Electrodermal Activity as a Non-invasive Indicator Reflecting Changes in the Activity of the Sympathetic Nervous System in Newborns

Cover Page
  • Authors: Sharafutdinova D.Y.1,2, Bobrova A.M.3, Ryumina I.I.1
  • Affiliations:
    1. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation
    2. FSAOU HE “I. M. Sechenov First Moscow State Medical University” of the Ministry of Health of the Russian Federation (Sechenov University)
    3. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation
  • Issue: No 1 (2025)
  • Pages: 21-27
  • Section: PROVEN AND PROVED
  • URL: https://ogarev-online.ru/2619-0001/article/view/372591
  • ID: 372591

Cite item

Abstract

The autonomic nervous system (ANS) plays a key role in maintaining homeostasis and adapting the body to stress, especially in the early neonatal period. The sympathetic nervous system (SNS), as the stress-implementing department of the ANS, provides a rapid body response to external and internal stimuli, including painful stimuli. The review presents modern methods for assessing sympathetic activity in newborns. The necessity of developing and improving methods of objective assessment of the sympathetic nervous system in newborns is substantiated in order to prevent and reduce the negative consequences of violations of vital body functions of a newborn child. Special attention is paid to electrodermal activity (EDA). The mechanisms of EDA, its relation to the activities of the SNS, as well as the prospects for using EDA to assess pain, stress response, and monitor the effectiveness of pain relief in neonatal practice are considered.

About the authors

D. Ya. Sharafutdinova

Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation; FSAOU HE “I. M. Sechenov First Moscow State Medical University” of the Ministry of Health of the Russian Federation (Sechenov University)

Email: secretariat@oparina4.ru
ORCID iD: 0000-0001-9626-5481
MD, PhD, neonatologist Russia, Moscow, Akad str., 4; Moscow

A. M. Bobrova

Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation

Email: secretariat@oparina4.ru
ORCID iD: 0000-0002-7693-4470
Junior Researcher, Neonatologist Russia, Moscow

I. I. Ryumina

Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation

Email: secretariat@oparina4.ru
ORCID iD: 0000-0003-1831-887X
MD, Head of the Department Russia, Moscow, Akad str., 4

