The effect of the probiotic strain of Bacillus subtilis on the gastrointestinal tract of calves with diarrheal syndrome
- Authors: Gribchenko I.B.1, Korel A.V.1, Saeidi A.2, Bets V.D.1
-
Affiliations:
- Novosibirsk State Technical University
- Novosibirsk State University
- Issue: Vol 17, No 1 (2025)
- Pages: 11-25
- Section: Human and Animal Physiology
- Published: 28.02.2025
- URL: https://ogarev-online.ru/2658-6649/article/view/309170
- DOI: https://doi.org/10.12731/2658-6649-2025-17-1-920
- EDN: https://elibrary.ru/QLGMUF
- ID: 309170
Cite item
Full Text
Abstract
The development of diarrheal syndrome in calves is a serious problem and causes great economic losses for cattle breeding. There are infectious and non-infectious causes. The prevention of such conditions is based on the correct colonization of the symbiotic microflora of the gastrointestinal tract in calves during the neonatal period. Another important factor is the use of probiotic bacteria to regulate metabolism and microbiome. The purpose research was to find out determine evaluate the rate of elimination of bacteria of the genus Bacillus subtilis from the body of dairy cattle calves, as well as the effect of probiotics on diarrhea and changes in the microbiome. For this purpose, changes in the consistency and bacterial diversity of faeces were evaluated in animals before and after the use of a probiotic strain of B. subtilis bacteria. The results of the study show the restoration of gastrointestinal tract function in calves with signs of diarrhea. During the study, a change in the microbial community was observed under the influence of B. subtilis bacteria. The study showed that before the use of probiotics in crops on nutrient media, fungi of the genus Candida tropicalis were detected in calves of the experimental and control groups, however, after the use of probiotics in calves of the experimental group, these fungi were not detected already on the first day after completion course. The study supported the hypothesis that probiotic bacteria B. subtilis participate in restoring the function of the gastrointestinal tract in calves with diarrhea and affect the microbial community.
Keywords
About the authors
Inna B. Gribchenko
Novosibirsk State Technical University
Author for correspondence.
Email: inna.gri01@mail.ru
ORCID iD: 0009-0009-2717-5736
Research Assistant, Centers of Technological Excellence
Russian Federation, 20, Prospekt K. Marksa, Novosibirsk, 630073, Russian FederationAnastasia V. Korel
Novosibirsk State Technical University
Email: akorel@gmail.com
ORCID iD: 0000-0002-2945-3658
Candidate of Biology Sciences, Research Assistant, Centers of Technological Excellence
Russian Federation, 20, Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation
Arsalan Saeidi
Novosibirsk State University
Email: saeidi.arsalan1377@gmail.com
ORCID iD: 0009-0006-2395-5127
Research Assistant, Laboratory of Molecular Pathology of the Institute of Medicine and Pathology
Russian Federation, 2, Pirogova Str., Novosibirsk, 630090, Russian Federation
Victoria D. Bets
Novosibirsk State Technical University
Email: vish22@yandex.ru
ORCID iD: 0000-0002-5148-9067
Research Assistant, Centers of Technological Excellence
Russian Federation, 20, Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation
References
- Barnes, A. G. C., Cerović, V., Hobson, P. S., & Klavinskis, L. S. (2007). Bacillus subtilis spores: A novel microparticle adjuvant which can instruct a balanced Th1 and Th2 immune response to specific antigen. European Journal of Immunology, 37(6), 1538–1547. https://doi.org/10.1002/eji.200636875
- Bastos, T. S., de Lima, D. C., Souza, C. M. M., Maiorka, A., de Oliveira, S. G., Bittencourt, L. C., & Félix, A. P. (2020). Bacillus subtilis and Bacillus licheniformis reduce faecal protein catabolites concentration and odour in dogs. BMC Veterinary Research, 16(1), 1–8. https://doi.org/10.1186/s12917-020-02321-7
