and functional recovery. J Physiol. 2011;589(23):5603–5612. doi: 10.1113/jphysiol.2011.215160
- Zaaimi B, Edgley SA, Soteropoulos DS, Baker SN. Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey. Brain. 2012;135(7):2277–2289. doi: 10.1093/brain/aws115
- Khizhnikova AE, Klochkov AS, Kotov-Smolensky AM, et al. Dynamics of the kinematic portrait of post-stroke paresis of the hand against the background of rehabilitation. Bulletin of Russian state medical university. 2019(4):34–41. (In Russ). doi: 10.24075/vrgmu.2019.056
- Suponeva NA, Yusupova DG, Ilyina KA, et al Validation of the Modified Ashworth scale in Russia. Annals of clinical and experimental neurology. 2020;14(1):89–96. (In Russ). doi: 10.25692/ACEN.2020.1.10
- Suponeva NA, Yusupova DG, Zimin AA, et al. Validation of the Russian version of the Fugl-Meyer Assessment of Physical Performance for assessment of patients with post-stroke paresis. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 2021; 121(8-2):86–90. (In Russ).
- Stinear C. Prediction of recovery of motor function after stroke. Lancet Neurol. 2010;9(12):1228–1232. doi: 10.1016/S1474-4422(10)70247-7
- Stinear CM, Barber PA, Petoe M, et al. D.The PREP algorithm predicts potential for upper limb recovery after stroke. Brain. 2012;135(8):2527–2535. doi: 10.1093/brain/aws146
- Ziemann U, Ishii K, Borgheresi A, et al. Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles. J Physiol. 1999;1(518):895–906. doi: 10.1111/j.1469-7793.1999.0895p.x
- Xu J, Ejaz N, Hertler B, et al. Separable systems for recovery of finger strength and control after stroke. J Neurophysiol. 2017;118(2):1151–1163. doi: 10.1152/jn.00123.2017
Supplementary files
