Interval models of nonequilibrium physicochemical processes
- 作者: Morozov A.Y.1,2, Reviznikov D.L.1,2, Gidaspov V.Y.2
-
隶属关系:
- Federal Research Center Computer Science and Control of the Russian Academy of Sciences
- Moscow Aviation Institute (National Research University)
- 期: 卷 33, 编号 2 (2025)
- 页面: 184-198
- 栏目: Modeling and Simulation
- URL: https://ogarev-online.ru/2658-4670/article/view/309059
- DOI: https://doi.org/10.22363/2658-4670-2025-33-2-184-198
- EDN: https://elibrary.ru/BPOFHS
- ID: 309059
如何引用文章
全文:
详细
The paper discusses the application of the adaptive interpolation algorithm to problems of chemical kinetics and gas dynamics with interval uncertainties in reaction rate constants. The values of the functions describing the reaction rate may differ considerably if they have been obtained by different researchers. The difference may reach tens or hundreds of times. Interval uncertainties are proposed to account for these differences in models. Such problems with interval parameters are solved using the previously developed adaptive interpolation algorithm. On the example of modelling the combustion of a hydrogen-oxygen mixture, the effect of uncertainties on the reaction process is demonstrated. One-dimensional nonequilibrium flow in a rocket engine nozzle with different nozzle shapes, including a nozzle with two constrictions, in which a standing detonation wave can arise, is simulated. A numerical study of the effect of uncertainties on the structure of the detonation wave, as well as on steadyystate flow parameters, such as the ignition delay time and the concentration of harmful substances at the nozzle exit, is performed.
作者简介
Alexander Morozov
Federal Research Center Computer Science and Control of the Russian Academy of Sciences; Moscow Aviation Institute (National Research University)
Email: morozov@infway.ru
ORCID iD: 0000-0003-0364-8665
Scopus 作者 ID: 57203389215
Researcher ID: ABC-7836-2021
Doctor of Physical and Mathematical Sciences, Senior Researcher, Department of Mathematical Modeling of Heterogeneous Systems, Federal Research Center Computer Science and Control of the Russian Academy of Sciences; Associate Professor of the Department of Computational Mathematics and Programming, Moscow Aviation Insti- tute (National Research University)
44-2 Vavilova St, Moscow, 119333, Russian Federation; 4 Volokolamskoe Highway, Moscow, 125993, Russian FederationDmitry Reviznikov
Federal Research Center Computer Science and Control of the Russian Academy of Sciences; Moscow Aviation Institute (National Research University)
Email: reviznikov@mai.ru
ORCID iD: 0000-0003-0998-7975
Scopus 作者 ID: 6602701797
Researcher ID: T-4571-2018
Doctor of Physical and Mathematical Sciences, Professor, Leading Researcher, Department of Math- ematical Modeling of Heterogeneous Systems, Federal Research Center Computer Science and Control of the Russian Academy of Sciences; Professor of the Department of Computational Mathematics and Programming, Moscow Aviation Institute (National Research University)
44-2 Vavilova St, Moscow, 119333, Russian Federation; 4 Volokolamskoe Highway, Moscow, 125993, Russian FederationVladimir Gidaspov
Moscow Aviation Institute (National Research University)
编辑信件的主要联系方式.
Email: gidaspov@mai.ru
ORCID iD: 0000-0002-5119-4488
Scopus 作者 ID: 6506396733
Researcher ID: B-4572-2019
Doctor of Physical and Mathematical Sciences, Associate Professor, Professor of the Department of Computational Mathematics and Programming
4 Volokolamskoe Highway, Moscow, 125993, Russian Federation参考
- Vaitiev, V. A. & Mustafina, S. A. Searching for uncertainty regions of kinetic parameters in the mathematical models of chemical kinetics based on interval arithmetic. Russian. Bulletin of the South Ural State University. Series Mathematical Modelling, Programming & Computer Software 7, 99-110. doi: 10.14529/mmp140209 (2014).
- Moore, R. E. Interval analysis 145 pp. (Prentice-Hall, New Jersey, Englewood Cliffs, 1966).
- Moore, R. E., Kearfott, R. B. & Cloud, M. J. Introduction to Interval Analysis 223 pp. doi: 10.1137/1.9780898717716 (Society for Industrial and Applied Mathematics, 2009).
- Bazhenov, A. N., Zhilin, S. I., Kumkov, S. I. & Shary, S. P. Processing and analysis of interval data Russian. 356 pp. (Institute of Computer Research, Izhevsk, 2024).
- Dobronec, B. S. Interval mathematics Russian. 287 pp. (SibFU, Krasnoyarsk, 2007).
- Morozov, A. Y. & Reviznikov, D. L. Adaptive Interpolation Algorithm Based on a kd-Tree for Numerical Integration of Systems of Ordinary Differential Equations with Interval Initial Conditions. Differential Equations 54, 945-956. doi: 10.1134/S0012266118070121 (2018).
- Morozov, A. Y. & Reviznikov, D. L. Adaptive sparse grids with nonlinear basis in interval problems for dynamical systems. Computation 11. doi: 10.3390/computation11080149 (2023).
