PCR screening of bacterial strains isolated from the microbiome of the Lubomirskia baicalensis sponge for the presence of secondary metabolite synthesis genes
- Authors: Kaluzhnaya O.V.1, Lipko I.A.1, Itskovich V.B.1
-
Affiliations:
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences
- Issue: No 2 (2021)
- Pages: 1137-1142
- Section: Articles
- URL: https://ogarev-online.ru/2658-3518/article/view/283763
- DOI: https://doi.org/10.31951/2658-3518-2021-A-2-1137
- ID: 283763
Cite item
Full Text
Abstract
The microbial communities of sponges (Porifera) are often a source of natural bioactive metabolites. From the microbiome of the endemic Lubomirskia baicalensis sponge, 35 bacterial strains were isolated and identified using molecular methods. The strains belonged to the phyla Actinobacteria, Firmicutes, and Proteobacteria (classes Alpha- and Betapriteobacteria). To analyze the strains for the presence of genes in the synthesis of secondary metabolites, polyketide synthases (PKS), PCR screening was applied using degenerate primers. Overall, 15 out of 35 strains contained PCR products corresponding in size to a fragment of the ketosynthase domain of the PKS gene cluster. Thus, the proposed method is applicable for rapid screening of the potential ability of microorganisms of different taxonomic groups to produce secondary metabolites. The work contributes to the study of the taxonomic diversity of cultured microorganisms, potential producers of biologically active substances, isolated from the microbiomes of Baikal sponges.
About the authors
O. V. Kaluzhnaya
Limnological Institute of the Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: kaluzhnaya.oks@gmail.com
Russian Federation, 3, Ulan-Batorskaya St., Irkutsk, 664033
I. A. Lipko
Limnological Institute of the Siberian Branch of the Russian Academy of Sciences
Email: kaluzhnaya.oks@gmail.com
ORCID iD: 0000-0002-6214-2974
Russian Federation, 3, Ulan-Batorskaya St., Irkutsk, 664033
V. B. Itskovich
Limnological Institute of the Siberian Branch of the Russian Academy of Sciences
Email: kaluzhnaya.oks@gmail.com
ORCID iD: 0000-0002-0552-0465
Russian Federation, 3, Ulan-Batorskaya St., Irkutsk, 664033
References
- Akinsanya M.A., Goh J.K., Ting A.S.Y. 2020. UPLC-MS Analysis of characterization of bioactive compounds produced by endophytic Bacillus tequilensis ALR-2 from Aloe vera plant. bioRxiv 2020. doi: 10.1101/2020.07.23
- Austin S., Kontur W.S., Ulbrich A. et al. 2015. Metabolism of multiple aromatic compounds in corn stover hydrolysate by Rhodopseudomonas palustris. Environmental Science & Technology 49: 8914-8922. doi: 10.1021/acs.est.5b02062
- Asolkar R.N., Schroder D., Heckmann R. et al. 2004. Helquinoline, a new tetrahydroquinoline antibiotic from Janibacter limosus Hel1. The Journal of Antibiotics (Tokyo) 57: 17-23. doi: 10.7164/antibiotics.57.17
- Balachandran C., Duraipandiyan V., Ignacimuthu S. 2012. Cytotoxic (A549) and antimicrobial effects of Methylobacterium sp. isolate (ERI-135) from Nilgiris forest soil, India. Asian Pacific Journal of Tropical Biomedicine 2: 712-716. doi: 10.1016/S2221-1691(12)60215-9
- Barrios-Llerena M.E., Burja A.M., Wright P.C. 2007. Genetic analysis of polyketide synthase and peptide synthetase genes in cyanobacteria as a mining tool for secondary metabolites. Journal of Industrial Microbiology and Biotechnology 34: 443-456. doi: 10.1007/s10295-007-0216-6
- Bell J.J. 2007. The use of volunteers for conducting sponge biodiversity assessments and monitoring using a morphological approach on Indo-Pacific coral reefs. Aquatic Conservation Marine and Freshwater Ecosystems 17: 133-145. doi: 10.1002/aqc.789