- Bernardeau, M., Lehtinen, M. J., Forssten, S. D., & Nurminen, P. (2017). Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. Journal of Food Science and Technology, 54(8), 2570–2584. https://doi.org/10.1007/s13197-017-2688-3
- Caffarena, R. D., Casaux, M. L., Schild, C. O., Fraga, M., Castells, M., Colina, R., Maya, L., Corbellini, L. G., Riet-Correa, F., & Giannitti, F. (2021). Causes of neonatal calf diarrhea and mortality in pasture-based dairy herds in Uruguay: A farm-matched case-control study. Brazilian Journal of Microbiology, 52(2). https://doi.org/10.1007/s42770-021-00440-3
- Caulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C., & Mahillon, J. (2019). Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.00302/bibtex
- Cho, Y.-I., & Yoon, K. J. (2014). An overview of calf diarrhea — infectious etiology, diagnosis, and intervention. Journal of Veterinary Science, 15(1), 1–17. https://doi.org/10.4142/jvs.2014.15.1.1
- Duan, M., Zhang, Y., Zhou, B., Qin, Z., Wu, J., Wang, Q., & Yin, Y. (2020). Effects of Bacillus subtilis on carbon components and microbial functional metabolism during cow manure-straw composting. Bioresource Technology, 303, 122868. https://doi.org/10.1016/j.biortech.2020.122868
- Du, W., Wang, X., Hu, M., Hou, J., Du, Y., Si, W., Yang, L., Xu, L., & Xu, Q. (2023). Modulating gastrointestinal microbiota to alleviate diarrhea in calves. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1181545
- Fukuda, T., Otsuka, M., Nishi, K., Nishi, Y., Tsukano, K., Noda, J., Higuchi, H., & Suzuki, K. (2019). Evaluation of probiotic therapy for calf diarrhea with serum diamine oxidase activity as an indicator. Japanese Journal of Veterinary Research, 67(4). https://doi.org/10.14943/jjvr.67.4.305
- Guo, M., Wu, F., Hao, G., Qi, Q., Li, R., Li, N., Wei, L., & Chai, T. (2017). Bacillus subtilis improves immunity and disease resistance in rabbits. Frontiers in Immunology, 8(MAR), 354. https://doi.org/10.3389/fimmu.2017.00354/bibtex
- Hashem, A., Tabassum, B., & Fathi Abd_Allah, E. (2019). Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26(6), 1291. https://doi.org/10.1016/j.sjbs.2019.05.004
- Kahraman, O., Gürbüz, E., İnal, F., Arık, H. D., Altaş, M. S., & Ahmed, I. (2023). Effects of Bacillus subtilis C-3102 addition to dry dog food on nutrient digestibility fecal characteristics, fecal microbiota and blood chemistry in healthy dogs. Research Square. https://doi.org/10.21203/rs.3.rs-2450446/v1
- Kertz, A. F., & Chester-Jones, H. (2004). Invited review: guidelines for measuring and reporting calf and heifer experimental data. Journal of Dairy Science, 87(11), 3577–3580. https://doi.org/10.3168/jds.S0022-0302(04)73495-5
- Kim, K., He, Y., Xiong, X., Ehrlich, A., Li, X., Raybould, H., Atwill, E. R., Maga, E. A., Jørgensen, J., & Liu, Y. (2019). Dietary supplementation of Bacillus subtilis influenced intestinal health of weaned pigs experimentally infected with a pathogenic Escherichia coli. Journal of Animal Science and Biotechnology, 10(1), 1–12. https://doi.org/10.1186/s40104-019-0364-3/tables/5
- Larson, L. L., Owen, F. G., Albright, J. L., Appleman, R. D., Lamb, R. C., & Muller, L. D. (1977). Guidelines toward more uniformity in measuring and reporting calf experimental data I. Journal of Dairy Science. https://doi.org/10.3168/jds.S0022-0302(77)83975-1
- Li, X. Y., Duan, Y. L., Yang, X., & Yang, X. J. (2020). Effects of Bacillus subtilis and antibiotic growth promoters on the growth performance, intestinal function and gut microbiota of pullets from 0 to 6 weeks. Animal, 14(8), 1619–1628. https://doi.org/10.1017/S1751731120000191
- Li, Y., Jia, D., Wang, J., Li, H., Yin, X., Liu, J., Wang, J., et al. (2021). Probiotics isolated from animals in northwest China improve the intestinal performance of mice. Frontiers in Veterinary Science, 8, 1071. https://doi.org/10.3389/fvets.2021.750895/bibtex
