Preliminary results of bio-optical investigations at Lake Baikal
- Authors: Churilova T.Y.1, Moiseeva N.A.1, Latushkin А.А.2, Suslin V.V.2, Usoltseva M.V.3, Zakharova Y.R.3, Titova L.A.3, Gnatovsky R.Y.3, Blinov V.V.3
-
Affiliations:
- Kovalevsky Institute of Marine Biological Research, RAS
- Marine Hydrophysical Institute RAS
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences
- Issue: No 1 (2018)
- Pages: 58-61
- Section: Articles
- URL: https://ogarev-online.ru/2658-3518/article/view/286197
- DOI: https://doi.org/10.31951/2658-3518-2018-A-1-58
- ID: 286197
Cite item
Full Text
Abstract
The preliminary results of complex bio-optical investigations carried out at Lake Baikal in July 2018 showed high variability in the light absorption properties of all optically active components, as well as their relation with hydrophysical characteristics. Vertical distribution of chlorophyll a was characterized by the presence of a maximum near the bottom of the euphotic zone. In this deep chlorophyll maximum layer, there were specific features of phytoplankton light absorption spectra reflecting the abundance of phycobilin-containing blue-green algae in the phytoplankton community.
About the authors
T. Ya. Churilova
Kovalevsky Institute of Marine Biological Research, RAS
Author for correspondence.
Email: tanya.churilova@gmail.com
ORCID iD: 0000-0002-0045-7284
Russian Federation, Nakhimov Ave., 2, Sevastopol, 299011
N. A. Moiseeva
Kovalevsky Institute of Marine Biological Research, RAS
Email: tanya.churilova@gmail.com
Russian Federation, Nakhimov Ave., 2, Sevastopol, 299011
А. А. Latushkin
Marine Hydrophysical Institute RAS
Email: tanya.churilova@gmail.com
Russian Federation, Kapitanskay Str., 2, Sevastopol, 299011
V. V. Suslin
Marine Hydrophysical Institute RAS
Email: tanya.churilova@gmail.com
Russian Federation, Kapitanskay Str., 2, Sevastopol, 299011
M. V. Usoltseva
Limnological Institute, Siberian Branch of the Russian Academy of Sciences
Email: tanya.churilova@gmail.com
Russian Federation, Ulan-Batorskaya Str., 3, Irkutsk, 664033
Yu. R. Zakharova
Limnological Institute, Siberian Branch of the Russian Academy of Sciences
Email: tanya.churilova@gmail.com
Russian Federation, Ulan-Batorskaya Str., 3, Irkutsk, 664033
L. A. Titova
Limnological Institute, Siberian Branch of the Russian Academy of Sciences
Email: tanya.churilova@gmail.com
Russian Federation, Ulan-Batorskaya Str., 3, Irkutsk, 664033
R. Yu. Gnatovsky
Limnological Institute, Siberian Branch of the Russian Academy of Sciences
Email: tanya.churilova@gmail.com
Russian Federation, Ulan-Batorskaya Str., 3, Irkutsk, 664033
V. V. Blinov
Limnological Institute, Siberian Branch of the Russian Academy of Sciences
Email: tanya.churilova@gmail.com
Russian Federation, Ulan-Batorskaya Str., 3, Irkutsk, 664033
References
- Babin M., Stramski D., Ferrari G.M. et al. 2003. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. Journal of Geophysical Research 108: 3211. DOI: 10.1029/ 2001JC000882
- Belykh O.I., Bessudova A.Y., Gladkikh A.S. et al. 2011. Guidelines for the determination of the biomass of pelagic plankton species of Lake Baikal. Irkutsk: Publishing house of ISU. (in Russian).
- Belykh O.I., Tikhonova I.V., Kuzmin A.V. et al. 2016. First detection of benthic cyanobacteria in Lake Baikal producing paralytic shellfish toxins. Toxicon 121: 36–40. doi: 10.1016/j.toxicon.2016.08.015
- Bondarenko N.A., Belykh O.I., Logacheva N.F. et al. 2012. Microalgae in the shore zone of Lake Baikal. The Bulletin of Irkutsk State University, Series «Biology, Ecology» 3: 88–102.
