Mass disease and mortality of Baikal sponges

Cover Page

Cite item

Full Text

Abstract

In recent years, significant changes in the ecological system of the coastal (littoral) zone, including mass death of the endemic representatives of the freshwater sponges of the Lubomirskiidae family, have been an urgent problem of Lake Baikal. Similar problems are known all over the world. Thus, mass disease and death of corals and sponges are indicated in the Mediterranean, Adriatic, Caribbean and other seas, which raises serious concerns about the future of these biocenoses (Olson et al., 2006; Webster, 2007; Wulff et al., 2007; Stabili et al., 2012). In Baikal, diseased sponges were first found in 2011. The area of sponge disease is constantly expanding, and, to date, dying specimens have been found throughout the lake. The mass death of sponges occur in presence of the large-scale violation of the spatial distribution and the structure of phytocenoses in the littoral zone, but the causes of these phenomena are unknown.

The relevance of the problem arises from the fact that changes in the littoral zone of Lake Baikal can significantly affect the productivity and composition of planktonic organisms and zoobenthos, which are the food base for fish, as well as the quality of drinking water. The deterioration of the ecological state also affects the attractiveness of the lake for tourism. At the international level, serious intellectual and financial resources were mobilized to solve similar problems. Despite the obvious relevance, in Russia such studies are carried out irregularly by small groups of researchers.

About the authors

S. I. Belikov

Limnological Institute, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: sergeibelikov47@gmail.com
ORCID iD: 0000-0001-7206-8299
Russian Federation, Ulan-Batorskaya Str., 3, Irkutsk, 664033

S. I. Feranchuk

Limnological Institute, Siberian Branch of the Russian Academy of Sciences

Email: sergeibelikov47@gmail.com
ORCID iD: 0000-0002-2774-4179
Russian Federation, Ulan-Batorskaya Str., 3, Irkutsk, 664033

T. V. Butina

Limnological Institute, Siberian Branch of the Russian Academy of Sciences

Email: sergeibelikov47@gmail.com
Russian Federation, Ulan-Batorskaya Str., 3, Irkutsk, 664033

L. I. Chernogor

Limnological Institute, Siberian Branch of the Russian Academy of Sciences

Email: sergeibelikov47@gmail.com
ORCID iD: 0000-0002-9702-306X
Russian Federation, Ulan-Batorskaya Str., 3, Irkutsk, 664033

I. V. Khanaev

Limnological Institute, Siberian Branch of the Russian Academy of Sciences

Email: sergeibelikov47@gmail.com
ORCID iD: 0000-0001-6431-2765
Russian Federation, Ulan-Batorskaya Str., 3, Irkutsk, 664033

O. O. Maikova

Limnological Institute, Siberian Branch of the Russian Academy of Sciences

Email: sergeibelikov47@gmail.com
Russian Federation, Ulan-Batorskaya Str., 3, Irkutsk, 664033

