Prospects for population genetic studies of cosmopolitan freshwater sponges of the Spongillidae family in Lake Baikal

Cover Page

Cite item

Full Text

Abstract

Cosmopolitan freshwater sponges inhabit Lake Baikal. They are of great interest for carrying out population genetic studies. Microsatellite markers are best suited for population genetic studies of sponges. To date, no markers have been developed for the species Ephydatia muelleri that is widespread in Lake Baikal and found across the northern hemisphere. In the course of this study, a search was carried out for microsatellite markers in the previously published complete genome of E.muelleri. The most promising microsatellite loci were selected among those found in the genome data. Selected loci were tested on E.muelleri DNA samples. A set of 11 specific variable microsatellite markers was developed and tested for further population genetic studies of E.muelleri. Also, the Maloye More Strait area of Lake Baikal was surveyed to determine the sites of mass accumulation of the Spongilliadae family representatives. An analysis of the species composition of cosmopolitan sponges was carried out for Site 1 (Olkhon Island). Two species were identified: E.muelleri (72%) and Spongilla lacusris (18%).

About the authors

А. S. Yakhnenko

Limnological Institute, Siberian Branch of the Russian Academy of Sciences; International Intergovernmental Organization Joint Institute for Nuclear Research

Author for correspondence.
Email: yakhnenkoas@gmail.com
Russian Federation, 664033, Irkutsk; 141980, Dubna