References

  1. Stevens B., Johnston C., Franck L. et al. The efficacy of developmentally sensitive interventions and sucrose for relieving procedural pain in very low birth weight neonates. Selye H (1956) The stress of life. McGraw-­Hill Book Company, New York. 1999; 48 (1): 35–43.
  2. McEwen B. S. Protective and damaging effects of stress mediators: central role of the brain. Dialogues Clin Neurosci. 2007; 8 (4): 367–381.
  3. Cerritelli F., Frasch M. G., Antonelli M. C. et al. A review on the vagus nerve and autonomic nervous system during fetal development: searching for critical windows. Front Neurosci. 2021; 15: 721605. doi: 10.3389/fnins.2021.721605.
  4. Mulkey S. B., du Plessis A. The critical role of the central autonomic nervous system in fetal-­neonatal transition. Semin Pediatr Neurol. 2018; 28: 29–37. doi: 10.1016/j.spen.2018.05.004
  5. Porges S. W., Furman S. A. The early development of the autonomic nervous system provides a neural platform for social behaviour: a polyvagal perspective. Infant Child Dev. 2011; 20: 106–118. doi: 10.1002/icd.688.
  6. Schneider U., Schleussner E., Fiedler A. et al. Fetal heart rate variability reveals differential dynamics in the intrauterine development of the sympathetic and parasympathetic branches of the autonomic nervous system. Physiol Meas. 2009; 30: 215–226. doi: 10.1088/0967-3334/30/2/008.
  7. Fyfe K. L., Yiallourou S. R., Wong F. Y. et al. The effect of gestational age at birth on post-term maturation of heart rate variability. Sleep. 2015; 38: 1635–1644. doi: 10.5665/sleep.5064
  8. Oliveira V., Von Rosenberg W., Montaldo P. et al. Early postnatal heart rate variability in healthy newborn infants. Front Physiol. 2019; 10: 1–12. doi: 10.3389/fphys.2019.00922.
  9. Patural H., Pichot V., Flori S. Autonomic maturation from birth to 2 years: normative values. Heliyon. 2019; 5: e01300. doi: 10.1016/j.heliyon.2019.e01300.
  10. Hernes K. G. Skin conductance changes during the first year of life in full-term infants. Pediatr Res. 2002; 52: 837–843. doi: 10.1203/00006450-200212000-00005.
  11. Schneider U., Bode F., Schmidt A. et al. Developmental milestones of the autonomic nervous system revealed via longitudinal monitoring of fetal heart rate variability. PLoS One. 2018; 13: e0200799. doi: 10.1371/journal.pone.0200799.
  12. Harpin V. A., Rutter N. Development of emotional sweating in the newborn infant. Arch Dis Child. 1982; 57: 691–695. doi: 10.1136/adc.57.9.691.
  13. Jorgenson R. J., Salinas C. F., Dowben J. S. et al. A population study on the density of palmar sweat pores. Birth Defects Orig Artic Ser. 1988; 24: 51–63.
  14. Mulkey S. B., Hitchings L., Persaud R. et al. Cerebral cortical autonomic connectivity in low-risk term newborns. Clin Auton Res. 2021; 31: 415–424. doi: 10.1007/s10286-021-00793-7.
  15. Solange Akselrod et al. Power Spectrum Analysis of Heart Rate Fluctuation: A Quantitative Probe of Beat-to-­Beat Cardiovascular Control. Science. 1981; 213: 220–222 (1981). doi: 10.1126/science.6166045
  16. Chiera M., Cerritelli F., Casini A. Heart rate variability in the perinatal period: a critical and conceptual review. Front Neurosci. 2020; 14: 561186. doi: 10.3389/fnins.2020.561186. PMID: 33071738; PMCID: PMC7544983
  17. Butruille L., Blouin A., De Jonckheere J. et al. Impact of skin-to-skin contact on the autonomic nervous system in the preterm infant and his mother, Infant Behavior and Development. 2017; 49: 83–86, doi.org/10.1016/j.infbeh.2017.07.003
  18. Berntson G. G., Bigger J. T. Jr., Eckberg D. L. et al. Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology. 1997; 34 (6): 623–48. doi: 10.1111/j.1469-8986.1997.tb02140.x.
  19. Grassi G., Esler M. How to assess sympathetic activity in humans. J Hypertens. 1999; 17(6): 719–34. doi: 10.1097/00004872-199917060-00001.
  20. Esler M. The sympathetic system and hypertension. Am J Hypertens. 2000; 13 (6 Pt. 2): 99S-105S. doi: 10.1016/s0895-7061 (00) 00225-9.
  21. Malpas S. C. Neural influences on cardiovascular variability: possibilities and pitfalls. American Journal of Physiology-­Heart and Circulatory Physiology. 2002; 282: 1, H6-H202002.
  22. Harrison T. M., Brown R. L. Autonomic Nervous System Function in Infants With Transposition of the Great Arteries. Biological Research For Nursing. 2012; 14 (3): 257–268. doi: 10.1177/1099800411407687.
  23. Goldstein D. S., Bentho O., Park M. Y. et al. Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp Physiol. 2011; 96 (12): 1255–61. doi: 10.1113/expphysiol.2010.056259.
  24. Hayano J., Yuda E. Pitfalls of assessment of autonomic function by heart rate variability. J Physiol Anthropol. 2019 Mar 13;38(1):3. doi: 10.1186/s40101-019-0193-2
  25. Healey J. A. and Picard R. W. Detecting Stress during Real-­World Driving Tasks Using Physiological Sensors. IEEE Transactions on Intelligent Transportation Systems. 2005; 6: 156–166. http://dx.doi.org/10.1007/978-3-540-24842-24
  26. McEwen B. S. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007 Jul; 87 (3): 873–904. doi: 10.1152/physrev.00041.2006
  27. Mobascher A., Brinkmeyer J., Warbrick T. et al. Brain activation patterns underlying fast habituation to painful laser stimuli, International Journal of Psychophysiology. 2010; 75 (1): 16–24, doi.org/10.1016/j.ijpsycho.2009.10.008
  28. Posada-­Quintero H. F., Reljin N., Mills C. et al. Time-varying analysis of electrodermal activity during exercise. PLOS ONE. 2018; 13 (6): e0198328. https://doi.org/10.1371/journal.pone.0198328
  29. Aslanidis T., Grosomanidis V., Karakoulas K., Chatzisotiriou A. Electrodermal Activity Monitoring During Painful Stimulation in Sedated Adult Intensive Care Unit Patients: a Pilot Study Acta Medica (Hradec Králové) 2018; 61(2): 47–52 https://doi.org/10.14712/18059694.2018.50