References

  1. Angermeier H., Kamke J., Abdelmohsen U.R. et al. 2011. The pathology of sponge orange band disease affecting the Caribbean barrel sponge Xestospongia muta. FEMS Microbiology Ecology 75: 218–230. doi: 10.1111/j.1574-6941.2010.01001.x
  2. Bailey R.C., Day K.E., Norris R.H. et al. 1995. Macroinvertebrate community structure and sediment bioassay results from nearshore areas of North American Great Lakes. Journal of Great Lakes Research 21: 42–52. doi: 10.1016/S0380-1330(95)71019-X
  3. Blanquer A., Uriz M.J., Cebrian E. et al. 2016. Snapshot of a bacterial microbiome shift during the early symptoms of a massive sponge die-off in the western Mediterranean. Frontiers in Microbiology 7: 752. doi: 10.3389/fmicb.2016.00752
  4. Bordenstein S.R., Theis K.R. 2015. Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biology 13: e1002226. doi: 10.1371/journal.pbio.1002226
  5. Bormotov A.E. 2011. What has happened to Baikal sponges? SCIENCE First Hand 32: 20–23.
  6. Bosch T.C.G., McFall-Ngai M.J. 2011. Metaorganisms as the new frontier. Zoology 114: 185–190. doi: 10.1016/j.zool.2011.04.001
  7. Bourne D.G., Garren M., Work T.M. et al. 2009. Microbial disease and the coral holobiont. Trends in Microbiology 17: 554–562. doi: 10.1016/j.tim.2009.09.004
  8. Bourne D.G., Morrow K.M., Webster N.S. 2016. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annual Review of Microbiology 70: 317–340. doi: 10.1146/annurev-micro-102215-095440
  9. Brucker R.M., Bordenstein S.R. 2013. The capacious hologenome. Zoology (Jena) 116: 260–261. doi: 10.1016/j.zool.2013.08.003
  10. Burge C.A., Eakin M.C., Friedman C.S. et al. 2014. Climate change influences on marine infectious diseases: implications for management and society. Annual Review of Marine Science 6: 249–277. doi: 10.1146/annurev-marine-010213-135029
  11. Caporaso J.G., Kuczynski J., Stombaugh J. et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7: 335–336. doi: 10.1038/nmeth.f.303
  12. Cervino J.M., Winiarski-Cervino K., Poison S.W. et al. 2006. Identification of bacteria associated with a disease affecting the marine sponge Ianthella basta in New Britain, Papua New Guinea. Marine Ecology Progress Series 324: 139–150. doi: 10.3354/meps324139
  13. Choudhury J.D., Pramanik A., Webster N.S. et al. 2014. Draft Genome Sequence of Pseudoalteromonas sp. Strain NW 4327 (MTCC 11073, DSM 25418), a Pathogen of the Great Barrier Reef Sponge Rhopaloeides odorabile. Genome Announcements 2: e00001-14. doi: 10.1128/genomeA.00001-14
  14. Choudhury J.D., Pramanik A., Webster N.S. et al. 2015. The pathogen of the great barrier reef sponge Rhopaloeides odorabile is a new strain of Pseudoalteromonas agarivorans containing abundant and diverse virulence-related genes. Marine Biotechnology 17: 463–478. doi: 10.1007/s10126-015-9627-y
  15. Coma R., Ribes M., Serrano E. et al. 2009. Global warming enhanced stratification and mass mortality events in the Mediterranean. Proceedings of the National Academy of Sciences of the United States of America 106: 6176–6181. doi: 10.1073/pnas.0805801106
  16. Costello E.K., Stagaman K., Dethlefsen L. et al. 2012. The application of ecological theory toward an understanding of the human microbiome. Science 336: 1255–1262. doi: 10.1126/science.1224203
  17. Dayton I.K., Robilliard G.A., Paine R.T. et al. 1974. Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecological Monographs 44: 105–128. doi: 10.2307/1942321
  18. De Goeij J.M., van Oevelen D., Vermeij M.J.A. et al. 2013. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342: 108–110. doi: 10.1126/science.1241981