- Corretto E., Antonielli L., Sessitsch A. et al. 2020. Comparative genomics of Microbacterium species to reveal diversity, potential for secondary metabolites and heavy metal resistance. Frontiers in Microbiology 11. doi: 10.3389/fmicb.2020.01869
- Costa R., Keller-Costa T., Gomes N.C.M. et al. 2013. Evidence for selective bacterial community structuring in the freshwater sponge Ephydatia fluviatilis. Microbial Ecology 65: 232-244. doi: 10.1007/s00248-012-0102-2
- Dahal R.H., Chaudhary D.K., Kim J. 2021. Genome insight and description of antibiotic producing Massilia antibiotica sp. nov., isolated from oil-contaminated soil. Scientific Reports 11. doi: 10.1038/s41598-021-86232-z
- Ehrenreich I., Waterbury J., Webb E. 2005. Distribution and diversity of natural product genes in marine and freshwater cyanobacterial cultures and genomes. Applied and Environmental Microbiology 71: 7401-7413. doi: 10.1128/AEM.71.11.7401-7413.2005
- Feng G.D., Yang S.Z., Li H.P. et al. 2016. Massilia putida sp. nov., a dimethyl disulfide-producing bacterium isolated from wolfram mine tailing. International Journal of Systematic and Evolutionary Microbiology 66: 50-55. doi: 10.1099/ijsem.0.000670
- Fickers P. 2012. Antibiotic compounds from Bacillus: why are they so amazing? American Journal of Biochemistry and Biotechnology 8: 40-46. doi: 10.3844/ajbbsp.2012.38.43
- Gernert C., Glockner F.O., Krohne G. et al. 2005. Microbial diversity of the freshwater sponge Spongilla lacustris. Microbial Ecology 50: 206-212. doi: 10.1007/s00248-004-0172-x
- Gladkikh A.S., Kalyuzhnaya O.V., Belykh O.I. et al. 2014. Analysis of bacterial communities of two Lake Baikal endemic sponge species. Microbiology 83: 787-797. doi: 10.1134/S002626171406006X
- Haroune N., Combourieu B., Besse P. et al. 2004. Metabolism of 2-mercaptobenzothiazole by Rhodococcus rhodochrous. Applied and Environmental Microbiology 70: 6315-6319. doi: 10.1128/AEM.70.10.6315-6319.2004
- Hooper J.N.A., Van Soest R.W.M. 2002. Systema Porifera: a guide to the classification of sponges. New York: Kluwer Academic. doi: 10.1002/aqc.593
- Jenke-Kodama H., Dittmann E. 2009. Evolution of metabolic diversity: insights from microbial polyketide synthases. Phytochemistry 70: 1858-1866. doi: 10.1016/j.phytochem.2009.05.021
- Kaluzhnaya O.V., Itskovich V.B., McCormack G.P. 2011. Phylogenetic diversity of bacteria associated with the endemic freshwater sponge Lubomirskia baicalensis. World Journal of Microbiology and Biotechnology 27: 1955-1959. doi: 10.1007/s11274-011-0654
- Kaluzhnaya O.V., Itskovich V. B. 2014. Phylogenetic diversity of microorganisms associated with the deep-water sponge Baikalospongia intermedia. Russian Journal of Genetics 50: 667-676. doi: 10.1134/S1022795414060052
- Kaluzhnaya O.V., Krivich A.A., Itskovich V.B. 2012. Diversity of 16S rRNA genes in metagenomic community of the freshwater sponge Lubomirskia baicalensis. Russian Journal of Genetics 48: 851-854. doi: 10.1134/S1022795412070058
- Kaluzhnaya O.V., Kulakova N.V., Itskovich V.B. 2012. Diversity of polyketide synthase (PKS) genes in metagenomic community of freshwater sponge Lubomirskia baicalensis. Molecular Biology (Rus.) 46: 792-797. doi: 10.1134/S002689331206009X
- Khan Z, Shafique M., Nawaz H.R. et al. 2019. Bacillus tequilensis ZMS-2: a novel source of alkaline protease with antimicrobial, anti-coagulant, fibrinolytic and dehairing potentials. Pakistan Journal of Pharmaceutical Sciences 32: 1913-1918.
- Kozhov M.M. 1962. Biologiya ozera Baikal [Biology of Lake Baikal]. Moscow: Akad. Nauk SSSR. (in Russian)
- Kulakova N., Sakirko M., Adelshin R. et al. 2018. Brown rot syndrome and changes in the bacterial community of the Baikal sponge Lubomirskia baicalensis. Microbial Ecology 75: 1024-1034. doi: 10.1007/s00248-017-1097-5.