- Li, Y., Xu, Q., Huang, Z., Lv, L., Liu, X., Yin, C., Yan, H., & Yuan, J. (2016). Effect of Bacillus subtilis CGMCC 1.1086 on the growth performance and intestinal microbiota of broilers. Journal of Applied Microbiology, 120(1), 195–204. https://doi.org/10.1111/jam.12972
- Meganck, V., Hoflack, G., & Opsomer, G. (2014). Advances in prevention and therapy of neonatal dairy calf diarrhoea: A systematic review with emphasis on colostrum management and fluid therapy. Acta Veterinaria Scandinavica, 56(1), 1–8. https://doi.org/10.1186/s13028-014-0075-x/tables/1
- Melara, E. G., Avellaneda, M. C., Valdivié, M., García-Hernández, Y., Aroche, R., & Martínez, Y. (2022). Probiotics: symbiotic relationship with the animal host. Animals, 12(6), 719. https://doi.org/10.3390/ani12060719
- Mun, D., Kyoung, H., Kong, M., Ryu, S., Jang, K. B., Baek, J., Park, K. I., Song, M., & Kim, Y. (2021). Effects of bacillus-based probiotics on growth performance, nutrient digestibility, and intestinal health of weaned pigs. Journal of Animal Science and Technology, 63(6), 1314–1327. https://doi.org/10.5187/JAST.2021.E109
- Naylor, J. M. (2009). Neonatal calf diarrhea. In Current veterinary therapy: Food animal practice (pp. 70–77). Elsevier Saunders. https://doi.org/10.1016/B978-141603591-6.10021-1
- Renaud, D. L., Buss, L., Wilms, J. N., & Steele, M. A. (2020). Technical note: is fecal consistency scoring an accurate measure of fecal dry matter in dairy calves? Journal of Dairy Science, 103(11), 10709–10714. https://doi.org/10.3168/jds.2020-18907
- Sun, P., Wang, J. Q., & Zhang, H. T. (2010). Effects of Bacillus subtilis natto on performance and immune function of preweaning calves. Journal of Dairy Science, 93(12), 5851–5855. https://doi.org/10.3168/jds.2010-3263
- Ozabor, T. P., & Fadahunsi, I. F. (2019). Antimicrobial activity of Bacillus subtilis against some selected food borne pathogens. Acta Scientific Microbiology, 2(7), 89–95. Retrieved July 7, 2019.
- Tian, Z., Wang, X., Duan, Y., Zhao, Y., Zhang, W., Azad, M. A. K., Wang, Z., Blachier, F., & Kong, X. (2021). Dietary supplementation with Bacillus subtilis promotes growth and gut health of weaned piglets. Frontiers in Veterinary Science, 7, 1203. https://doi.org/10.3389/fvets.2020.600772/bibtex
- Wang, Q., Ren, Y., Cui, Y., Gao, B., Zhang, H., Jiang, Q., Loor, J. J., Deng, Z., & Xu, C. (2022). Bacillus subtilis produces amino acids to stimulate protein synthesis in ruminal tissue explants via the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta–serine/threonine kinase–mammalian target of rapamycin complex 1 pathway. Frontiers in Veterinary Science, 9, 691. https://doi.org/10.3389/fvets.2022.852321/bibtex
- Wang, W. C., Yan, F. F., Hu, J. Y., Amen, O. A., & Cheng, H. W. (2018). Supplementation of Bacillus subtilis-based probiotic reduces heat stress-related behaviors and inflammatory response in broiler chickens. Journal of Animal Science, 96(5), 1654–1666. https://doi.org/10.1093/jas/sky092
- Wu, Y. y., Nie, C. x., Xu, C., Luo, R. q., Chen, H. l., Niu, J. l., Bai, X., & Zhang, W. (2022). Effects of dietary supplementation with multispecies probiotics on intestinal epithelial development and growth performance of neonatal calves challenged with Escherichia coli K99. Journal of the Science of Food and Agriculture, 102(10). https://doi.org/10.1002/jsfa.11791
- Ziese, A. L., Suchodolski, J. S., Hartmann, K., Busch, K., Anderson, A., Sarwar, F., Sindern, N., & Unterer, S. (2018). Effect of probiotic treatment on the clinical course, intestinal microbiome, and toxigenic Clostridium perfringens in dogs with acute hemorrhagic diarrhea. PLOS ONE, 18(1), e0204691. https://doi.org/10.1371/journal.pone.0204691
Supplementary files
