Alternative methods of disease prevention and treatment in aquaculture
- Authors: Meskhi B.C.1, Djedirov D.A.1, Rudoy D.V.1, Shevchenko V.N.1, Golovko L.S.1, Olshevskaya A.V.1, Odabashyan M.Y.1, Prutskov A.S.1, Teplyakova S.V.1
-
Affiliations:
- Don State Technical University
- Issue: Vol 17, No 6-2 (2025)
- Pages: 698-715
- Section: Статьи
- Published: 30.12.2025
- URL: https://ogarev-online.ru/2658-6649/article/view/371794
- DOI: https://doi.org/10.12731/2658-6649-2025-17-6-2-1574
- EDN: https://elibrary.ru/JZQMUH
- ID: 371794
Cite item
Full Text
Abstract
Background. In recent years, the use of antibiotics in aquaculture has raised increasing concern due to the development of microorganism resistance to antibacterial drugs and the negative impact on the ecosystem. Therefore, search for alternative methods for treating and preventing fish diseases has become an urgent task. Promising alternatives for the prevention and treatment of aquaculture species include the use of probiotics, prebiotics, synbiotics, postbiotics, phytobiotics, bacteriophages, and quorum sensing (QS) inhibition mechanisms. The state of the microflora of aquatic organisms is crucial for enhancing the organism’s resistance to infectious diseases. Thus, using agents that can positively influence the microbiota, exert antimicrobial effects, and modulate the immune system is essential for the effective development of the aquaculture industry. This article discusses some of the main fish diseases, the likelihood of which increases with the intensification of aquaculture. Bacteria of the genus Aeromonas are often the cause of diseases and financial losses in the industry. The work provides an overview of alternative methods for preventing and treating fish diseases that can reduce the use of antibacterial drugs, including the application of vaccines, probiotics, prebiotics, and bacteriocins.
Purpose. To investigate alternative methods of treatment and prevention of fish diseases.
Materials and methods. In the study, a method of collecting, analyzing, and systematizing of published scientific sources was used. The collection of literary information was carried out using reference databases such as Science Direct, Research Gate, Google Scholar, National Library of Medicine, Wiley Online Library, and others. To search for suitable scientific publications, keywords such as «aquaculture», «diseases», «bacterial fish diseases», «probiotics», «prebiotics», «synbiotics», «bacteriocins», «phytobiotics», and «quorum sensing» were used individually or in various combinations. The search period was limited to scientific works published between 2014 and 2024.
Results. As alternative methods, vaccination, quorum sensing inhibition, bacteriophages, as well as probiotics, prebiotics, phytobiotics, and others can be used. The state of the fish microbiome has an important impact on the likelihood of developing of infectious processes. For example, it has been reported that fish with a healthy microbiome more effectively controlled and suppressed the colonization and dissemination of bacteria of the genus Aeromonas than fish with a disrupted microbiota. Currently, probiotic microorganisms are most commonly used as agents that can influence the microflora and correct the microbial balance [36]. Probiotics are most commonly represented with bacteria, including species from cultures Bacillus sp., Lactococcus sp., Micrococcus sp., Carnobacterium sp., Enterococcus sp., Lactobacillus sp., Streptococcus and Weissella sp. Some strains of yeast and algae may be used too. Probiotics are most commonly represented with a group of lactic acid bacteria, as among all microorganisms with registered probiotic properties, they are considered to have a higher safety profile. They can produce antimicrobial substances and positively influence the immune system of the macroorganism. Probiotics used in aquaculture must undergo a special assessment to determine their potential for application, taking into account the specifics of the industry. The main spectrum of action of probiotic microorganisms in the intestines of aquatic organisms lies in their anti-adhesive effect against pathogenic strains, the production of antimicrobial substances (including bacteriocins and defensins), competition with pathogenic flora, enhancement of the host’s resistance properties, alteration of the intestinal pH level, and activation of the immune system.
Conclusion. Thus, despite the intensification of aquaculture and the increased likelihood of infectious diseases in aquaculture species, the worsening issue of antibiotic resistance and the irrational use of antibacterial drugs necessitate the development and implementation of alternative methods for controlling fish diseases.
About the authors
Besarion Ch. Meskhi
Don State Technical University
Author for correspondence.
