Неврологические проявления у пациентов с новой коронавирусной инфекцией COVID-19
- Авторы: Щербак С.Г.1,2, Голота А.С.1, Камилова Т.А.1, Вологжанин Д.А.1,2, Макаренко С.В.1,2
-
Учреждения:
- Городская больница № 40 Курортного административного района
- Санкт-Петербургский государственный университет
- Выпуск: Том 4, № 3 (2022)
- Страницы: 154-180
- Раздел: НАУЧНЫЙ ОБЗОР
- URL: https://ogarev-online.ru/2658-6843/article/view/109952
- DOI: https://doi.org/10.36425/rehab109952
- ID: 109952
Цитировать
Полный текст
Аннотация
Чаще всего COVID-19 проявляется как респираторное заболевание, однако растущий массив клинических данных показывает, что неврологические симптомы и осложнения вносят значительный вклад в клинический спектр заболевания, особенно у пациентов с тяжёлым течением инфекции. Воздействие на общественное здоровье отдалённых (или даже пожизненных) последствий заболевания может быть намного больше, чем острые проявления инфекции SARS-CoV-2. По мере развития пандемии количество неврологических проявлений как части клинического спектра заболевания увеличилось. Разнообразные неврологические проявления COVID-19 варьируют от лёгких симптомов (миалгия, головная боль, утомляемость, головокружение, аносмия, агевзия) до более тяжёлых проявлений, таких как энцефалопатия, энцефалит, острая и хроническая полинейропатия. Неврологические симптомы и осложнения COVID-19 не обязательно требуют прямого инфицирования структур периферической или центральной нервной системы, а могут возникать вторично по отношению к тяжёлой системной реакции в ответ на инфекцию SARS-CoV-2 вне нервной системы. Нейротоксичность инфекции SARS-CoV-2 может быть вторичной по отношению к иммуноопосредованному патогенезу и дисфункции коагуляции. Для обоснования терапевтического выбора необходимы изучение патофизиологических процессов и клинические испытания.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Сергей Григорьевич Щербак
Городская больница № 40 Курортного административного района; Санкт-Петербургский государственный университет
Email: b40@zdrav.spb.ru
ORCID iD: 0000-0001-5036-1259
SPIN-код: 1537-9822
д.м.н., профессор
Россия, Санкт-Петербург; Санкт-ПетербургАлександр Сергеевич Голота
Городская больница № 40 Курортного административного района
Автор, ответственный за переписку.
Email: golotaa@yahoo.com
ORCID iD: 0000-0002-5632-3963
SPIN-код: 7234-7870
к.м.н., доцент
Россия, Санкт-ПетербургТатьяна Аскаровна Камилова
Городская больница № 40 Курортного административного района
Email: kamilovaspb@mail.ru
ORCID iD: 0000-0001-6360-132X
SPIN-код: 2922-4404
к.б.н.
Россия, Санкт-ПетербургДмитрий Александрович Вологжанин
Городская больница № 40 Курортного административного района; Санкт-Петербургский государственный университет
Email: volog@bk.ru
ORCID iD: 0000-0002-1176-794X
SPIN-код: 7922-7302
д.м.н.
Россия, Санкт-Петербург; Санкт-ПетербургСтанислав Вячеславович Макаренко
Городская больница № 40 Курортного административного района; Санкт-Петербургский государственный университет
Email: st.makarenko@gmail.com
ORCID iD: 0000-0002-1595-6668
SPIN-код: 8114-3984
ассистент
Россия, Санкт-Петербург; Санкт-ПетербургСписок литературы
- WHO Coronavirus Disease (COVID-19) Dashboard [Internet]. Режим доступа: https://covid19.who.int/. Дата обращения: 15.03.2022.