  30. Browne J. V., White R. D. Foundations of developmental care. Clin Perinatol. 2011; 38 (4): xv–xvii.
  31. van den Heuvel M. P., Kersbergen K. J., de Reus M. A. et al. The neonatal connectome during preterm brain development. Cereb Cortex (New York, NY: 1991). 2015. 25 (9): 3000–3013.
  32. Bellieni C. V., Lin J. C. et al. Paracetamol (acetaminophen) for prevention or treatment of pain in newborns. Cochrane Database Syst Rev. 2016; 10: CD011219. doi: 10.1002/14651858.CD011219.pub3
  33. Simons SHP., van Dijk M., Anand K. S. Do we still hurt newborn babies? Arch Pediatr Adolesc Med. 2003; 157: 1058. doi: 10.1001/archpedi.157.11.1058
  34. Brewer C. L., Baccei M. L. The development of pain circuits and unique effects of neonatal injury. J Neural Transm. 2020; 127: 467–479. doi: 10.1007/s00702-019-02059-z
  35. Anand K. J., Hickey P. R. Pain and its effects in the human neonate and fetus. N Engl J Med. 1987; 317 (21): 1321–1329.
  36. Anand K. J. Pain, plasticity, and premature birth: a prescription for permanent suffering? Nat Med. 2000; 6 (9): 971–973. Epub 2000/09/06. Qiu J. Infant pain: does it hurt? Nature. 2006; 444 (7116):143–145.
  37. Anand K. J. Consensus statement for the prevention and management of pain in the newborn. Arch Pediatr Adolesc Med. 2001; 155 (2): 173–180. Epub 2001/02/15.
  38. Bartocci M., Bergqvist L. L., Lagercrantz H., Anand K. J. Pain activates cortical areas in the preterm newborn brain. Pain. 2006; 122 (1–2): 109–117.
  39. Knaepen L., Pawluski J. L., Patijn J. et al. Perinatal maternal stress and serotonin signaling: Effects on pain sensitivity in offspring. Dev Psychobiol. 2014; 56: 885–896. doi: 10.1002/dev.21184.
  40. Smith G. C., Gutovich J., Smyser C. et al. (2011) Neonatal intensive care unit stress is associated with brain development in preterm infants. Ann Neurol. 2011; 70 (4): 541–549.
  41. Grunau R. E., Whitfield M. F., Petrie-­Thomas J. et al. Neonatal pain, parenting stress and interaction, in relation to cognitive and motor development at 8 and 18 months in preterm infants. Pain/ 2009; 143 (1–2): 138–146. Epub 2009/03/25
  42. Brummelte S., Grunau R. E., Chau V. et al. Procedural pain and brain development in premature newborns. Ann Neurol. 2012. 71 (3): 385–396.
  43. Ranger M., Chau C. M., Garg A. et al. Neonatal pain-related stress predicts cortical thickness at age 7 years in children born very preterm. PLoS One. 2013; 8 (10): e76702. Epub 2013/11/10
  44. Hermann C., Hohmeister J., Demirakca S. et al. Long-term alteration of pain sensitivity in school-aged children with early pain experiences. Pain. 2006; 125 (3): 278–285. Epub 2006/10/03
  45. Андреев А. В., Харламова Н. В., Межинский С. С. Проблемы клинической оценки боли у новорожденных детей. Рос. вестн. перинатол. и педиатр. 2020; 65: (4): 5–15. doi: 10.21508/1027-4065-2020-65-4-5-15 [Andreev A. V., Kharlamova N. V., Mezhinsky S. S. Problems of clinical assessment of pain in newborn children. Ros vestn perinatol and pediatrician 2020; 65: (4): 5–15. doi: 10.21508/1027-4065-2020-65-4-5-15 (In Russ.)].
  46. Posada-­Quintero HF, Chon KH. Innovations in Electrodermal Activity Data Collection and Signal Processing: A Systematic Review. Sensors. 2020; 20 (2): 479. https://doi.org/10.3390/s20020479
  47. Boucsein W., Fowles D. C., Grimnes S. et al. Society for Psychophysiological Research Ad Hoc Committee on Electrodermal Measures. Publication recommendations for electrodermal measurements. Psychophysiology 2012; 49: 1017–1034
  48. Kong Y., Posada-­Quintero H. F., Chon K. H. Multi-level Pain Quantification using a Smartphone and Electrodermal Activity. Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul; 2022: 2475–2478. doi: 10.1109/EMBC48229.2022.9871228. PMID: 36085748
  49. Posada-­Quintero H. F., Kong Y., Chon K. H. et al. Objective pain stimulation intensity and pain sensation assessment using machine learning classification and regression based on electrodermal activity. Am J Physiol Regul Integr Comp Physiol. 2021 Aug 1; 321 (2): R186-R196. doi: 10.1152/ajpregu.00094.2021
  50. Hu J., Modanloo S., Squires J. E. The validity of skin conductance for assessing acute pain in infants: a scoping review. Clin J Pain. 2019; 35: 713–724. doi: 10.1097/AJP.0000000000000721.
  51. Kusumaningrum A., Rustina Y., Abuzairi T. et al. The skin conductance-­based non-invasive pain assessment instrument for infants. Sri Lanka J Child Heal. 2022; 51: 448–455. doi: 10.4038/sljch.v51i3.10249
  52. Kuderava Z. et al. Sympathetic nervous system activity and pain-related response indexed by electrodermal activity during the earliest postnatal life in healthy term neonates. Physiol Res. 2023 Jul 14;72 (3): 393–401. doi: 10.33549/physiolres.935061
  53. Susam B., Riek N., Akcakaya M. et al. Automated Pain Assessment in Children Using Electrodermal Activity and Video Data Fusion via Machine Learning. IEEE Trans Biomed Eng. 2022; 69 (1): 422–431. doi: 10.1109/TBME.2021.3096137.
  54. Якубина А.А., Шакая М.Н., Бочарова И.И., Ильяшенко Е.Н. Результаты мониторинга электродермальной активности для оценки стресса и боли у новорожденных при использовании инвазивных лечебно-диагностических методик. Медицинский оппонент. 2024; 3 (27): 21–27. [Yakubina A.A., Shakaya M.N., Bocharova I.I., Ilyashenko E.N. The results of monitoring of electrodermal activity to assess stress and pain in newborns using invasive therapeutic and diagnostic techniques. Meditsinskiy opponent = Medical Opponent. 2024; 3 (27): 21–27 (In Russ.)]

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).