Email: reception@donstu.ru
ORCID iD: 0000-0003-3497-3102
Doctor of Technical Sciences, Professor, Rector, Academician of the Russian Academy of Sciences
Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation
Dmitry A. Djedirov
Don State Technical University
Email: ddjedirov@donstu.ru
SPIN-code: 9606-8971
Acting Vice-Rector for General Affairs
Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation
Dmitry V. Rudoy
Don State Technical University
Email: dmitriyrudoi@gmail.com
ORCID iD: 0000-0002-1916-8570
Scopus Author ID: 57212389828
Doctor of Engineering Sciences, Head of the Specialized organization of the territorial cluster “Dolina Dona” of the Rostov region, Dean of the Faculty “Agribusiness”, Chief Researcher of the Research laboratory “Agrobiotechnology Center”, Associate Professor of the Department “Technologies and Equipment for Processing Agricultural Products”
Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation
Victoria N. Shevchenko
Don State Technical University
Email: vikakhorosheltseva@gmail.com
ORCID iD: 0000-0002-5001-4959
Candidate of Biological Sciences, Senior Researcher of the Research laboratory “Agrobiotechnology Center”
Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation
Lilia S. Golovko
Don State Technical University
Email: liliya_s_golovko@mail.ru
ORCID iD: 0000-0001-6883-7155
SPIN-code: 6532-6105
Scopus Author ID: 57222661274
Candidate of Medical Sciences, Senior Researcher of the Research laboratory “Agrobiotechnology Center”
Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation
Anastasiya V. Olshevskaya
Don State Technical University
Email: olshevskaya.av@gs.donstu.ru
ORCID iD: 0000-0001-8318-3938
Scopus Author ID: 57204675629
Candidate of Technical Sciences, Deputy Head of the Development center of the territorial cluster “Dolina Dona”, Deputy Dean for Strategic and Digital Development of the Faculty “Agribusiness”, Associate Professor of the Department “Technologies and Equipment for Processing Agricultural Products”
Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation
Mary Yu. Odabashyan
Don State Technical University
Email: modabashyan@donstu.ru
ORCID iD: 0000-0002-3371-0098
Scopus Author ID: 58078886200
Candidate of Biological Sciences, Senior Researcher of the Center for Agrobioengineering of Essential Oil and Medicinal Plants, Associate Professor of the Department “Technologies and Equipment for Processing Agricultural Products”, Scientific Leader of the Students’ scientific society “Agriculture”
Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation
Alexey S. Prutskov
Don State Technical University
Email: adelinakorob@mail.ru
ORCID iD: 0009-0001-8999-2960
Scopus Author ID: 57218097687
Engineer of the Development center of the territorial cluster “Dolina Dona”
Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation
Svetlana V. Teplyakova
Don State Technical University
Email: teplyakova.sv@gs.donstu.ru
ORCID iD: 0000-0003-4245-1523
Scopus Author ID: 57214222442
Candidate of Technical Sciences, Associate Professor of the Department “Technologies and Equipment for Processing Agricultural Products”, Senior Researcher of the Development center of the territorial cluster “Dolina Dona”
Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation
References
- Naylor, R., Hardy, R., Buschmann, A., Bush, S., Cao, L., Klinger, D., Little, D., Lubchenco, J., Shumway, S., & Troell, M. (2021). Nature, 551–563. https://doi.org/10.1038/s41586-021-03308-6
- Pérez-Sánchez, T., & Mora-Sánchez, B. L. (2018). Trends in Microbiology, 896–903. https://doi.org/10.1016/j.tim.2018.05.002
- Hai, N. (2015). Journal of Applied Microbiology, 917–935. https://doi.org/10.1111/jam.12886
- Li, Z., Tran, N., Ji, P., Sun, Z., Wen, X., & Li, S. (2019). Fish & Shellfish Immunology, 564–573. https://doi.org/10.1016/j.fsi.2019.04.025
- Wee, W., Hamid, N., Mat, K., & Khalif, R. (2024). Aquaculture and Fisheries, 28–34. https://doi.org/10.1016/j.aaf.2022.02.005
- Oviedo-Olvera, M., Feregrino-Pérez, A. F., Nieto-Ramírez, M., Tovar-Ramírez, M., Aguirre-Becerra, H., & García-Trejo, J. (2023). Aquaculture and Fisheries. https://doi.org/10.1016/j.aaf.2023.06.007
- El-Saadony, M., Alagawany, M., Patra, A., Kar, I., Tiwari, R., Dawood, M., Dhama, K., & Abdel-Latif, H. (2021). Fish & Shellfish Immunology, 36–52. https://doi.org/10.1016/j.fsi.2021.07.007
- Huynh, T.-G., Shiu, Y.-L., Nguyen, T.-P., Truong, Q.-P., Chen, J.-C., & Liu, C.-H. (2017). Fish & Shellfish Immunology, 367–382. https://doi.org/10.1016/j.fsi.2017.03.035
- Okey, I., Gabriel, U., & Deekae, S. (2018). Sumerianz Journal of Biotechnology, 51–60.