- Taquet M., Geddes J.R., Husain M., et al. 6-month neurological and psychiatric outcomes in 236379 survivors of COVID-19: a retrospective cohort study using electronic health records // Lancet Psychiatry. 2021. Vol. 8, N 5. Р. 416–427. doi: 10.1016/S2215-0366(21)00084-5
- Quintanilla-Sánchez C., Salcido-Montenegro A., González-González J.G., Rodríguez-Gutiérrez R. Acute cerebrovascular events in severe and nonsevere COVID-19 patients: a systematic review and meta-analysis // Rev Neurosci. 2022. Vol. 33, N 6. Р. 631–639. doi: 10.1515/revneuro-2021-0130
- Shah W., Hillman T., Playford E.D., Hishmeh L. Managing the long-term effects of COVID-19: summary of NICE, SIGN, and RCGP rapid guideline // Brit Med J. 2021. Vol. 372. Р. 136. doi: 10.1136/bmj.n136
- Chen X., Laurent S., Onur O.A., et al. A systematic review of neurological symptoms and complications of COVID-19 // J Neurol. 2021. Vol. 268, N 2. Р. 392–402. doi: 10.1007/s00415-020-10067-3
- Mekkawy D.A., Hamdy S., Abdel-Naseer M., et al. Neurological manifestations in a cohort of egyptian patients with COVID-19: a prospective, multicenter, observational study // Brain Sci. 2022. Vol. 12, N 1. Р. 74. doi: 10.3390/brainsci12010074
- Mao L., Jin H., Wang M., et al. Neurologic manifestations of hospitalized patients with Coronavirus Disease 2019 in Wuhan, China // JAMA Neurol. 2020. Vol. 77, N 6. Р. 683–690. doi: 10.1001/jamaneurol.2020.1127
- Romero-Sánchez C.M., Díaz-Maroto I., Fernández-Díaz E., et al. Neurologic manifestations in hospitalized patients with COVID-19: the ALBACOVID registry // Neurology. 2020. Vol. 95, N 8. Р. e1060–e1070. doi: 10.1212/WNL.0000000000009937
- Wong-Chew R.M., Rodríguez Cabrera E.X., Rodríguez Valdez C.A., et al. Symptom cluster analysis of long COVID-19 in patients discharged from the temporary COVID-19 Hospital in Mexico City // Ther Adv Infect Dis. 2022. Vol. 9. Р. 20499361211069264. doi: 10.1177/20499361211069264
- Wang Q., Davis P.B., Gurney M.E., Xu R. COVID-19 and dementia: analyses of risk, disparity, and outcomes from electronic health records in the US // Alzheimers Dement. 2021. Vol. 17, N 8. Р. 1297–1306. doi: 10.1002/alz.12296
- Vakili K., Fathi M., Hajiesmaeili M., et al. Neurological symptoms, comorbidities, and complications of COVID-19: a literature review and meta-analysis of observational studies // Eur Neurol. 2021. Vol. 84, N 5. Р. 307–324. doi: 10.1159/000516258
- Leven Y., Bösel J. Neurological manifestations of COVID-19: an approach to categories of pathology // Neurol Res Pract. 2021. Vol. 3, N 1. Р. 39. doi: 10.1186/s42466-021-00138-9
- Taquet M., Husain M., Geddes J.R., et al. Cerebral venous thrombosis and portal vein thrombosis: a retrospective cohort study of 537,913 COVID-19 cases // Clinical Medicine. 2021. Vol. 39. Р. 101061. doi: 10.1016/j.eclinm.2021.101061
- Raveendran A.V., Jayadevan R., Sashidharan S. Long COVID: an overview // Review Diabetes Metab Syndr. 2021. Vol. 15, N 3. Р. 869–875. doi: 10.1016/j.dsx.2021.04.007
- Whiteside D.M., Basso R.M., Naini S.M., et al. Outcomes in post-acute sequelae of COVID-19 at 6 months post-infection. Part 1: Cognitive functioning // Clin Neuropsychol. 2022. Vol. 36, N 4. Р. 806–828. doi: 10.1080/13854046.2022.2030412
- Bungenberg J., Humkamp K., Hohenfeld C., et al. Long COVID-19: objectifying most self-reported neurological symptoms // Ann Clin Transl Neurol. 2022. Vol. 9, N 2. Р. 141–154. doi: 10.1002/acn3.51496
- Kummer B.R., Klang E., Stein L.K., et al. History of stroke is independently associated with in-hospital death in patients with COVID-19 // Stroke. 2020. Vol. 51, N 10. Р. 3112–3114. doi: 10.1161/STROKEAHA.120.030685
- Beghi E., Helbok R., Crean M., et al. The European Academy of Neurology COVID-19 registry (ENERGY): an international instrument for surveillance of neurological complications in patients with COVID-19 // Eur J Neurol. 2020. Vol. 28, N 10. Р. 3303–3323. doi: 10.1111/ene.14652
- Beghi E., Helbok R., Oztur S., et al. Short- and long-term outcome and predictors in an international cohort of patients with neuro-COVID-19 // Eur J Neurol. 2022. Vol. 29, N 6. Р. 1663–1684. doi: 10.1111/ene.15293
- Sudre C.H., Murray B., Varsavsky T., et al. Attributes and predictors of long COVID // Nat Med. 2021. Vol. 27, N 4. Р. 626–631. doi: 10.1038/s41591-021-01292-y
- Dennis A., Wamil M., Alberts J., et al. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: a prospective, community-based study // BMJ Open. 2021. Vol. 11, N 3. Р. e048391. doi: 10.1136/bmjopen-2020-048391
- Garrigues E., Janvier P., Kherabi Y., et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19 // J Infect. 2020. Vol. 81, N 6. Р. e4–e6. doi: 10.1016/j.jinf.2020.08.029
- Chopra V., Flanders S.A., O’Malley M., et al. Sixty-day outcomes among patients hospitalized with COVID-19 // Ann Intern Med. 2021. Vol. 174, N 4. Р. 576–578. doi: 10.7326/M20-5661
- Stavem K., Ghanima W., Olsen M.K., et al. Prevalence and determinants of fatigue after COVID-19 in non-hospitalized subjects: a population-based study // Int J Environ Res Public Health. 2021. Vol. 18, N 4. Р. 2030. doi: 10.3390/ijerph18042030
- Logue J.K., Franko N.M., McCulloch D.J., et al. Sequelae in adults at 6 months after COVID-19 infection // JAMA Netw Open. 2021. Vol. 4, N 2. Р. e210830. doi: 10.1001/jamanetworkopen.2021.0830
- Franke C., Ferse C., Kreye J., et al. High frequency of cerebrospinal fluid autoantibodies in COVID-19 patients with neurological symptoms // Brain Behav Immun. 2021. Vol. 93. Р. 415–419. doi: 10.1016/j.bbi.2020.12.022
- Ziuzia-Januszewska А., Januszewski M. Pathogenesis of olfactory disorders in COVID-19 // Brain Sci. 2022. Vol. 12, N 4. Р. 449. doi: 10.3390/brainsci12040449
- Lean European Open Survey on SARS-CoV-2 Infected Patients ― Studying SARS-CoV-2 collectively [online]. Режим доступа: https://leoss.net/. Дата обращения: 15.03.2022.