V. B. Itskovich

Limnological Institute, Siberian Branch of the Russian Academy of Sciences

Email: yakhnenkoas@gmail.com
Russian Federation, 664033, Irkutsk

References

  1. Anderson C.M., Aparicio G.J., Atangana A.R. et al. 2010. Permanent genetic resources added to molecular ecology resources database 1 December 2009-31 January 2010. Molecular Ecology Resources 10(3): 576-579. doi: 10.1111/j.1755-0998.2010.02851.x
  2. Arzhannikov S.G., Ivanov A., Arzhannikova A. et al. 2017. Catastrophic events in the Quaternary outflow history of Lake Baikal. Earth-Science Reviews 177: 76-113. doi: 10.1016/j.earscirev.2017.11.011
  3. Arzhannikov S., Arzhannikova A., Ivanov A. et al. 2021. Lake Baikal highstand during MIS 3 recorded by palaeo-shorelines on Bolshoi Ushkanii Island. Boreas 50: 101-113. doi: 10.1111/bor.12464
  4. Bell J.J. 2008. The functional roles of marine sponges. Estuarine, Coastal and Shelf Science 79(3): 341-353. doi: 10.1016/j.ecss.2008.05.002
  5. Bilton D.T., Freeland J.R., Okamura B. 2001. Dispersal in freshwater invertebrates. Annual Review of Ecology and Systematics 32: 159-181. doi: 10.1146/annurev.ecolsys.32.081501.114016
  6. Blanquer A., Uriz M.J. 2010. Population genetics at three spatial scales of a rare sponge living in fragmented habitats. BMC Evolutionary Biology 10(13). doi: 10.1186/1471-2148-10-13
  7. Blanquer A., Uriz M.J. 2011. Living together apart: the hidden genetic diversity of sponge populations. Molecular Biology and Evolution 28(9). doi: 10.1093/molbev/msr096
  8. Blanquer A., Uriz M.J., Caujapé-Castells J. 2009. Small-scale spatial genetic structure in Scopalina lophyropoda, an encrusting sponge with philopatric larval dispersal and frequent fission and fusion events. Marine Ecology Progress Series 380: 95-102. doi: 10.3354/meps07931
  9. Blanquer A., Uriz M.J., Pascual M. 2005. Polymorphic microsatellite loci isolated from the marine sponge Scopalina lophyropoda (Demospongiae: Halichondrida). Molecular Ecology Notes 5(3). doi: 10.1111/j.1471-8286.2005.00927.x
  10. Calderón I., Ortega N., Durán S.A. et al. 2007. Finding the relevant scale: clonality and genetic structure in a marine invertebrate (Crambe crambe, Porifera). Molecular Ecology 16(9). doi: 10.1111/j.1365-294X.2007.03276.x
  11. Dailianis T., Tsigenopoulos C., Dounas C. et al. 2011. Genetic diversity of the imperilled bath sponge Spongia officinalis Linnaeus, 1759 across the Mediterranean Sea: patterns of population differentiation and implications for taxonomy and conservation. Molecular Ecology 20(18): 3757-3772. doi: 10.1111/j.1365-294X.2011.05222.x
  12. Dailianis T., Tsigenopoulos C.S. 2010. Characterization of polymorphic microsatellite markers for the endangered Mediterranean bath sponge Spongia officinalis L. Conservation Genetics 11(3): 1155-1158. doi: 10.1007/s10592-009-9906-0
  13. Dröscher I., Waringer J. 2007. Abundance and microhabitats of freshwater sponges (Spongillidae) in a Danubean floodplain in Austria. Freshwater Biology 52(6). doi: 10.1111/j.1365-2427.2007.01747.x
  14. Duran S. et al. 2002. Polymorphic microsatellite loci in the sponge Crambe crambe (Porifera: Poecilosclerida) and their variation in two distant populations. Molecular Ecology Notes 2(4). doi: 10.1046/j.1471-8286.2002.00285.x
  15. Duran S., Pascual M., Estoup A. et al. 2004. Strong population structure in the marine sponge Crambe crambe (Poecilosclerida) as revealed by microsatellite markers. Molecular Ecology 13(3). doi: 10.1046/j.1365-294X.2004.2080.x
  16. Efremova S.M. 2004. New genus and new species of sponges from family Lubomirskiidae Rezvoj, 1936. In: Timoshkin O.A. (Ed.), Opredelitel’ presnovodnykh bespozvonochnykh Rossii i sopredel’nykh territoriy [Index of animal species inhabiting Lake Baikal and its catchment area]. Novosibirsk, pp. 1261-1278. (in Russian)
  17. Fontaneto D., Barraclough T.G., Chen K. et al. 2008. Molecular evidence for broad-scale distributions in bdelloid rotifers: everything is not everywhere but most things are very widespread. Molecular Ecology 17(13). doi: 10.1111/j.1365-294X.2008.03806.x
  18. Fungtammasan A., Ananda G., Eile S.H. et al. 2015. Accurate typing of short tandem repeats from genome-wide sequencing data and its applications 25(5): 736-749. doi: 10.1101/gr.185892.114
  19. De Gelas K., De Meester L. 2005. Phylogeography of Daphnia magna in Europe. Molecular Ecology 14(3). doi: 10.1111/j.1365-294X.2004.02434.x
  20. Giles E.C., Saenz-Agudelo P., Berumen M.L. et al. 2013. Novel polymorphic microsatellite markers developed for a common reef sponge, Stylissa carteri. Marine Biodiversity 43(3). doi: 10.1007/s12526-013-0151-x
  21. González-Ramos J., Agell G., Uriz M.J. 2015. Microsatellites from sponge genomes: the number necessary for detecting genetic structure in Hemimycale columella populations. Aquatic Biology 24(1). doi: 10.3354/ab00630
  22. Guardiola M., Frotscher J., Uriz M.J. 2012. Genetic structure and differentiation at a short-time scale of the introduced calcarean sponge Paraleucilla magna to the western Mediterranean. Hydrobiologia 687(1). doi: 10.1007/s10750-011-0948-1
  23. Gustincich S., Manfioletti G., Del Sal G. et al. 1991. A fast method for high-quality genomic DNA extraction from whole human blood. Biotechniques 11(3): 298-300.
  24. Hoare K., Goldson A.J., Giannasi N. et al. 2001. Molecular phylogeography of the cosmopolitan bryozoan Celleporella hyalina: cryptic speciation? Molecular Phylogenetics and Evolution 18(3). doi: 10.1006/mpev.2000.0892
  25. Hoshino S., Fujita T. 2006. Isolation of polymorphic microsatellite markers from Hymeniacidon sinapium (Porifera: Demospongiae: Halichondrida). Molecular Ecology Notes 6(3). doi: 10.1111/j.1471-8286.2006.01360.x