  19. Deignan L.K., Pawlik J.R., Erwin P.M. 2018. Agelas wasting syndrome alters prokaryotic symbiont communities of the Caribbean brown tube sponge, Agelas tubulata. Microbial Ecology 76: 459–466. doi: 10.1007/s00248-017-1135-3
  20. Eberl G. 2010. A new vision of immunity: homeostasis of the superorganism. Mucosal Immunology 3: 450–460. doi: 10.1038/mi.2010.20
  21. Erwin P.M., López-Legentil S., González-Pech R. et al. 2012. A specific mix of generalists: bacterial symbionts in Mediterranean Ircinia spp. FEMS Microbiology Ecology 79: 619–637. doi: 10.1111/j.1574-6941.2011.01243.x
  22. Fan L., Reynolds D., Liu M. et al. 2012. Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proceedings of the National Academy of Sciences of the United States of America 109: e1878–1887. doi: 10.1073/pnas.1203287109
  23. Flórez L.V., Biedermann P.H.W., Engl T. et al. 2015. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Natural Product Reports 32: 904–936. doi: 10.1039/c5np00010f
  24. Gao Z.-M., Wang Y., Tian R.-M. et al. 2014. Symbiotic adaptation drives genome streamlining of the cyanobacterial sponge symbiont “Candidatus Synechococcus spongiarum”. MBio 5: e00079–14. doi: 10.1128/mBio.00079-14
  25. Gao Z.-M., Wang Y., Tian R.-M. et al. 2015. Pyrosequencing revealed shifts of prokaryotic communities between healthy and disease-like tissues of the Red Sea sponge Crella cyathophora. PeerJ 3: e890. doi: 10.7717/peerj.890
  26. Garrabou J., Coma R., Bensoussan N. et al. 2009. Mass mortality in northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Global Change Biology 15: 1090–1103. doi: 10.1111/j.1365-2486.2008.01787.x
  27. Ghanbari M., Kneifel W., Domig K.J. 2015. A new view of the fish gut microbiome: advances from next-generation sequencing. Aquaculture 448: 464–475. doi: 10.1016/j.aquaculture.2015.06.033
  28. Gili J.M., Coma R. 1998. Benthic suspension feeders: their paramount role in littoral marine food webs. Trends in Ecology & Evolution 13: 316–321. doi: 10.1016/S0169-5347(98)01365-2
  29. Hester E.R., Barott K.L., Nulton J. et al. 2015. Stable and sporadic symbiotic communities of coral and algal holobionts. ISME Journal 10: 1157–1169. doi: 10.1038/ismej.2015.190
  30. Huber J.A., Welch D.B., Morrison H.G. et al. 2007. Microbial population structures in the deep marine biosphere. Science 318: 97–100. doi: 10.1126/science.1146689
  31. Kahn A.S., Yahel G., Chu J.W.F. et al. 2015. Benthic grazing and carbon sequestration by deep-water glass sponge reefs. Limnology and Oceanography 60: 78–88. doi: 10.1002/lno.10002
  32. Khanaev I.V., Kravtsova L.S., Maikova O.O. et al. 2018. Current state of the sponge fauna (Porifera: Lubomirskiidae) of Lake Baikal: Sponge disease and the problem of conservation of diversity. Journal of Great Lakes Research 44: 77–85. doi: 10.1016/j.jglr.2017.10.004
  33. Kopylova E., Navas-Molina J.A., Mercier C. et al. 2016. Open-Source Sequence Clustering Methods Improve the State Of the Art. mSystems 1: e00003–15. doi: 10.1128/mSystems.00003-15
  34. Kondratyev K.Y. 1992. Global Climate. St. Petersburg: Nauka. (in Russian)
  35. Koropatnick T.A., Engle J.T., Apicella M.A. et al. 2004. Microbial factor-mediated development in a host-bacterial mutualism. Science 306: 1186–1188. doi: 10.1126/science.1102218
  36. Kozhov M.M. 1972. Essays on Baikal studies. Irkutsk: East Siberian Publisher. (in Russian)
  37. Lesser M.P., Bythell J.C., Gates R.D. et al. 2007. Are infectious diseases really killing corals? Alternative interpretations of the experimental and ecological data. Journal of Experimental Marine Biology and Ecology 346: 36–44. doi: 10.1016/j.jembe.2007.02.015