- Sudhakaran, G., Guru, A., Haridevamuthu, B., Murugan, R., Arshad, A., & Arockiaraj, J. (2022). Aquaculture Research, 3257–3273. https://doi.org/10.1111/are.15846
- Jana, P., Karmakar, S., Roy, U., Paul, M., Singh, A. K., & Bera, K. (2018). Journal of Entomology and Zoology Studies, 1422–1429.
- Ninawe, A., Sivasankari, S., Ramasamy, P., & Kiran, S. (2020). Aquaculture International, 1925–1938. https://doi.org/10.1007/s10499-020-00567-4
- Jayaprakashvel, M., & Subramani, R. (2019). Implication of quorum sensing and biofilm formation in medicine, agriculture and food industry. In: [Book title not specified] (pp. 299–312). https://doi.org/10.1007/978-981-32-9409-7_18
- El-adawy, M., Eissa, A., Shaalan, M., Ahmed, A., Karamat, N., Ismail, M., & Abdelsalam, M. (2021). Aquaculture Research, 1247–1254. https://doi.org/10.1111/are.14983
- Mondal, H., Chandrasekaran, N., Mukherjee, A., & Thomas, J. (2022). Aquaculture International, 227–262. https://doi.org/10.1007/s10499-021-00795-2
- Timi, J., & Buchmann, K. (2023). Journal of Helminthology, e4. https://doi.org/10.1017/S0022149X22000797
- Lindholm-Lehto, P., & Pylkkö, P. (2024). Aquaculture, Fish and Fisheries, e2200. https://doi.org/10.1002/aff2.200
- Bakiyev, S., & Bissenbaev, A. (2021). Experimental Biology, 4–15. https://doi.org/10.26577/eb.2021.v87.i2.01
- Pereira, C., Duarte, J., Costa, P., Braz, M., & Almeida, A. (2022). Antibiotics, 163. https://doi.org/10.3390/antibiotics11020163
- Hatje, E., Neuman, C., & Katouli, M. (2014). Applied and Environmental Microbiology, 681–686. https://doi.org/10.1128/AEM.03200-13
- Rods, G. P. (2014). UK standards for microbiology investigations. Public Health England.
- Semwal, A., Kumar, A., & Kumar, N. (2023). Heliyon, e14088. https://doi.org/10.1016/j.heliyon.2023.e14088
- Chen, P.-L., Lamy, B., & Ko, W.-C. (2016). Frontiers in Microbiology, 793. https://doi.org/10.3389/fmicb.2016.00793
- Stratev, D., & Odeyemi, O. (2017). Aquaculture International, 1095–1105. https://doi.org/10.1007/s10499-016-0100-3
- Monir, S., Yusoff, S., Mohamad, A., & Ina-Salwany, M. (2020). Journal of Aquatic Animal Health, 65–76. https://doi.org/10.1002/aah.10099
- Gallani, S., Valladão, G., Assane, I., Alves, L., Kotzent, S., Hashimoto, D., & Pilarski, F. (2020). Microbial Pathogenesis, 104512. https://doi.org/10.1016/j.micpath.2020.104512
- Ran, C., Qin, C., Xie, M., Zhang, J., Li, J., Xie, Y., Wang, Y., Li, S., Liu, L., Fu, X., Lin, Q., Li, N., Liles, M., & Zhou, Z. (2018). Environmental Microbiology, 3442–3456. https://doi.org/10.1111/1462-2920.14390
- Duman, M., Mulet, M., Altun, S., Saticioglu, I., Ozdemir, B., Ajmi, N., Lalucat, J., & García-Valdés, E. (2021). Aquaculture, 736369. https://doi.org/10.1016/j.aquaculture.2021.736369
- Milivojevic, D., Šumonja, N., Medic, S., Pavic, A., Moric, I., Vasiljevic, B., Senerovic, L., & Nikodinovic-Runic, J. (2018). Pathogens and Disease. https://doi.org/10.1093/femspd/fty041