  26. Hoshino S., Saito D.S., Fujita T. 2008. Contrasting genetic structure of two Pacific Hymeniacidon species. Hydrobiologia 603(1). doi: 10.1007/s10750-008-9295-2
  27. Itskovich V., Gontcharov A., Masuda Y. et al. 2008. Ribosomal ITS sequences allow resolution of freshwater sponge phylogeny with alignments guided by secondary structure prediction. Journal of Molecular Evolution 67(6): 608-620. doi: 10.1007/s00239-008-9158-5
  28. Jaguś A., Rzętała M.A., Rzętała M. 2015. Water storage possibilities in Lake Baikal and in reservoirs impounded by the dams of the Angara River cascade. Environmental Earth Sciences 73(2): 621-628. doi: 10.1007/s12665-014-3166-0
  29. Kenny N.J., Francis W.R., Rivera-Vicéns R.E. et al. 2020. Tracing animal genomic evolution with the chromosomal-level assembly of the freshwater sponge Ephydatia muelleri. Nature Communications 11(1). doi: 10.1038/s41467-020-17397-w
  30. Knowlton A.L., Pierson B.J., Talbot S.L. et al. 2003. Isolation and characterization of microsatellite loci in the intertidal sponge Halichondria panacea. Molecular Ecology Notes 3(4). doi: 10.1046/j.1471-8286.2003.00511.x
  31. Kozhov M.M. 1962. Biologiya ozera Baikal [Biology of Lake Baikal]. Moscow: Akad. Nauk SSSR. (in Russian)
  32. Li R., Nitsche F., Arndt H. 2018. Mesoscale investigations based on microsatellite analysis of the freshwater sponge Ephydatia fluviatilis in the River-Sieg system (Germany) reveal a genetic divergence. Conservation Genetics 19(2). doi: 10.1007/s10592-018-1069-4
  33. Lucentini L., Gigliarelli L., Puletti M.E. et al. 2013. Spatially explicit genetic structure in the freshwater sponge Ephydatia fluviatilis (Linnaeus, 1759) within the framework of the monopolisation hypothesis. Journal of Limnology 72: 172-181. doi: 10.4081/jlimnol.2013.e14
  34. Maldonado M., Riesgo A. 2008. Reproduction in the phylum Porifera: a synoptic overview. Treballs de la Societat Catalana de Biologia [Works of the Catalan Society of Biology] 59: 29-49. doi: 10.2436/20.1501.02.56
  35. Manconi R., Pronzato R. 2008. Global diversity of sponges (Porifera: Spongillina) in freshwater. Hydrobiologia 595: 27-33. doi: 10.1007/s10750-007-9000-x
  36. Massard J.A., Geimer G. 2008. Global diversity of bryozoans (Bryozoa or Ectoprocta) in freshwater. Hydrobiologia 595(1). doi: 10.1007/s10750-007-9007-3
  37. Mills S., Lunt D.H., Gómez A. 2007. Global isolation by distance despite strong regional phylogeography in a small metazoan. BMC Evolutionary Biology 7(1). doi: 10.1186/1471-2148-7-225
  38. Muñoz J., Pacios F. 2010. Global biodiversity and geographical distribution of diapausing aquatic invertebrates: the case of the cosmopolitan brine shrimp, Artemia (Branchiopoda, Anostraca). Crustaceana 83(4). doi: 10.1163/001121610X489449
  39. Noyer C., Agell G., Pascual M. et al. 2009. Isolation and characterization of microsatellite loci from the endangered Mediterranean sponge Spongia agaricina (Demospongiae: Dictyoceratida). Conservation Genetics 10(6): 1895-1898. doi: 10.1007/s10592-009-9848-6
  40. Noyer C., Becerro M.A. 2012. Relationship between genetic, chemical, and bacterial diversity in the Atlanto-Mediterranean bath sponge Spongia lamella. Hydrobiologia 687(1). doi: 10.1007/s10750-011-0884-0
  41. Philippe H., Derelle R., Lopez P. et al. 2009. Phylogenomics revives traditional views on deep animal relationships. Current Biology 19(8): 706-712. doi: 10.1016/j.cub.2009.02.052
  42. Riesgo A., Pérez-Portela R., Pita L. et al. 2016. Population structure and connectivity in the Mediterranean sponge Ircinia fasciculata are affected by mass mortalities and hybridization. Heredity 117: 427-439. doi: 10.1038/hdy.2016.41
  43. Roveta C., Annibaldi A., Afghan A. et al. 2021. Biomonitoring of heavy metals: the unexplored role of marine sessile taxa. Applied Sciences (Switzerland) 11(2). doi: 10.3390/app11020580
  44. van Soest R.W.M., Boury-Esnault N., Vacelet J. et al. 2012. Global diversity of sponges (Porifera). PLoS ONE 7(4). doi: 10.1371/journal.pone.0035105
  45. Taboada S., Kenny N.J., Riesgo A. et al. 2018. Mitochondrial genome and polymorphic microsatellite markers from the abyssal sponge Plenaster craigi Lim & Wiklund, 2017: tools for understanding the impact of deep-sea mining. Marine Biodiversity 48(1). doi: 10.1007/s12526-017-0786-0
  46. Veynberg E. 2009. Fossil sponge fauna in Lake Baikal region. In: Müller W.E.G., Grachev M.A. (Eds.), Biosilica in evolution, morphogenesis, and nanobiotechnology. Progress in molecular and subcellular biology. Vol. 47. Springer: Berlin, Heidelberg, pp. 185-205. doi: 10.1007/978-3-540-88552-8_8
  47. Vohmann A., Mutz M., Arndt H. et al. 2009. Grazing impact and phenology of the freshwater sponge Ephydatia muelleri and the bryozoans Plumatella emarginata and Fredericella sultana under experimental warming. Freshwater Biology 54(5). doi: 10.1111/j.1365-2427.2008.02155.x
  48. Yakhnenko A.S., Itskovich V.B. 2020a. Analysis of mtDNA variability in closely related Baikal sponge species for new barcoding marker development. Limnology 21(3). doi: 10.1007/s10201-019-00599-7
  49. Yakhnenko A.S., Itskovich V.B. 2020b. Study of microsatellite cross-species specificity in freshwater sponge families Lubomirskiidae and Spongillidae. Limnology and Freshwater Biology 6: 1084-1089. doi: 10.31951/2658-3518-2020-a-6-1084
  50. Ye J., Coulouris G., Zaretskaya I. et al. 2012. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13. doi: 10.1186/1471-2105-13-134

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Yakhnenko А.S., Itskovich V.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».