- Pouga L. Encephalitic syndrome and anosmia in COVID-19: do these clinical presentations really reflect SARS-CoV-2 neurotropism? A theory based on the review of 25 COVID-19 cases // J Med Virol. 2021. Vol. 93, N 1. Р. 550–558. doi: 10.1002/jmv.26309
- Azim D., Nasim S., Kumar S., et al. Neurological consequences of 2019-nCoV infection: a comprehensive literature review // Cureus. 2020. Vol. 12, N 6. Р. e8790. doi: 10.7759/cureus.8790
- Yang A.C., Kern F., Losada P.M., et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19 // Nature. 2021. Vol. 595, N 7868. Р. 565–571. doi: 10.1038/s41586-021-03710-0
- Glezer I., Bruni-Cardoso A., Schechtman D., Malnic B. Viral infection and smell loss: the case of COVID-19 // J Neurochem. 2021. Vol. 157, N 4. Р. 930–943. doi: 10.1111/jnc.15197
- Menter T., Haslbauer J.D., Nienhold R., et al. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction // Histopathology. 2020. Vol. 77, N 2. Р. 198–209. doi: 10.1111/his.14134
- Politi L.S., Salsano E., Grimaldi M. Magnetic resonance imaging alteration of the brain in a patient with coronavirus disease 2019 (COVID-19) and anosmia // JAMA Neurol. 2020. Vol. 77, N 8. Р. 1028–1029. doi: 10.1001/jamaneurol.2020.2125
- Laurendon T., Radulesco T., Mugnier J., et al. Bilateral transient olfactory bulb edema during COVID-19 related anosmia // Neurology. 2020. Vol. 95, N 5. Р. 224–225. doi: 10.1212/WNL.0000000000009850
- Kandemirli S.G., Altundag A., Yildirim D., et al. Olfactory bulb MRI and paranasal sinus CT findings in persistent COVID-19 anosmia // Acad Radiol. 2021. Vol. 28, N 1. Р. 28–35. doi: 10.1016/j.acra.2020.10.006
- Tsivgoulis G., Fragkou P.C., Lachanis S., et al. Olfactory bulb and mucosa abnormalities in persistent COVID-19-induced anosmia: a magnetic resonance imaging study // Eur J Neurol. 2021. Vol. 28, N 1. Р. e6–e8. doi: 10.1111/ene.14537
- Akkaya H., Kiziloglu A., Dilek O., et al. Evaluation of the olfactory bulb volume and morphology in patients with coronavirus disease 2019: can differences create predisposition to anosmia? // Rev Assoc Med Bras. 2021. Vol. 67, N 10. Р. 1491–1497. doi: 10.1590/1806-9282.20210678
- Esposito F., Cirillo M., De Micco R., et al. Olfactory loss and brain connectivity after COVID-19 // Hum Brain Mapp. 2022. Vol. 43, N 5. Р. 1548–1560. doi: 10.1002/hbm.25741
- Meinhardt J., Radke J., Dittmayer C., et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19 // Nat Neurosci. 2021. Vol. 24, N 2. Р. 168–175. doi: 10.1038/s41593-020-00758-5
- Heneka M.T., Golenbock D., Latz E., et al. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease // Alzheimers Res Ther. 2020. Vol. 12, N 1. Р. 69. doi: 10.1186/s13195-020-00640-3
- Virhammar J., Nääs A., Fällmar D., et al. Biomarkers for central nervous system injury in cerebrospinal fluid are elevated in COVID-19 and associated with neurological symptoms and disease severity // Eur J Neurol. 2021. Vol. 28, N 10. Р. 3324–3331. doi: 10.1111/ene.14703
- Aamodt A.H., Hogestol E.A., Popperud T.H., et al. Blood neurofilament light concentration at admittance: a potential prognostic marker in COVID-19 // J Neurol. 2021. Vol. 268, N 10. Р. 3574–3583. doi: 10.1007/s00415-021-10517-6
- Kanberg N., Simrén J., Edén A., et al. Neurochemical signs of astrocytic and neuronal injury in acute COVID-19 normalizes during long-term follow-up // BioMedicine. 2021. Vol. 70. Р. 103512. doi: 10.1016/j.ebiom.2021.103512
- Douaud G., Lee S., Alfaro-Almagro F., et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank // Nature. 2022. Vol. 604, N 7907. Р. 697–707. doi: 10.1038/s41586-022-04569-5
- Moriguchi T., Harii N., Goto J., et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2 // Int J Infect Dis. 2020. Vol. 94. Р. 55–58. doi: 10.1016/j.ijid.2020.03.062
