Biotechnology applications of wheat bran. Review

封面

如何引用文章

全文:

详细

The review presents the results of information research on the application of wheat bran, a by-product of wheat grain processing. The relevance of this topic is due to the difficulties of rationally using large-scale waste and its disposal without increasing the load on the ecosystem.The chemical composition of wheat bran is characterised, including the carbohydrate composition and the content of non-starch carbohydrates and proteins; a qualitative analysis of the components is provided. Special attention is given to the use of wheat bran in industry and as a substrate for the biosynthesis of useful metabolites. Wheat bran has significant biotechnological properties and is a valuable raw material for the development of new products and technologies. The review provides a comparative analysis of methods for the destruction of wheat bran, highlighting their advantages and disadvantages. Microbial destruction by enzyme preparations and microorganisms is relevant due to the promise of obtaining metabolites in demand as microingredients for feed and food purposes. The use of wheat bran in the production of functional foods is known; in animal husbandry, they are used as a feed additive. In biotechnology, wheat bran can serve as a substrate for the growth of various microorganisms used in the production of biotechnological preparations and enzymes, such as beneficial bacteria — probiotics. In the field of ecology, microbial communities using wheat bran are able to effectively degrade organic pollutants. Thus, the use of wheat bran in biotechnology opens up new horizons for the development of sustainable technological processes and improvement of product quality. Their biotechnological destruction is of interest as a method of converting waste into secondary raw material.

作者简介

G. Kurbanov

All-Russia Research Institute for Food Additives

编辑信件的主要联系方式.
Email: e_iva.nova@mail.ru
Gabdulla F. Kurbanov is affiliated with the All-Russia Research Institute for Food Additives, focusing on the biotechnology applications of wheat bran. 55, Liteiny pr., 190000, St. Petersburg