  38. Liu S., Shi W., Guo C. et al. 2016. Ocean acidification weakens the immune response of blood clam through hampering the NF-kappa ß and toll-like receptor pathways. Fish and Shellfish Immunology 54: 322–327. doi: 10.1016/j.fsi.2016.04.030
  39. Luter H.M., Whalan S., Webster N.S. 2010a. Prevalence of tissue necrosis and brown spot lesions in a common marine sponge. Marine and Freshwater Research 61: 484–489. doi: 10.1071/MF09200
  40. Luter H.M., Whalan S., Webster N.S. 2010b. Exploring the role of microorganisms in the disease-like syndrome affecting the sponge Ianthella basta. Applied and Environmental Microbiology 76: 5736–5744. doi: 10.1128/AEM.00653-10
  41. Luter H.M., Whalan S., Webster N.S. 2012. Thermal and sedimentation stress are unlikely causes of brown spot syndrome in the coral reef sponge, Ianthella basta. PLoS One 7: e39779. doi: 10.1371/journal.pone.0039779
  42. Luter H.M., Bannister R.J., Whalan S. et al. 2017. Microbiome analysis of a disease affecting the deep-sea sponge Geodia barretti. FEMS Microbiology Ecology 93: 1–6. doi: 10.1093/femsec/fix074
  43. Maldonado M., Aguilar R., Bannister R. et al. 2015. Sponge grounds as key marine habitats: a synthetic review of types, structure, functional roles and conservation concerns. In: Rossi S., Bramanti L., Gori A., Orejas Saco del Valle C. (Eds.), Marine Animal Forests. Springer, pp. 1–39. doi: 10.1007/978-3-319-17001-5_24-1
  44. Masuda Y. 2009. Studies on the taxonomy and distribution of freshwater sponges in Lake Baikal. Progress in Molecular and Subcellular biology 47: 81–110. doi: 10.1007/978-3-540-88552-8_4
  45. McFall-Ngai M., Hadfield M.G., Bosch T.C.G. et al. 2013. Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National Academy of Sciences of the United States of America 110: 3229–3236. doi: 10.1073/pnas.1218525110
  46. Moitinho-Silva L., Nielsen S., Amir A. et al. 2017. The sponge microbiome project. GigaScience 6: 10. doi: 10.1093/gigascience/gix077
  47. Mukherjee A., Chettri B., Langpoklakpam J.S. et al. 2017. Bioinformatic approaches including predictive metagenomic profiling reveal characteristics of bacterial response to petroleum hydrocarbon contamination in diverse environments. Scientific Reports 7: 1108. doi: 10.1038/s41598-017-01126-3
  48. Nicholson J., Holmes E., Kinross J. et al. 2012. Host-gut microbiota metabolic interactions. Science 336: 1262–1267. doi: 10.1126/science.1223813
  49. Olson J.B., Gochfeld D.J., Slattery M. 2006. Aplysina red band syndrome: a new threat to Caribbean sponges. Diseases of aquatic organisms 71: 163–168. doi: 10.3354/dao071163
  50. Pile A.J., Patterson M.R., Savarese M. et al. 1997. Trophic effects of sponge feeding within Lake Baikal’s littoral zone. 2. Sponge abundance, diet, feeding efficiency, and carbon flux. Limnology and Oceanography 42: 178–184. doi: 10.4319/lo.1997.42.1.0178
  51. Pinzón J.H., Kamel B., Burge C.A. et al. 2015. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. Open Science Journal 2: 140214. doi: 10.1098/rsos.140214
  52. Putnam H.M., Barott K.L., Ainsworth T.D. et al. 2017. The vulnerability and resilience of reef-building corals. Current Biology 27: 528–540. doi: 10.1016/j.cub.2017.04.047
  53. Reshef L., Koren O., Loya Y.et al. 2006. The coral probiotic hypothesis. Environmental Microbiology 8: 2068–2073. doi: 10.1111/j.1462-2920.2006.01148.x
  54. Rohwer F., Seguritan V., Azam F. et al. 2002. Diversity and distribution of coral-associated bacteria. Marine Ecology Progress Series 243: 1–10. doi: 10.3354/meps243001