- Puelles V.G., Lütgehetmann M., Lindenmeyer M.T., et al. Multiorgan and renal tropism of SARS-CoV-2 // N Engl J Med. 2020. Vol. 383, N 6. Р. 590–592. doi: 10.1056/NEJMc2011400
- Baig A.M., Khaleeq A., Ali U., Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms // ACS Chem Neurosci. 2020. Vol. 11, N 7. Р. 995–998. doi: 10.1021/acschemneuro.0c00122
- Bhattacharjee A.S., Joshi S.V., Naik S., et al. Quantitative assessment of olfactory dysfunction accurately detects asymptomatic COVID-19 carriers // Clinical Medicine. 2020. Vol. 28. Р. 100575. doi: 10.1016/j.eclinm.2020
- Solomon T. Neurological infection with SARS-CoV-2: the story so far // Nat Rev Neurol. 2021. Vol. 17, N 2. Р. 65–66. doi: 10.1038/s41582-020-00453-w
- Butler M., Cross B., Hafeez D., et al. Emerging knowledge of the neurobiology of COVID-19 // Psychiatr Clin North Am. 2022. Vol. 45, N 1. Р. 29–43. doi: 10.1016/j.psc.2021.11.001
- Lewis A., Frontera J., Placantonakis D.G., et al. Cerebrospinal fluid in COVID-19: a systematic review of the literature // J Neurol Sci. 2021. Vol. 421. Р. 117316. doi: 10.1016/j.jns.2021.117316
- Choutka J., Jansari V., Hornig M., Iwasaki A. Unexplained post-acute infection syndromes // Nat Med. 2022. Vol. 28, N 5. Р. 911–923. doi: 10.1038/s41591-022-01810-6
- Gaebler C., Wang Z., Lorenzi J.C., et al. Evolution of antibody immunity to SARS-CoV-2 // Nature. 2021. Vol. 591, N 7851. Р. 639–644. doi: 10.1038/s41586-021-03207-w
- Cheung C.C., Goh D., Lim X., et al. Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from five recovered patients with COVID-19 // Gut. 2022. Vol. 71, N 1. Р. 226–229. doi: 10.1136/gutjnl-2021-324280
- Gutiérrez-Ortiz C., Méndez A., Rodrigo-Rey S., et al. Miller Fisher syndrome and polyneuritis cranialis in COVID-19 // Neurology. 2020. Vol. 95, N 5. Р. e601–e605. doi: 10.1212/WNL.0000000000009619
- Singh S., Anshita D., Ravichandiran V. MCP-1: function, regulation, and involvement in disease // Int Immunopharmacol. 2021. Vol. 101, Pt B. Р. 107598. doi: 10.1016/j.intimp.2021.107598
- Guasp М., Muñoz-Sánchez G., Martínez-Hernández E., et al. CSF biomarkers in COVID-19 associated encephalopathy and encephalitis predict long-term outcome // Front Immunol. 2022. Vol. 13. Р. 866153. doi: 10.3389/fimmu.2022.866153
- Moonis G., Filippi C.G., Kirsch C.F., et al. The spectrum of neuroimaging findings on CT and MRI in adults with COVID-19 // Am J Roentgenol. 2021. Vol. 217, N 4. Р. 959–974. doi: 10.2214/AJR.20.24839
- Cazzolla A.P., Lovero R., Lo Muzio L., et al. Taste and smell disorders in COVID-19 patients: role of interleukin-6 // ACS Chem Neurosci. 2020. Vol. 11, N 17. Р. 2774–2781. doi: 10.1021/acschemneuro.0c00447
- Sanli D.E., Altundag A., Kandemirli S.G., et al. Relationship between disease severity and serum IL-6 levels in COVID-19 anosmia // Am J Otolaryngol. 2021. Vol. 42, N 1. Р. 102796. doi: 10.1016/j.amjoto.2020.102796
- Schwabenland M., Salié H., Tanevski J., et al. Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions // Immunity. 2021. Vol. 54, N 7. Р. 1594–1610. doi: 10.1016/j.immuni.2021.06.002
- Jarius S., Pache F., Körtvelyessy P., et al. Cerebrospinal fluid findings in COVID-19: a multicenter study of 150 lumbar punctures in 127 patients // J Neuroinflammation. 2022. Vol. 19, N 1. Р. 19. doi: 10.1186/s12974-021-02339-0
- Paterson R.W., Benjamin L.A., Mehta P.R., et al. Serum and cerebrospinal fluid biomarker profiles in acute SARS-CoV-2-associated neurological syndromes // Brain Commun. 2021. Vol. 3, N 3. Р. 1–11. doi: 10.1093/braincomms/fcab099
