Nutrition and sleep of a child in the first year of life: A pediatrician needs to know this: A review

Cover Page

Cite item

Full Text

Abstract

Sleep is regulated by circadian rhythms and homeostatic processes and is essential for the health and development of the child. Lack of sleep correlates with behavioral problems, learning difficulties, and an increased risk of various diseases. Functional disorders, in particular infantile colic, are often associated with sleep disorders in infants, which require a comprehensive approach to treatment. The ontogeny of sleep is closely linked to morphological and functional changes in the brain, with sleep playing a critical role in neural network formation, memory consolidation, and synaptic density regulation. The formation of circadian rhythms is a complex process that begins in the prenatal period. Exogenous factors, such as sleep disturbances in a pregnant woman and nutritional factors, can desynchronize the baby's circadian rhythms, with adverse consequences for its health. Factors influencing the formation of circadian rhythms after birth include light, the chrononutrients in breast milk (BM), and the intestinal microbiota. BM is the “gold standard” of nutrition, providing immune protection and normal neurogenesis. The article discusses the role of tryptophan, nucleotides, fatty acids, and melatonin contained in BM in the development of healthy sleep. The role of adapted formulas in cases where breastfeeding is not possible is analyzed, and the importance of using prebiotic-containing formulas to improve infant digestion and sleep is emphasized.

About the authors

Irina N. Zakharova

Russian Medical Academy of Continuous Professional Education

Author for correspondence.
Email: zakharova-rmapo@yandex.ru
ORCID iD: 0000-0003-4200-4598

D. Sci. (Med.), Prof.

Russian Federation, Moscow

Irina V. Berezhnaya

Russian Medical Academy of Continuous Professional Education; Bashlyaeva Children's City Clinical Hospital

Email: zakharova-rmapo@yandex.ru
ORCID iD: 0000-0002-2847-6268

Cand. Sci. (Med.)