A. Prichepa

All-Russia Research Institute for Food Additives

Email: e_iva.nova@mail.ru
55, Liteiny pr., 190000, St. Petersburg

A. Nepomnyashchy

All-Russia Research Institute for Food Additives

Email: e_iva.nova@mail.ru
55, Liteiny pr., 190000, St. Petersburg

E. Ivanova

All-Russia Research Institute for Food Additives

Email: e_iva.nova@mail.ru
55, Liteiny pr., 190000, St. Petersburg

N. Sharova

All-Russia Research Institute for Food Additives

Email: e_iva.nova@mail.ru
55, Liteiny pr., 190000, St. Petersburg

参考

  1. Apprich, S., Tirpanalan, Ö., Hell, J., Reisinger, M., Böhmdorfer, S., Siebenhandl-Ehn, S. et al. (2014). Wheat bran-based biorefinery 2: Valorization of products. LWT — Food Science and Technology, 56(2), 222–231. https://doi.org/10.1016/j.lwt.2013.12.003
  2. Onipe, O. O., Jideani, A. I. O., Beswa, D. (2015). Composition and functionality of wheat bran and its application in some cereal food products. International Journal of Food Science and Technology, 50(12), 2509–2518. https://doi.org/10.1111/ijfs.12935
  3. Rossi, D., Rossi, S., Cinelli, P., Seggiani, M. (2024). Emerging opportunities in the valorisation of wheat bran byproduct as additive in polymer composite materials. Materials Today Sustainability, 27, Article 100832. https://doi.org/10.1016/J.MTSUST.2024.100832
  4. Fan, L., Ma, S., Li, L., Huang, J. (2024). Fermentation biotechnology applied to wheat bran for the degradation of cell wall fiber and its potential health benefits: A review. International Journal of Biological Macromolecules, 275(Part 1), Article 133529. https://doi.org/10.1016/j.ijbiomac.2024.133529
  5. Andersson, A. A. M., Dimberg, L., Åman, P., Landberg, R. (2014). Recent findings on certain bioactive components in whole grain wheat and rye. Journal of Cereal Science, 59(3), 294–311. https://doi.org/10.1016/j.jcs.2014.01.003
  6. Vitaglione, P., Napolitano, A., Fogliano, V. (2008). Cereal dietary fibre: A natural functional ingredient to deliver phenolic compounds into the gut. Trends in Food Science and Technology, 19(9), 451–463. https://doi.org/10.1016/j.tifs.2008.02.005
  7. Saini, P., Islam, M., Das, R., Shekhar, S., Sinha, A. S. K., Prasad, K. (2023). Wheat bran as potential source of dietary fiber: Prospects and challenges. Journal of Food Composition and Analysis, 116, Article 105030. https://doi.org/10.1016/j.jfca.2022.105030
  8. Prückler, M., Siebenhandl-Ehn, S., Apprich, S., Höltinger, S., Haas, C., Schmid, E. et al. (2014). Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. LWT — Food Science and Technology, 56(2), 211–221. https://doi.org/10.1016/J.LWT.2013.12.004
  9. FAO Food Price Index. FAO Cereal Supply and Demand Brief. Retrieved from https://www.fao.org/worldfoodsituation/csdb/en Accessed February 15, 2025
  10. Cai, L., Choi, I., Lee, C. -K., Park, K. -K., Baik, B. -K. (2014). Bran characteristics and bread-baking quality of whole grain wheat flour. Cereal Chemistry, 91(4), 398–405. https://doi.org/10.1094/cchem-09-13-0198-r
  11. Hemdane, S., Jacobs, P. J., Dornez, E., Verspreet, J., Delcour, J. A., Courtin, C. M. (2016). Wheat (Triticum aestivum L.) bran in bread making: A Critical review. Comprehensive Reviews in Food Science and Food Safety, 15(1), 28–42. https://doi.org/10.1111/1541-4337.12176
  12. Ye, G., Wu, Y., Wang, L., Tan, B., Shen, W., Li, X. et al. (2021). Comparison of six modification methods on the chemical composition, functional properties and antioxidant capacity of wheat bran. LWT, 149, Article 111996. https://doi.org/10.1016/j.lwt.2021.111996
  13. Xiao, Y., Liu, Y., Wang, X., Li, M., Lei, H., Xu, H. (2019). Cellulose nanocrystals prepared from wheat bran: Characterization and cytotoxicity assessment. International Journal of Biological Macromolecules, 140, 225–233. https://doi.org/10.1016/j.ijbiomac.2019.08.160
  14. Xie, X. (Sherry), Cui, S. W., Li, W., Tsao, R. (2008). Isolation and characterization of wheat bran starch. Food Research International, 41(9), 882–887. https://doi.org/10.1016/j.foodres.2008.07.016
  15. Li, C., Dhital, S., Gidley, M. J. (2023). High amylose wheat foods: A new opportunity to improve human health. Trends in Food Science and Technology, 135, 93–101. https://doi.org/10.1016/j.tifs.2023.03.017
  16. Zeng, J., Li, G., Gao, H., Ru, Z. (2011). Comparison of A and B starch granules from three wheat varieties. Molecules, 16(12), 10570–10591. https://doi.org/10.3390/molecules161210570
  17. Guo, L., Chen, H., Zhang, Y., Yan, S., Chen, X., Gao, X. (2023). Starch granules and their size distribution in wheat: Biosynthesis, physicochemical properties and their effect on flour-based food systems. Computational and Structural Biotechnology Journal, 21, 4172–4186. https://doi.org/10.1016/j.csbj.2023.08.019
  18. Qi, X., Tester, R. F. (2016). Effect of native starch granule size on susceptibility to amylase hydrolysis. Starch, 68(9–10), 807–810. https://doi.org/10.1002/star.201500360
  19. Prisenznáková, L., Nosáľová, G., Hromádková, Z., Ebringerová, A. (2010). The pharmacological activity of wheat bran polysaccharides. Fitoterapia, 81(8), 1037–1044. https://doi.org/10.1016/j.fitote.2010.06.027