- Reinhold D., Farztdinov V., Yan Y., et al. The brain reacting to COVID-19: analysis of the cerebrospinal fluid and serum proteome, transcriptome and inflammatory proteins // medRxiv. 2022. doi: 10.1101/2022.04.10.22273673
- Bernard-Valnet R., Perriot S., Canales M., et al. Encephalopathies associated with severe COVID-19 present neurovascular unit alterations without evidence for strong neuroinflammation // Neurol Neuroimmunol Neuroinflamm. 2021. Vol. 8, N 5. Р. e1029. doi: 10.1212/NXI.0000000000001029
- Pilotto A., Masciocchi S., Volonghi I., et al. SARS-CoV-2 encephalitis is a cytokine release syndrome: evidences from cerebrospinal fluid analyses // Clin Infect Dis. 2021. Vol. 73, N 9. Р. e3019–e3026. doi: 10.1093/cid/ciaa1933
- Espindola O.M., Gomes Y.C., Brandao C.O., et al. Inflammatory cytokine patterns associated with neurological diseases in coronavirus disease 2019 // Ann Neurol. 2021. Vol. 89, N 5. Р. 1041–1045. doi: 10.1002/ana.26041
- Young B.E., Ong S.W., Ng L.F., et al. Viral dynamics and immune correlates of COVID-19 disease severity // Clin Infect Dis. 2021. Vol. 73, N 9. Р. e2932–e2942. doi: 10.1093/cid/ciaa1280
- Lee M.H., Perl D.P., Nair G., et al. Microvascular injury in the brains of patients with Covid-19 // N Engl J Med. 2021. Vol. 384, N 5. Р. 481–483. doi: 10.1056/NEJMc2033369
- Pugin D., Vargas M.I., Thieffry C., et al. COVID-19-related encephalopathy responsive to high doses glucocorticoids // Neurology. 2020. Vol. 95, N 12. Р. 543–546. doi: 10.1212/WNL.0000000000010354
- Cao A., Rohaut B., Le Guennec L., et al. Severe COVID-19-related encephalitis can respond to immunotherapy // Brain. 2020. Vol. 143, N 12. Р. e102. doi: 10.1093/brain/awaa337
- Tankisi H. Critical illness myopathy and polyneuropathy in Covid-19: is it a distinct entity? // Clin Neurophysiol. 2021. Vol. 132, N 7. Р. 1716–1717. doi: 10.1016/j.clinph.2021.04.001
- Oaklander A.L., Mills A.J., Kelley M., et al. Peripheral neuropathy evaluations of patients with prolonged long COVID // Neurol Neuroimmunol Neuroinflamm. 2022. Vol. 9, N 3. Р. e1146. doi: 10.1212/NXI.0000000000001146
- Brugliera L., Filippi M., Del Carro U., et al. Nerve compression injuries after prolonged prone position ventilation in patients with SARS-CoV-2: a case series // Arch Phys Med Rehabil. 2021. Vol. 102, N 3. Р. 359–362. doi: 10.1016/j.apmr.2020.10.131
- Liu E.A., Salazar T., Chiu E., et al. Focal peripheral neuropathies observed in patients diagnosed with COVID-19 // Am J Phys Med Rehabil. 2022. Vol. 101, N 2. Р. 164–169. doi: 10.1097/PHM.0000000000001924
- Zhou Y., Chi J., Lv W., et al. Obesity and diabetes as high-risk factors for severe coronavirus disease 2019 (Covid-19) // Diabetes Metab Res Rev. 2021. Vol. 37, N 2. Р. e3377. doi: 10.1002/dmrr.3377
- Honardoost M., Janani L., Aghili R., et al. The association between presence of comorbidities and COVID-19 severity: a systematic review and meta-analysis // Cerebrovasc Dis. 2021. Vol. 50, N 2. Р. 132–140. doi: 10.1159/000513288
- Bax F., Lettieri C., Marini A., et al. Clinical and neurophysiological characterization of muscular weakness in severe COVID-19 // Neurol Sci. 2021. Vol. 42, N 6. Р. 2173–2178. doi: 10.1007/s10072-021-05110-8
- Malik G., Wolfe A.R., Soriano R., et al. Injury-prone: peripheral nerve injuries associated with prone positioning for COVID-19-related acute respiratory distress syndrome // Br J Anaesth. 2020. Vol. 125, N 6. Р. e478–e480. doi: 10.1016/j.bja.2020.08.045
- Chang L.G., Zar S., Seidel B., et al. COVID-19 proned ventilation and its possible association with foot drop: a case series // Cureus. 2021. Vol. 13, N 4. Р. e14374. doi: 10.7759/cureus.14374