Russian Federation, Moscow; Moscow

Yana V. Orobinskaya

Russian Medical Academy of Continuous Professional Education

Email: zakharova-rmapo@yandex.ru
ORCID iD: 0009-0005-2121-4010

Assistant

Russian Federation, Moscow

Viktoria V. Pupykina

Russian Medical Academy of Continuous Professional Education

Email: zakharova-rmapo@yandex.ru
ORCID iD: 0000-0003-2181-8138

Assistant

Russian Federation, Moscow

Viktoriya D. Churilova

Russian Medical Academy of Continuous Professional Education

Email: zakharova-rmapo@yandex.ru
ORCID iD: 0009-0009-0335-0704

Assistant

Russian Federation, Moscow

References

  1. El-Sheikh M, Kelly RJ. Family Functioning and Children's Sleep. Child Dev Perspect. 2017;11(4):264-9. doi: 10.1111/cdep.12243
  2. Calhoun SL, Fernandez-Mendoza J, Vgontzas AN, et al. Behavioral Profiles Associated with Objective Sleep Duration in Young Children with Insomnia Symptoms. J Abnorm Child Psychol. 2017;45(2):337-44. doi: 10.1007/s10802-016-0166-4
  3. Staples AD, Bates JE, Petersen IT, et al. Measuring sleep in young children and their mothers: Identifying actigraphic sleep composites. Int J Behav Dev. 2019;43(3): 278-85. doi: 10.1177/0165025419830236
  4. Pulido-Arjona L, Correa-Bautista JE, Agostinis-Sobrinho C, et al. Role of sleep duration and sleep-related problems in the metabolic syndrome among children and adolescents. Ital J Pediatr. 2018;44(1):9. doi: 10.1186/s13052-018-0451-7
  5. Hysing M, Harvey AG, Torgersen L, et al. Trajectories and predictors of nocturnal awakenings and sleep duration in infants. J Dev Behav Pediatr. 2014;35(5): 309-16. doi: 10.1097/DBP.0000000000000064
  6. Paruthi S, Brooks LJ, D'Ambrosio C, et al. Recommended Amount of Sleep for Pediatric Populations: A Consensus Statement of the American Academy of Sleep Medicine. J Clin Sleep Med. 2016;12(6):785-6. doi: 10.5664/jcsm.5866
  7. Mindell J, Owens J. A clinical guide to pediatric sleep. Diagnosis and management of sleep problems. Philadelphia: Lippincott Williams & Wilkins, 2005. 232 p.
  8. Goodlin-Jones BL, Burnham MM, Gaylor EE, Anders TF. Night waking, sleep-wake organization, and self-soothing in the first year of life. J Dev Behav Pediatr. 2001;22(4):226-33. doi: 10.1097/00004703-200108000-00003
  9. St James-Roberts I, Peachey E. Distinguishing infant prolonged crying from sleep-waking problems. Arch Dis Child. 2011;96(4):340-4. doi: 10.1136/adc.2010.200204
  10. Wolke D, Bilgin A, Samara M. Systematic Review and Meta-Analysis: Fussing and Crying Durations and Prevalence of Colic in Infants. J Pediatr. 2017;185:55-61.e4. doi: 10.1016/j.jpeds.2017.02.020
  11. Hemmi MH, Wolke D, Schneider S. Associations between problems with crying, sleeping and/or feeding in infancy and long-term behavioural outcomes in childhood: a meta-analysis. Arch Dis Child. 2011;96(7):622-9. doi: 10.1136/adc.2010.191312
  12. Chaput JP, Gray CE, Poitras VJ, et al. Systematic review of the relationships between sleep duration and health indicators in the early years (0-4 years). BMC Public Health. 2017;17(Suppl. 5):855. doi: 10.1186/s12889-017-4850-2
  13. Hysing M, Sivertsen B, Garthus-Niegel S, Eberhard-Gran M. Pediatric sleep problems and social-emotional problems. A population-based study. Infant Behav Dev. 2016;42:111-8. doi: 10.1016/j.infbeh.2015.12.005
  14. Sivertsen B, Harvey AG, Reichborn-Kjennerud T, et al. Later emotional and behavioral problems associated with sleep problems in toddlers: a longitudinal study. JAMA Pediatr. 2015;169(6):575-82. doi: 10.1001/jamapediatrics.2015.0187
  15. Vandenplas Y, Abkari A, Bellaiche M, et al. Prevalence and health outcomes of functional gastrointestinal symptoms in infants from birth to 12 months of age. JPGN. 2015;61(5):531-7. doi: 10.1097/MPG.0000000000000949
  16. Vandenplas Y, Hauser B, Salvatore S. Функциональные гастроинтестинальные расстройства: влияние на здоровье ребенка и семьи. Педиатрия. Consilium Medicum. 2020;1:36-41 [Vandenplas Y, Hauser B, Salvatore S. Functional gastrointestinal disorders in infancy: impact on infants and family health. Pediatrics. Consilium Medicum. 2020;1:36-41 (in Russian)]. doi: 10.26442/26586630.2020.1.190721
  17. Weissbluth M. Sleep and the colicky infant. In: Guilleminault C. Sleep and its disorders in children. New York: Raven Press, 1987.
  18. Kirjavainen J, Kirjavainen T, Huhtala V, et al. Infants with colic have a normal sleep structure at 2 and 7 months of age. J Pediatr. 2001;138(2):218-23. doi: 10.1067/mpd.2001.110326
  19. Orr WC, Fass R, Sundaram SS, Scheimann AO. The effect of sleep on gastrointestinal functioning in common digestive diseases. Lancet Gastroenterol Hepatol. 2020;5(6):616-24. doi: 10.1016/S2468-1253(19)30412-1