- Lang S., Winfried Beil W., Tokuda H. et al. 2004. Improved production of bioactive glucosylmannosyl-glycerolipid by sponge-associated Microbacterium species. Marine Biotechnology 6: 152-156. doi: 10.1007/s10126-003-0009-5
- Lee H., Kim D.U., Park S. et al. 2017. Massilia chloroacetimidivorans sp. nov., a chloroacetamide herbicide-degrading bacterium isolated from soil. Antonie van Leeuwenhoek 110: 751-758. doi: 10.1007/s10482-017-0845-3
- Lee L.-H., Goh B.-H., Chan K.-G. 2020. Actinobacteria: prolific producers of bioactive metabolites. Frontiers in Microbiology 11. doi: 10.3389/fmicb.2020.01612
- Love G.D., Grosjean E., Stalvies C. et al. 2009. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457: 718-721. doi: 10.1038/nature07673
- Manivasagan P., Venkatesan J., Kannan Sivakumar K. et al. 2014. Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiological Research 169: 262-278. doi: 10.1016/j.micres.2013.07.014
- Nacoulma A.P., Vandeputte O.M., De Lorenzi M. et al. 2013. Metabolomic-based study of the leafy gall, the ecological niche of the phytopathogen Rhodococcus fascians, as a potential source of bioactive compounds. International Journal of Molecular Sciences 14: 12533-12549. doi: 10.3390/ijms140612533
- Newton R.J., Jones S.E., Eiler A. 2011. A guide to the natural history of freshwater lake bacteria. Microbiology and Molecular Biology Reviews 75: 14-49. doi: 10.1128/MMBR.00028-10
- Nookongbuta P., Kantachotea D., Khuongab N.Q. et al. 2020. The biocontrol potential of acid-resistant Rhodopseudomonas palustris KTSSR54 and its exopolymeric substances against rice fungal pathogens to enhance rice growth and yield. Biological Control 150. doi: 10.1016/j.biocontrol.2020.104354
- Parfenova V.V., Terkina I.A., Kostornova T.Ya. et al. 2008. Microbial community of freshwater sponges of Lake Baikal. Biology Bulletin 35(4): 374-379. doi: 10.1134/S1062359008040079
- Photolo M., Mavumengwana V., Sitole L. et al. 2020. Antimicrobial and antioxidant properties of a bacterial endophyte, Methylobacterium radiotolerans MAMP 4754, isolated from Combretum erythrophyllum seeds. International Journal of Microbiology 2: 1-11. doi: 10.1155/2020/9483670
- Ribes M., Jiménez E., Yahel G. et al. 2012. Functional convergence of microbes associated with temperate marine sponge. Environmental Microbiology 14: 1224-1239. doi: 10.1111/j.1462-2920.2012.02701.x
- Seo E.-Y., Jung D., Belykh O.I. et al. 2016. Comparison of bacterial diversity and species composition in three endemic Baikalian sponges. Annual Limnology 52: 27-32. doi: 10.1051/limn/2015035
- Su P. 2014. Isolation and diversity of natural product biosynthetic genes of cultivable bacteria associated with marine sponge Mycale sp. from the coast of Fujian. Microbiology 60: 217-225. doi: 10.1139/cjm-2013-0785
- Su P., Feng T., Zhou X. et al. 2015. Isolation of Rhp-PSP, a member of YER057c/YjgF/UK114 protein family with antiviral properties, from the photosynthetic bacterium Rhodopseudomonas palustris strain JSC-3b. Scientific Reports 5. doi: 10.1038/srep16121
- Tancos M.A., Sechler A.J., Davis E.W. et al. 2019. The identification and conservation of tunicaminyluracil-related biosynthetic gene clusters in several Rathayibacter species collected from Australia, Africa, Eurasia, and North America. Frontiers in Microbiology 10. doi: 10.3389/fmicb.2019.02914
- Taylor M.W., Radax R., Steger D. et al. 2007. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiology and Molecular Biology Reviews 7: 295-347. doi: 10.1128/MMBR.00040-06
- Tshishonga K., Serepa-Dlamini M.H. 2020. Draft genome sequence of Pseudarthrobacter phenanthrenivorans Strain MHSD1, a bacterial endophyte isolated from the medicinal plant Pellaea calomelanos. Evolutionary Bioinformatics Online 16. doi: 10.1177/1176934320913257
- Weisz J.B., Lindquist N., Martens C.S. 2008. Do associated microbial abundances impact marine demosponge pumping rates and tissue densities? Oecologia 155: 367-376. doi: 10.1007/s00442-007-0910-0 123
- Wilkinson C.R., Garrone G., Vacelet J. 1984. Marine sponges discriminate between food bacteria and bacterial symbionts: electron microscope radioautography and in situ evidence. Proceedings of the Royal Society of London. Series B 220: 519-528. doi: 10.1098/rspb.1984.0017
- Xu F.-F., Morohoshi T., Wang W.-Z. et al. 2014. Evaluation of intraspecies interactions in biofilm formation by Methylobacterium species isolated from pink-pigmented household biofilms. Microbes and Environments 29: 388-392. doi: 10.1264/jsme2.ME14038
- Zeng H., Chen R., Luo X. et al. 2016. Isolation and anti- Verticillium dahliae activity from Bacillus axarquiensis TUBP1 protein. Process Biochemistry 51: 1691-698. doi: 10.1016/j.procbio.2016.06.014
- Zhao K., Penttinen P., Guan T. et al. 2011. The diversity and anti-microbial activity of endophytic actinomycetes isolated from medicinal plants in Panxi plateau, China. Current Microbiology 62: 182-190. doi: 10.1007/s00284-010-9685-3
Supplementary files