- Bocci T., Campiglio L., Zardoni M., et al. Critical illness neuropathy in severe COVID-19: a case series // Neurol Sci. 2021. Vol. 42, N 12. Р. 4893–4898. doi: 10.1007/s10072-021-05471-0
- Bitirgen G., Korkmaz C., Zamani A., et al. Corneal confocal microscopy identifies corneal nerve fibre loss and increased dendritic cells in patients with long COVID // Br J Ophthalmol. 2021. Р. bjophthalmol-2021-319450. doi: 10.1136/bjophthalmol-2021-319450
- Kacprzak A., Malczewski D., Domitrz I. Headache attributed to SARS-CoV-2 infection or COVID-19 related headache-not migraine-like problem-original research // Brain Sci. 2021. Vol. 11, N 11. Р. 1406. doi: 10.3390/brainsci11111406
- Racine N., McArthur B.A., Cooke J.E., et al. Global prevalence of depressive and anxiety symptoms in children and adolescents during COVID-19: a meta-analysis // JAMA Pediatr. 2021. Vol. 175, N 11. Р. 1142–1150. doi: 10.1001/jamapediatrics.2021.2482
- Watson C.J., Thomas R.H., Solomon T., et al. COVID-19 and psychosis risk: real or delusional concern? // Neurosci Lett. 2021. Vol. 741. Р. 135491. doi: 10.1016/j.neulet.2020.135491
- Wijeratne T., Crewther G.S., Sales C., Karimi L. COVID-19 pathophysiology predicts that ischemic stroke occurrence is an expectation, not an exception-a systematic review // Front Neurol. 2021. Vol. 11. Р. 607221. doi: 10.3389/fneur.2020.607221
- Nalbandian A., Sehgal K., Gupta A., et al. Post-acute COVID-19 syndrome // Nat Med. 2021. Vol. 27, N 4. Р. 601–615. doi: 10.1038/s41591-021-01283-z
- Perlis R.H., Ognyanova K., Santillana M., et al. Association of acute symptoms of COVID-19 and symptoms of depression in adults // JAMA Netw Open. 2021. Vol. 4, N 3. Р. e213223. doi: 10.1001/jamanetworkopen.2021.3223
- Beaud V., Crottaz-Herbette S., Dunet V., et al. Pattern of cognitive deficits in severe COVID-19 // J Neurol Neurosurg Psychiatry. 2021. Vol. 92, N 5. Р. 567–568. doi: 10.1136/jnnp-2020-325173
- Rizzo M.R., Paolisso G. SARS-CoV-2 emergency and long-term cognitive impairment in older people // Aging Dis. 2021. Vol. 12, N 2. Р. 345–352. doi: 10.14336/AD.2021.0109
- Helms J., Kremer S., Merdji H., et al. Delirium and encephalopathy in severe COVID-19: a cohort analysis of ICU patients // Crit Care. 2020. Vol. 24, N 1. Р. 491. doi: 10.1186/s13054-020-03200-1
- Qureshi A.I., Baskett W.I., Huang W., et al. New-onset dementia among survivors of pneumonia associated with severe acute respiratory syndrome coronavirus 2 infection // Open Forum Infect Dis. 2022. Vol. 9, N 4. Р. ofac115. doi: 10.1093/ofid/ofac115
- Mazza M.G., Palladini M., De Lorenzo R., et al. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: effect of inflammatory biomarkers at three-month follow-up // Brain Behav Immun. 2021. Vol. 94. Р. 138–147. doi: 10.1016/j.bbi.2021.02.021
- Parsons N., Outsikas A., Parish A., et al. Modelling the anatomic distribution of neurologic events in patients with COVID-19: a systematic review of MRI findings // AJNR Am J Neuroradiol. 2021. Vol. 42, N 7. Р. 1190–1195. doi: 10.3174/ajnr.A7113
- Mondal R., Ganguly U., Deb S., et al. Meningoencephalitis associated with COVID-19: a systematic review // J Neurovirol. 2021. Vol. 27, N 1. Р. 12–25. doi: 10.1007/s13365-020-00923-3
- Sykes D.L., Holdsworth L., Jawad N., et al. Post-COVID-19 symptom burden: what is long-COVID and how should we manage it? // Lung. 2021. Vol. 199, N 2. Р. 113–119. doi: 10.1007/s00408-021-00423-z
- Solomon I.H., Normandin E., Bhattacharyya S., et al. Neuropathological features of COVID-19 // N Engl J Med. 2020. Vol. 383, N 10. Р. 989–992. doi: 10.1056/NEJMc2019373
- Coolen T., Lolli V., Sadeghi N., et al. Early postmortem brain MRI findings in COVID-19 non-survivors // Neurology. 2020. Vol. 95, N 14. Р. e2016–e2027. doi: 10.1212/WNL.0000000000010116