- Bondarenko N.A., Logacheva N.F. 2016. Structural Changes in phytoplankton of the littoral zone of Lake Baikal. Hydrobiological Journal 52: 17–26.
- Churilova T., Suslin V., Sosik H.M. et al. 2018. Phytoplankton light absorption in the deep chlorophyll maximum layer of the Black Sea. European Journal of Remote Sensing. doi: 10.1080/22797254.2018.1533389
- Churilova T., Suslin V., Krivenko O. et al. 2017. Light absorption by phytoplankton in the upper mixed layer of the Black Sea: Seasonality and Parametrization. Frontiers in Marine Science 4: 90. doi: 10.3389/fmars.2017.00090.
- Fietz S., Kobanova G., Izmest’eva L. et al. 2005. Regional, vertical and seasonal distribution of phytoplankton and photosynthetic pigments in Lake Baikal. Journal of Plankton Research 27: 793–810. doi: 10.1093/plankt/fbi054
- Guide to hydrobiological monitoring of freshwater ecosystems. 1992. In: Abakumova V.A. (Ed.). St. Petersburg: Hydrometeoizdat. (in Russian)
- Hampton S.E., Izmest’eva L.R., Moore M.V. et al. 2008. Sixty years of environmental change in the world’s largest freshwater lake – Lake Baikal, Siberia. Global Change Biology 14: 1947–1958. doi: 10.1111/j.1365-2486.2008.01616.x
- Jeffrey S.W., Humphrey G.F. 1975. New spectrophotometric equations for determining chiorophylls a, b, c1 and c2 in higher plants, algae and phytoplankton. Biochemie und physiologie der pflanzen 167: 191–194.
- Jeffrey S.W., Mantoura R.F.C., Wright S.W. 1997. Phytoplankton Pigments in Oceanography. UNESCO, Paris.
- Kiselev I.A. 1969. Plankton of the seas and continental waters. Leningrad: Science Publishing House. (in Russian)
- Kishino M., Takahashi M., Okami N. et al. 1985. Estimation of the spectral absorption coefficients of the phytoplankton in the sea. Bulletin of marine science 37: 634–642.
- Lorenzen C.J. 1967. Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnology and Oceanography 12: 343–346.
- Makarova I.V., Pichkily L.O. 1970. To some questions of the methodology for phytoplankton biomass calculation. Botanical journal 55: 1488–1495. (in Russian)
- Mitchell B.G. 1990. Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT). Ocean optics X. – International Society for Optics and Photonics 1302: 137–149.
- Mitchell B.G., Kahru M., Wieland J. et al. 2002. Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples. In: Fargion G.S., Mueller J.L. (Eds.), Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, NASA/TM-2002-210004/Rev3-Vol2. NASA Goddard Space Flight Center, Greenbelt, pp. 231–257.
- Sadchikov A.P. 2003. Methods for studying freshwater phytoplankton: a methodological guide. Moscow: Publishing house «University and School». (in Russian)
- Six C., Thomas J.-C., Garczarek L. et al. 2007. Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biology 8: R259. doi: 10.1186/gb-2007-8-12-r259.
- Suslin V., Churilova T. 2016. The Black Sea regional algorithm of separation of light absorption by phytoplankton and colored detrital matter using ocean color scanner’s bands from 480-560 nm. International Journal of Remote Sensing 37: 4380–4400.
- Timoshkin O.A., Samsonov D.P., Yamamuro M. et al. 2016. Rapid ecological change in the coastal zone of Lake Baikal (East Siberia): Is the site of the world’s greatest freshwater biodiversity in danger? Journal of Great Lakes Research 42: 487–497. doi: 10.1016/j.jglr.2016.02.011.
Supplementary files