- Morozov, A. Y., Zhuravlev, A. A. & Reviznikov, D. L. Analysis and Optimization of an Adaptive Interpolation Algorithm for the Numerical Solution of a System of Ordinary Differential Equations with Interval Parameters. Differential Equations 56, 935-949. doi: 10.1134/s0012266120070125 (2020).
- Morozov, A. Y., Reviznikov, D. L. & Gidaspov, V. Y. Adaptive Interpolation Algorithm Based on a KD-Tree for the Problems of Chemical Kinetics with Interval Parameters. Mathematical Models and Computer Simulations 11, 622-633. doi: 10.1134/S2070048219040100 (2019).
- Makino, K. & Berz, M. Verified Computations Using Taylor Models and Their Applications in Numerical Software Verification 10381 (Springer International Publishing, Heidelberg, Germany, July 22-23, 2017), 3-13. doi: 10.1007/978-3-319-63501-9_1.
- Neher, M., Jackson, K. & Nedialkov, N. On Taylor model based integration of ODEs. SIAM Journal on Numerical Analysis 45, 236-262. doi: 10.1137/050638448 (2007).
- Rogalev, A. N. Guaranteed Methods of Ordinary Differential Equations Solution on the Basis of Transformation of Analytical Formulas. Russian. Computational technologies 8, 102-116 (2003).
- Fu, C., Ren, X., Yang, Y., Lu, K. & Qin, W. Steady-state response analysis of cracked rotors with uncertain-but-bounded para-meters using a polynomial surrogate method. Communications in Nonlinear Science and Numerical Simulation 68, 240-256. doi: 10.1016/j.cnsns.2018.08.004 (2018).
- Fu, C., Xu, Y., Yang, Y., Lu, K., Gu, F. & Ball, A. Response analysis of an accelerating unbalanced rotating system with both random and interval variables. Journal of Sound and Vibration 466. doi: 10.1016/j.jsv.2019.115047 (2020).
- Smoliak, S. A. Quadrature and Interpolation Formulae on Tensor Products of Certain Classes of Functions. Russian. Dokl. Akad. Nauk. Sssr 148, 1042-1045 (1963).
- Bungatrz, H.-J. & Griebel, M. Sparse grids. Acta Numerica 13, 147-269 (2004).
- Bungatrz, H. J. Finite Elements of Higher Order on Sparse Grids 127 pp. (Shaker Verlag, Germany, Duren/Maastricht, 1998).
- Oseledets, I. V. Tensor-train decomposition. SIAM Journal on Scientific Computing 33, 2295-2317. doi: 10.1137/090752286 (2011).
- Oseledets, I. & Tyrtyshnikov, E. TT-cross approximation for multidimensional arrays. Linear Algebra and its Applications 432, 70-88. doi: 10.1016/j.laa.2009.07.024 (2010).
- Gidaspov, V. Y., Morozov, A. Y. & Reviznikov, D. L. Adaptive Interpolation Algorithm Using TT-Decomposition for Modeling Dynamical Systems with Interval Parameters. Computational Mathematics and Mathematical Physics 61, 1387-1400. doi: 10.1134/S0965542521090098 (2021).
- Morozov, A. Y., Zhuravlev, A. A. & Reviznikov, D. L. Sparse Grid Adaptive Interpolation in Problems of Modeling Dynamic Systems with Interval Parameters. Mathematics 9. doi: 10.3390/math9040298 (2021).
- Morozov, A. & Reviznikov, D. Adaptive Interpolation Algorithm on Sparse Meshes for Numerical Integration of Systems of Ordinary Differential Equations with Interval Uncertainties. Differential Equations 57, 947-958. doi: 10.1134/S0012266121070107 (2021).
- Gidaspov, V. Y. & Severina, N. S. Elementary Models and Computational Algorithms in Physical Fluid Dynamics. Thermodynamica and Chemical Kinetics Russian. 84 pp. (Faktorial, Moscow, 2014).
- Glushko, V. P., Gurvich, L. V., Veits, I. V. & et al. Thermodynamic Properties of Some Substances Russian (Nauka, Moscow, 1978).
- Warnatz, J., Maas, U. & Dibble, R. Combustion. Physical and Chemical Fundamentals, Modelling and Simulation, Experiments, Pollutant Formation 378 pp. doi: 10.1007/978-3-540-45363-5 (Springer, Berlin, Heidelberg, 2006).
- Starik, A. M., Titova, N. S., Sharipov, A. S. & Kozlov, V. E. Syngas oxidation mechanism. Combustion, Explosion, and Shock Waves 46, 491-506. doi: 10.1007/s10573-010-0065-x (2010).
- Novikov, E. A. & Golushko, M. I. (m, 3) third-order method for stiff nonautonomous systems of ODEs. Russian. Computational technologies 3, 48-54 (1998).
- Pirumov, U. G. & Roslyakov, G. S. Gas dynamics of nozzles Russian. 368 pp. (Nauka, Moscow, 1990).
- Cherny, G. G. Gas dynamics Russian. 424 pp. (Nauka, Moscow, 1988).
- Zhuravskaya, T. A. & Levin, V. A. Stabilization of detonation combustion of a high-velocity combustible gas mixture flow in a plane channel. Fluid Dynamics 50, 283-293. doi: 10.1134/S001546281502012X (2015).
补充文件