- Paczkowski, J., Mukherjee, S., McCready, A., Cong, J.-P., Aquino, C., Kim, H., Henke, B., Smith, C., & Bassler, B. (2017). Journal of Biological Chemistry, 4064–4076. https://doi.org/10.1074/jbc.M116.770552
- Osman, K., Da Silva Pires, Á. L., Franco, O., Saad, A., Naim, H., Ali, A., & Elbehiry, A. (2021). Aquaculture, 736068. https://doi.org/10.1016/j.aquaculture.2020.736068
- Lalucat, J., Mulet, M., Gomila, M., & García-Valdés, E. (2020). Genes, 139. https://doi.org/10.3390/genes11020139
- Santos, L., & Ramos, F. (2018). International Journal of Antimicrobial Agents, 135–143. https://doi.org/10.1016/j.ijantimicag.2018.03.010
- Narayanan, S., Joseph, T., Peeralil, S., Koombankallil, R., Vaiyapuri, M., Mothadaka, M., & Lalitha, K. (2020). Marine Pollution Bulletin, 111551. https://doi.org/10.1016/j.marpolbul.2020.111551
- Nguyen, H. T. V., Nguyen, H. H., Smooker, P., Shimeta, J., & Coloe, P. (2014). Veterinary Microbiology, 397–405. https://doi.org/10.1016/j.vetmic.2014.01.028
- Bondad-Reantaso, M., MacKinnon, B., Karunasagar, I., Fridman, S., Alday-Sanz, V., Brun, E., Le Groumellec, M., Li, A., Surachetpong, W., Karunasagar, I., Hao, B., Dall’Occo, A., Urbani, R., & Caputo, A. (2023). Reviews in Aquaculture, 1421–1451. https://doi.org/10.1111/raq.12786
- Montalban-Arques, A., De Schryver, P., Bossier, P., Gorkiewicz, G., Mulero, V., Gatlin, D., & Galindo-Villegas, J. (2015). Frontiers in Immunology, 512. https://doi.org/10.3389/fimmu.2015.00512
- Moya, A., & Ferrer, M. (2016). Trends in Microbiology, 402–413. https://doi.org/10.1016/j.tim.2016.02.002
- Li, T., Long, M., Ji, C., Shen, Z., Gatesoupe, F.-J., Zhang, X., Zhang, Q., Zhang, L., Zhao, Y., Liu, X., & Li, A. (2016). Scientific Reports, 1–9. https://doi.org/10.1038/srep30606
- Gheziel, C., Russo, P., Arena, M., Spano, G., Ouzari, H.-I., Kheroua, O., Saidi, D., Fiocco, D., Kaddouri, H., & Capozzi, V. (2019). Probiotics and Antimicrobial Proteins, 113–123. https://doi.org/10.1007/s12602-018-9396-9
- Singhal, N., Singh, N., Singh, S., & Virdi, J. (2019). Indian Journal of Microbiology, 112–115. https://doi.org/10.1007/s12088-018-0762-9
- Pereira, W., Mendonça, C., Urquiza, A., Marteinsson, V., LeBlanc, J., Cotter, P., Villalobos, E., Romero, J., & Oliveira, R. (2022). Microorganisms, 1705. https://doi.org/10.3390/microorganisms10091705
- Goh, J., Tan, L., Law, J., Ser, H.-L., Khaw, K.-Y., Letchumanan, V., Lee, L.-H., & Goh, B.-H. (2022). Reviews in Aquaculture, 1–80. https://doi.org/10.1111/raq.12659
- Catalán, N., Villasante, A., Wacyk, J., Ramírez, C., & Romero, J. (2017). Probiotics and Antimicrobial Proteins, 566–576. https://doi.org/10.1007/s12602-017-9366-7
- Yang, S.-C., Lin, C.-H., Sung, C. T., & Fang, J.-Y. (2014). Frontiers in Microbiology, 241. https://doi.org/10.3389/fmicb.2014.00241
Supplementary files