- Kanberg N., Ashton N.J., Andersson L.M., et al. Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19 // Neurology. 2020. Vol. 95, N 12. Р. e1754–e1759. doi: 10.1212/WNL.0000000000010111
- Zhou Y., Xu J., Hou Y., et al. Network medicine links SARS-CoV-2/COVID-19 infection to brain microvascular injury and neuroinflammation in dementia-like cognitive impairment // Alzheimers Res Ther. 2021. Vol. 13, N 1. Р. 110. doi: 10.1186/s13195-021-00850-3
- Phetsouphanh C., Darley D., Howe A., et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection // Nat Immunol. 2022. Vol. 23, N 2. Р. 210–216. doi: 10.1038/s41590-021-01113-x
- Kremer S., Lersy F., Anheim А., et al. Neurologic and neuroimaging findings in patients with COVID-19: a retrospective multicenter study // Neurology. 2020. Vol. 95, N 13. Р. e1868–e1882. doi: 10.1212/WNL.0000000000010112
- Slooter A.J., Otte W.M., Devlin J.W., et al. Updated nomenclature of delirium and acute encephalopathy: statement of ten societies // Intensive Care Med. 2020. Vol. 46, N 5. Р. 1020–1022. doi: 10.1007/s00134-019-05907-4
- Pun B.T., Badenes R., La Calle G.H., et al. Prevalence and risk factors for delirium in critically ill patients with COVID-19 (COVID-D): a multicentre cohort study // Lancet Respir Med. 2021. Vol. 9, N 3. Р. 239–250. doi: 10.1016/S2213-2600(20)30552-X
- Pilotto A., Masciocchi S., Volonghi I., et al. Clinical presentation and outcomes of severe acute respiratory syndrome coronavirus 2-related encephalitis: the ENCOVID multicenter study // J Infect Dis. 2021. Vol. 223, N 1. Р. 28–37. doi: 10.1093/infdis/jiaa609
- Wichmann D., Sperhake J.P., Lütgehetmann M., et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study // Ann Intern Med. 2020. Vol. 173, N 4. Р. 268–277. doi: 10.7326/M20-2003
- Mukerji S.S., Solomon I.H. What can we learn from brain autopsies in COVID-19? // Neurosci Lett. 2021. Vol. 742. Р. 135528. doi: 10.1016/j.neulet.2020.135528
- Baker H.A., Safavynia S.A., Evered L.A. The ‘third wave’: impending cognitive and functional decline in COVID-19 survivors // Br J Anaesth. 2021. Vol. 126, N 1. Р. 44–47. doi: 10.1016/j.bja.2020.09.045
- Lingor P., Demleitner A.F., Wolff W.A., Feneberg E. SARS-CoV-2 and neurodegenerative diseases: what we know and what we don’t // J Neural Transm (Vienna). 2022. Vol. 1. Р. 13. doi: 10.1007/s00702-022-02500-w
- Conklin J., Frosch M.P., Mukerji S.S., et al. Susceptibility-weighted imaging reveals cerebral microvascular injury in severe COVID-19 // J Neurol Sci. 2021. Vol. 421. Р. 117308. doi: 10.1016/j.jns.2021.117308
- Chen T., Wu D., Chen H., et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study // BMJ. 2020. Vol. 368. Р. m1091. doi: 10.1136/bmj.m1091
- Poyiadji N., Shahin G., Noujaim D., et al. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features // Radiology. 2020. Vol. 296, N 2. Р. E119–E120. doi: 10.1148/radiol.2020201187
- Badenoch J.B., Rengasamy E.R., Watson C.J., et al. Persistent neuropsychiatric symptoms after COVID-19: a systematic review and meta-analysis // Psychiatry Clin Psychol. 2021. Vol. 4, N 1. Р. fcab297. doi: 10.1093/braincomms/fcab297
- Davis H.E., Assaf G.S., McCorkell L., et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact // Clinical Medicine. 2021. Vol. 38. Р. 101019. doi: 10.1016/j.eclinm.2021.101019
- Taboada M., Cariñena A., Moreno E., et al. Post-COVID-19 functional status six-months after hospitalization // J Infect. 2021. Vol. 82, N 4. Р. e31–e33. doi: 10.1016/j.jinf.2020.12.022
- Mandal S., Barnett J., Brill S.E., et al. Long-COVID’: a cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19 // Thorax. 2021. Vol. 76, N 4. Р. 396–398. doi: 10.1136/thoraxjnl-2020-215818
