Исследование потенциального течения жидкости в пористой среде с учётом закона Дарси и переменного коэффициента диффузии

Обложка

Цитировать

Полный текст

Аннотация

Рассмотрено потенциальное течение жидкости в пористой среде с учётом закона Дарси и различных видов коэффициента поперечной диффузии в трубе радиуса a. Течение предполагается стационарным и аксиально симметричным, при этом считается, что сила Дарси является линейной функцией скорости. Установлено, что следствием потенциальности течения является тождество ∂2P∕∂r∂z ≡ ∂2P∕∂z∂r, где ∂P∕∂r и ∂P∕∂z определяются из уравнений Эйлера для двух компонент скорости: vr = ∂Φ∕∂r и vz = ∂Φ∕∂z, где Φ(r,z) — потенциал скорости. Это значит, что система уравнений Эйлера является вполне совместной и вполне интегрируемой и решение задачи сводится к решению уравнения непрерывности. Уравнение непрерывности является линейным дифференциальным уравнением для потенциала Φ(r,z) и допускает решение в разделённых переменных: Φ(r,z) = U(r)W(z). Для U(z) получено уравнение Бесселя нулевого порядка. Его решение зависит от аргумента kr, где постоянная k определяется радиусом трубы a. Для W(z) получено три различных уравнения в зависимости от выбора коэффициента диффузии в уравнении непрерывности. Во всех случаях получено точное решение и установлено, что компонента скорости vz(r,z) экспоненциально убывает при возрастании z.

Об авторах

Юрий Петрович Рыбаков

Российский университет дружбы народов

Email: soliton4@mail.ru
Кафедра теоретической физики

Оксана Дмитриевна Свиридова

Российский университет дружбы народов

Email: oxanaswiridowa@yandex.ru
Кафедра теоретической физики

Георгий Николаевич Шикин

Российский университет дружбы народов

Кафедра теоретической физики

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).