  20. Mutti C, Misirocchi F, Zilioli A, et al. Sleep and brain evolution across the human lifespan: A mutual embrace. Front Netw Physiol. 2022;2:938012. doi: 10.3389/fnetp.2022.938012
  21. Frank MG. The Ontogenesis of Mammalian Sleep: Form and Function. Curr Sleep Med Rep. 2020;6(4):267-79. doi: 10.1007/s40675-020-00190-y
  22. Кельмансон И.А. Сон ребенка в онтогенезе и использование стандартизованного опросника для оценки поведения детей во время сна. Российский вестник перинатологии и педиатрии. 2017;62(3):37-52 [Kelmanson IA. Child sleep ontogeny and application of the standardized questionnaire for the evaluation of child behaviour during sleep. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2017;62(3):37-52 (in Russian)]. doi: 10.21508/1027-4065-2017-62-3-37-52
  23. Serón-Ferré M, Mendez N, Abarzua-Catalan L, et al. Circadian rhythms in the fetus. Mol Cell Endocrinol. 2012;349(1):68-75. doi: 10.1016/j.mce.2011.07.039
  24. Bates K, Herzog ED. Maternal-Fetal Circadian Communication During Pregnancy. Front Endocrinol (Lausanne). 2020;11:198. doi: 10.3389/fendo.2020.00198
  25. Loy SL, Loo RSX, Godfrey KM, et al. Chrononutrition during Pregnancy: A Review on Maternal Night-Time Eating. Nutrients. 2020;12(9):2783. doi: 10.3390/nu12092783
  26. Varcoe TJ, Boden MJ, Voultsios A, et al. Characterisation of the maternal response to chronic phase shifts during gestation in the rat: implications for fetal metabolic programming. PLoS One. 2013;8(1):e53800. doi: 10.1371/journal.pone.0053800
  27. Korte J, Wulff K, Oppe C, Siegmund R. Ultradian and circadian activity-rest rhythms of preterm neonates compared to full-term neonates using actigraphic monitoring. Chronobiol Int. 2001;18(4):697-708. doi: 10.1081/cbi-100106082
  28. Hirshkowitz M, Whiton K, Albert SM, et al. National Sleep Foundation's updated sleep duration recommendations: final report. Sleep Health. 2015;1(4):233-43. doi: 10.1016/j.sleh.2015.10.004
  29. Miike T. Appropriate Lifelong Circadian Rhythms Are Established During Infancy: A Narrative Review. Clocks Sleep. 2025;7(3):41. doi: 10.3390/clockssleep7030041
  30. Miike T, Toyoura M, Tonooka S, et al. Neonatal irritable sleep-wake rhythm as a predictor of autism spectrum disorders. Neurobiol Sleep Circadian Rhythms. 2020;9:100053. doi: 10.1016/j.nbscr.2020.100053
  31. Ohta H, Mitchell AC, McMahon DG. Constant light disrupts the developing mouse biological clock. Pediatr Res. 2006;60(3):304-8. doi: 10.1203/01.pdr.0000233114.18403.66
  32. Ohta H, Yamazaki S, McMahon DG. Constant light desynchronizes mammalian clock neurons. Nat Neurosci. 2005;8(3):267-9. doi: 10.1038/nn1395
  33. Rivkees SA, Mayes L, Jacobs H, Gross I. Rest-activity patterns of premature infants are regulated by cycled lighting. Pediatrics. 2004;113(4):833-9. doi: 10.1542/peds.113.4.833
  34. Vásquez-Ruiz S, Maya-Barrios JA, Torres-Narváez P, et al. A light/dark cycle in the NICU accelerates body weight gain and shortens time to discharge in preterm infants. Early Hum Dev. 2014;90(9):535-40. doi: 10.1016/j.earlhumdev.2014.04.015
  35. Guerrero-Vargas NN, Espitia-Bautista E, Buijs RM, Escobar C. Shift-work: is time of eating determining metabolic health? Evidence from animal models. Proc Nutr Soc. 2018;77(3):199-215. doi: 10.1017/S0029665117004128
  36. Reiter RJ, Tan DX, Korkmaz A, Rosales-Corral SA. Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology. Hum Reprod Update. 2014;20(2):293-307. doi: 10.1093/humupd/dmt054
  37. Cubero J, Narciso D, Terrón P, et al. Chrononutrition applied to formula milks to consolidate infants' sleep/wake cycle. Neuro Endocrinol Lett. 2007;28(4):360-6.
  38. Pundir S, Wall CR, Mitchell CJ, et al. Variation of Human Milk Glucocorticoids over 24 hour Period. J Mammary Gland Biol Neoplasia. 2017;22(1):85-92. doi: 10.1007/s10911-017-9375-x
  39. Sánchez CL, Cubero J, Sánchez J, et al. Evolution of the circadian profile of human milk amino acids during breastfeeding. J Appl Biomed. 2013;11(2):59-70. doi: 10.2478/v10136-012-0020-0
  40. França EL, Nicomedes TdR, Calderon IdMP, França ACH. Time-dependent alterations of soluble and cellular components in human milk. Biological Rhythm Research. 2010;41(5):333-47. doi: 10.1080/09291010903407441
  41. Cannon AM, Kakulas F, Hepworth AR, et al. The Effects of Leptin on Breastfeeding Behaviour. Int J Environ Res Public Health. 2015;12(10):12340-55. doi: 10.3390/ijerph121012340
  42. Illnerová H, Buresová M, Presl J. Melatonin rhythm in human milk. J Clin Endocrinol Metab. 1993;77(3):838-41. doi: 10.1210/jcem.77.3.8370707
  43. Lodemore MR, Petersen SA, Wailoo MP. Factors affecting the development of night time temperature rhythms. Arch Dis Child. 1992;67(10):1259-61. doi: 10.1136/adc.67.10.1259