- Altmann D.M., Boyton R.J. Decoding the unknowns in long COVID // BMJ. 2021. Vol. 372. Р. 132. doi: 10.1136/bmj.n132
- Dani M., Dirksen A., Taraborrelli P., et al. Autonomic dysfunction in ‘long COVID’: rationale, physiology and management strategies // Clin Med. 2021. Vol. 21, N 1. Р. e63–e67. doi: 10.7861/clinmed.2020-0896
- Del Brutto O.H., Wu S., Mera R.M., et al. Cognitive decline among individuals with history of mild symptomatic SARS-CoV-2 infection: a longitudinal prospective study nested to a population cohort // Eur J Neurol. 2021. Vol. 28, N 10. Р. 3245–3253. doi: 10.1111/ene.14775
- Boldrini M., Canoll P.D., Klein R.S. How COVID-19 affects the brain // JAMA Psychiatry. 2021. Vol. 78, N 6. Р. 682–683. doi: 10.1001/jamapsychiatry.2021.0500
- Helms J., Kremer S., Merdji H., et al. Neurologic features in severe SARS-CoV-2 infection // N Engl J Med. 2020. Vol. 382, N 23. Р. 2268–2270. doi: 10.1056/NEJMc2008597
- Ferrucci R., Dini M., Groppo E., et al. Long-lasting cognitive abnormalities after COVID-19 // Brain Sci. 2021. Vol. 11, N 2. Р. 235. doi: 10.3390/brainsci11020235
- Guedj E., Campion J.Y., Dudouet P., et al. 18F-FDG brain PET hypometabolism in patients with long COVID // Eur J Nucl Med Mol Imaging. 2021. Vol. 48, N 9. Р. 2823–2833. doi: 10.1007/s00259-021-05215-4
- Goss A.L., Samudralwar R.D., Das R.R., et al. ANA investigates: neurological complications of COVID-19 vaccines // Ann Neurol. 2021. Vol. 89, N 5. Р. 856–857. doi: 10.1002/ana.26065
- Ledford H. US authorization of first COVID vaccine marks new phase in safety monitoring // Nature. 2020. Vol. 588, N 7838. Р. 377–378. doi: 10.1038/d41586-020-03542-4
- Al-Mayhani T., Saber S., Stubbs M.J., et al. Ischaemic stroke as a presenting feature of ChAdOx1/nCoV-19 vaccine-induced immune thrombotic thrombocytopenia // J Neurol Neurosurg Psychiatry. 2021. Vol. 92, N 11. Р. 1247–1248. doi: 10.1136/jnnp-2021-326984
- Cines D.B., Bussel J.B. SARS-CoV-2 vaccine-induced immune thrombotic thrombocytopenia // N Engl J Med. 2021. Vol. 384, N 23. Р. 2254–2256. doi: 10.1056/NEJMe2106315
- Suresh P., Petchey W. ChAdOx1/nCoV-19 vaccine-induced immune thrombotic thrombocytopenia and cerebral venous sinus thrombosis // BMJ Case Rep. 2021. Vol. 14, N 6. Р. e243931. doi: 10.1136/bcr-2021-243931
- Douxfils J., Favresse J., Dogné J.M., et al. Hypotheses behind the very rare cases of thrombosis with thrombocytopenia syndrome after SARS-CoV-2 vaccination // Thromb Res. 2021. Vol. 203. Р. 163–171. doi: 10.1016/j.thromres.2021.05.010
- Schultz N.H., Sorvoll I.H., Michelsen A.E., et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination // N Engl J Med. 2021. Vol. 384, N 22. Р. 2124–2130. doi: 10.1056/NEJMoa2104882
- Elalamy I., Gerotziafas G., Alamowitch S., et al. SARS-CoV-2 vaccine and thrombosis: an expert consensus on vaccine-induced immune thrombotic thrombocytopenia // Thromb Haemost. 2021. Vol. 121, N 8. Р. 982–991. doi: 10.1055/a-1499-0119
- Pavord S., Scully M., Hunt B.J., et al. Clinical features of vaccine-induced immune thrombocytopenia and thrombosis // N Engl J Med. 2021. Vol. 385, N 18. Р. 1680–1689. doi: 10.1056/NEJMoa2109908
- Kakovan M., Shirkouhi S.G., Zarei M., Andalib S. Stroke associated with COVID-19 vaccines // J Stroke Cerebrovasc Dis. 2022. Vol. 31, N 6. Р. 106440. doi: 10.1016/j.jstrokecerebrovasdis.2022.106440
- Dubey S., Dubey M.J., Ghosh R., et al. The cognitive basis of psychosocial impact in COVID-19 pandemic. Does it encircle the default mode network of the brain? A pragmatic proposal // Med Res Arch. 2022. Vol. 10, N 3. Р. 10.18103/mra.v10i3.2707. doi: 10.18103/mra.v10i3 .2707
Дополнительные файлы