  55. Rosenberg E., Koren O., Reshef L. et al. 2007. The role of microorganisms in coral health, disease and evolution. Nature Reviews Microbiology 5: 355–362. doi: 10.1038/nrmicro1635
  56. Semiturkina N.A., Efremova S.M., Timoshkin O.A. 2009. State-of-the art of biodiversity and ecology of spongiofauna of Lake Baikal with special attention to the diversity, peculiarities of ecology and vertical distribution of Porifera on Berezovy ecology test site. In: Timoshkin O.A. (Ed.), Index of animal species inhabiting Lake Baikal and its catchment area. Novosibirsk, pp. 891–901. (in Russian)
  57. Simister R., Taylor M.W., Tsai P. et al. 2012. Sponge-microbe associations survive high nutrients and temperatures. PLoS One 7: e52220. doi: 10.1371/journal.pone.0052220
  58. Stabili L., Cardone F., Alifano P. et al. 2012. Epidemic mortality of the sponge Ircinia variabilis (Schmidt, 1862) associated to proliferation of a Vibrio bacterium. Microbial Ecology 64: 802–813. doi: 10.1007/s00248-012-0068-0
  59. Sweet M., Bulling M., Cerrano C. 2015. A novel sponge disease caused by a consortium of microorganisms. Coral Reefs 34: 871–883. doi: 10.1007/s00338-015-1284-0
  60. Thomas T., Rusch D., DeMaere M.Z. et al. 2010. Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME Journal 4: 1557–1567. doi: 10.1038/ismej.2010.74
  61. Thomas T., Moitinho-Silva L., Lurgi M. et al. 2016. Diversity, structure and convergent evolution of the global sponge microbiome. Nature Communications 7: 11870. doi: 10.1038/ncomms11870
  62. Timoshkin O.A., Malnik V.V., Sakirko M.V. et al. 2014. Environmental crisis at Lake Baikal: scientists diagnose. Science First Hand 5: 75–91.
  63. Timoshkin O.A., Samsonov D.P., Yamamuro M. et al. 2016. Rapid ecological change in the coastal zone of Lake Baikal (East Siberia): Is the site of the world’s greatest freshwater biodiversity in danger? Journal of Great Lakes Research 42: 487–497. doi: 10.1016/j.jglr.2016.02.011
  64. Van Soest R.W.M., Boury-Esnault N., Vacelet J. et al. 2012. Global diversity of sponges (Porifera). PLoS One 7: e35105.26. doi: 10.1371/journal.pone.0035105
  65. Webster N.S., Negri A.P., Webb R.I. et al. 2002. A spongin-boring α -proteobacterium is the etiological agent of disease in the great barrier reef sponge Rhopaloeides odorabile. Marine Ecology Progress Series 232: 305–309. doi: 10.3354/meps232305
  66. Webster N.S. 2007. Sponge disease: a global threat? Environmental Microbiology 9: 1363–1375. doi: 10.1111/j.1462-2920.2007.01303.x
  67. Webster N.S., Xavier J.R., Freckelton M. et al. 2008. Shifts in microbial and chemical patterns within the marine sponge Aplysina aerophoba during a disease outbreak. Environmental Microbiology 10: 3366–3376. doi: 10.1111/j.1462-2920.2008.01734.x
  68. Webster N.S., Reusch T.B.H. 2017. Microbial contributions to the persistence of coral reefs. ISME Journal 11: 2167–2174. doi: 10.1038/ismej.2017.66
  69. Wilkinson C.R. 1987. Productivity and abundance of large sponge populations on Flinders Reef flats, Coral Sea. Coral Reefs 5: 183. doi: 10.1007/BF00300961
  70. Wulff F., Savchuk O.P., Sokolov A. et al. 2007. Management options and effects on a marine ecosystem: assessing the future of the Baltic. Ambio 36: 243–249.
  71. Ziegler M., Seneca F.O., Yum L.K. et al. 2017. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nature Communications 8: 14213. doi: 10.1038/ncomms14213

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Belikov S.I., Feranchuk S.I., Butina T.V., Chernogor L.I., Khanaev I.V., Maikova O.O.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».