  44. Lee H, Park H, Ha E, et al. Effect of Breastfeeding Duration on Cognitive Development in Infants: 3-Year Follow-up Study. J Korean Med Sci. 2016;31(4):579-84. doi: 10.3346/jkms.2016.31.4.579
  45. Fitri SYR, Lusmilasari L, Juffrie M, Rakhmawati W. Pain in Neonates: A Concept Analysis. Anesth Pain Med. 2019;9(4):e92455. doi: 10.5812/aapm.92455
  46. Moberg KU, Handlin L, Petersson M. Neuroendocrine mechanisms involved in the physiological effects caused by skin-to-skin contact – With a particular focus on the oxytocinergic system. Infant Behav Dev. 2020;61:101482. doi: 10.1016/j.infbeh.2020.101482
  47. Schneider N, Mutungi G, Cubero J. Diet and nutrients in the modulation of infant sleep: A review of the literature. Nutr Neurosci. 2018;21(3):151-61. doi: 10.1080/1028415X.2016.1258446
  48. Häusler S, Lanzinger E, Sams E, et al. Melatonin in Human Breast Milk and Its Potential Role in Circadian Entrainment: A Nod towards Chrononutrition? Nutrients. 2024;16(10):1422. doi: 10.3390/nu16101422
  49. Booker LA, Spong J, Deacon-Crouch M, Skinner TC. Preliminary Exploration into the Impact of Mistimed Expressed Breast Milk Feeding on Infant Sleep Outcomes, Compared to Other Feeding Patterns. Breastfeed Med. 2022;17(10): 853-8. doi: 10.1089/bfm.2022.0125
  50. Cubero J, Valero V, Sánchez J, et al. The circadian rhythm of tryptophan in breast milk affects the rhythms of 6-sulfatoxymelatonin and sleep in newborn. Neuro Endocrinol Lett. 2005;26(6):657-61.
  51. Abdul Jafar NK, Tham EKH, Pang WW, et al. Association between breastfeeding and sleep patterns in infants and preschool children. Am J Clin Nutr. 2021;114(6): 1986-96. doi: 10.1093/ajcn/nqab297
  52. Matenchuk BA, Mandhane PJ, Kozyrskyj AL. Sleep, circadian rhythm, and gut microbiota. Sleep Med Rev. 2020;53:101340. doi: 10.1016/j.smrv.2020.101340
  53. Xu D, Wan F. Breastfeeding and infant gut microbiota: influence of bioactive components. Gut Microbes. 2025;17(1):2446403. doi: 10.1080/19490976.2024.2446403
  54. Lawson MAE, O'Neill IJ, Kujawska M, et al. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. ISME J. 2020;14(2):635-48. doi: 10.1038/s41396-019-0553-2
  55. Le Doare K, Holder B, Bassett A, Pannaraj PS. Mother's Milk: A Purposeful Contribution to the Development of the Infant Microbiota and Immunity. Front Immunol. 2018;9:361. doi: 10.3389/fimmu.2018.00361
  56. Savino F, Palumeri E, Castagno E, et al. Reduction of crying episodes owing to infantile colic: A randomized controlled study on the efficacy of a new infant formula. Eur J Clin Nutr. 2006;60(11):1304-10. doi: 10.1038/sj.ejcn.1602457
  57. Carosella M. Nutritional management of functional gastrointestinal disorders in infants: Quality of life evaluation. Poster presented at the 57th annual meeting of the ESPGHAN. Helsinki, Finland. 2025
  58. Mihatsch WA, Franz AR, Kuhnt B, et al. Hydrolysis of casein accelerates gastrointestinal transit via reduction of opioid receptor agonists released from casein in rats. Biol Neonate. 2005;87(3):160-3. doi: 10.1159/000082367
  59. Yao M, Lien EL, Capeding MR, et al. Effects of term infant formulas containing high sn-2 palmitate with and without oligofructose on stool composition, stool characteristics, and bifidogenicity. J Pediatr Gastroenterol Nutr. 2014;59(4): 440-8. doi: 10.1097/MPG.0000000000000443
  60. Yaron S, Shachar D, Abramas L, et al. Effect of high β-palmitate content in infant formula on the intestinal microbiota of term infants. J Pediatr Gastroenterol Nutr. 2013;56(4):376-81. doi: 10.1097/MPG.0b013e31827e1ee
  61. Haiden N, Savino F, Hill S, et al. Infant formulas for the treatment of functional gastrointestinal disorders: A position paper of the ESPGHAN Nutrition Committee. J Pediatr Gastroenterol Nutr. 2024; 79(1):168-80. doi: 10.1002/jpn3.12240
  62. Bronsky J, Campoy С, Embleton N, et al. Palm oil and beta-palmitate in infant formula - A position paper by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2019;68(5):742-60. doi: 10.1097/MPG.0000000000002307
  63. Knol J, Scholtens P, Kafka C, et al. Colon Microflora in Infants Fed Formula with Galacto- and Fructo-Oligosaccharides: More Like Breast-Fed Infants. J Pediatr Gastroenterol Nutr. 2005;40(1):36-42. doi: 10.1097/00005176-200501000-00007
  64. Moro G, Minoli I, Mosca M, et al. Dosage-Related Bifidogenic Effects of Galacto- and Fructooligosaccharides in Formula-Fed Term Infants. J Pediatr Gastroenterol Nutr. 2002;34(3):291-5. doi: 10.1097/00005176-200203000-00014
  65. Scholtens P, Alliet P, Raes M, et al. Fecal Secretory Immunoglobulin A Is Increased in Healthy Infants Who Receive a Formula with Short-Chain Galacto-Oligosaccharides and Long-Chain Fructo-Oligosaccharides. J Nutr. 2008;138: 1141-7. doi: 10.1093/jn/138.6.1141

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).