  20. Klemm, D., Heublein, B., Fink, H. P., Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44(22), 3358–3393. https://doi.org/10.1002/anie.200460587
  21. Chashchilov, D. V. (2024). Regenerated Cellulose. Review. Part 1. Cellulose structure, solvent systems, and dissolution mechanisms. Polymer Science, Series D, 17(2), 466–473. https://doi.org/10.1134/S1995421224700801
  22. Jarvis, M. C. (2022). Hydrogen bonding and other non-covalent interactions at the surfaces of cellulose microfibrils. Cellulose, 30(2), 667–687. https://doi.org/10.1007/s10570-022-04954-3
  23. Arantes, V., Saddler, J. N. (2010). Access to cellulose limits the efficiency of enzymatic hydrolysis: The role of amorphogenesis. Biotechnology for Biofuels, 3(1), Article 4. https://doi.org/10.1186/1754-6834-3-4
  24. Zhu, X., Xin, X., Gu, Y. (2019). Cellulose and Hemicellulose Synthesis and Their Regulation in Plant Cells. Chapter in a book: Extracellular Sugar-Based Biopolymers Matrices. Springer Nature Switzerland AG, 2019. https://doi.org/10.1007/978-3-030-12919-4_7
  25. Scapini, T., dos Santos, M. S. N., Bonatto, C., Wancura, J. H. C., Mulinari, J., Camargo, A. F. et al. (2021). Hydrothermal pretreatment of lignocellulosic biomass for hemicellulose recovery. Bioresource Technology, 342, Article 126033. https://doi.org/10.1016/j.biortech.2021.126033
  26. Marquez-Escalante, J. A., Carvajal-Millan, E., Yadav, M. P., Kale, M., Rascon-Chu, A., Gardea, A. A. et al. (2018). Rheology and microstructure of gels based on wheat arabinoxylans enzymatically modified in arabinose to xylose ratio. Journal of the Science of Food and Agriculture, 98(3), 914–922. https://doi.org/10.1002/jsfa.8537
  27. Carvajal-Millan, E., Landillon, V., Morel, M. H., Rouau, X., Doublier, J. L., Micard, V. (2005). Arabinoxylan gels: Impact of the feruloylation degree on their structure and properties. Biomacromolecules, 6(1), 309–317. https://doi.org/10.1021/bm049629a
  28. Watt, D. K., Brasch, D. J., Larsen, D. S., Melton, L. D., Simpson, J. (2000). Oligosaccharides related to xyloglucan: Synthesis and X-ray crystal structure of methyl α-l-fucopyranosyl-(1→2)-β-d-galactopyranosyl-(1→2)-α-d-xylopyranoside and the synthesis of methyl α-l-fucopyranosyl-(1→2)-β-d-galactopyranosyl-(1→2)-β-d-xylopyranoside. Carbohydrate Research, 325(4), 300–312. https://doi.org/10.1016/S0008-6215(00)00017-3
  29. Shrestha, U. R., Smith, S., Pingali, S. V., Yang, H., Zahran, M., Breunig, L. et al. (2019). Arabinose substitution effect on xylan rigidity and self-aggregation. Cellulose, 26(4), 2267–2278. https://doi.org/10.1007/s10570-018-2202-8
  30. Vanholme, R., Demedts, B., Morreel, K., Ralph, J., Boerjan, W. (2010). Lignin biosynthesis and structure. Plant Physiology, 153(3), 895–905. https://doi.org/10.1104/pp.110.155119
  31. Ahadyani, N., Abdollahi, M. (2024). Phenolation, amination and cross-linking of lignin: synthesis and characterization of functionalized lignin. Polymer Bulletin, 81(10), 8643–8661. https://doi.org/10.1007/s00289-023-05103-x
  32. Lu, F. -J., Chu, L. -H., Gau, R. -J. (1998). Free radical-scavenging properties of lignin. Nutrition and Cancer, 30(1), 31–38. https://doi.org/10.1080/01635589809514637
  33. Huang, W., Tian, F., Wang, H., Wu, S., Jin, W., Shen, W. et al. (2023). Comparative assessment of extraction, composition, and in vitro antioxidative properties of wheat bran polyphenols. LWT, 180, Article 114706. https://doi.org/10.1016/j.lwt.2023.114706
  34. Arnata, I.W., Anggreni, A. A. M. D., Arda, G., Masruchin, N., Sartika, D., Fahma, F. et al. (2024). Minimizing food oxidation using aromatic polymer: From lignin into nano-lignin. Food Research International, 197(Part 1), Article 115159. https://doi.org/10.1016/j.foodres.2024.115159
  35. Marangon, C. A., Otoni, C. G., Bertuso, P. C., Rossi, P. F., dos Santos, D. M., Lourençon, T. V. et al. (2024). Side-stream lignins: Potential antioxidant and antimicrobial agents in milk. Food Research International, 180, Article 114091. https://doi.org/10.1016/j.foodres.2024.114091
  36. Guo, J., Wang, F., Zhang, Z., Wu, D., Bao, J. (2021). Characterization of gluten proteins in different parts of wheat grain and their effects on the textural quality of steamed bread. Journal of Cereal Science, 102, Article 103368. https://doi.org/10.1016/j.jcs.2021.103368
  37. Lebert, L., Buche, F., Sorin, A., Aussenac, T. (2022). The wheat aleurone layer: Optimisation of its benefits and application to bakery products. Foods, 11(22), Article 3552. https://doi.org/10.3390/foods11223552
  38. Alzuwaid, N. T., Sissons, M., Laddomada, B., Fellows, C. M. (2020). Nutritional and functional properties of durum wheat bran protein concentrate. Cereal Chemistry, 97(2), 304–315. https://doi.org/10.1002/cche.10246
  39. Arte, E., Huang, X., Nordlund, E., Katina, K. (2019). Biochemical characterization and technofunctional properties of bioprocessed wheat bran protein isolates. Food Chemistry, 289, 103–111. https://doi.org/10.1016/j.foodchem.2019.03.020
  40. Meziani, S., Nadaud, I., Gaillard-Martinie, B., Chambon, C., Benali, M., Branlard, G. (2012). Proteomic analysis of the mature kernel aleurone layer in common and durum wheat. Journal of Cereal Science, 55(3), 323–330. https://doi.org/10.1016/j.jcs.2012.01.010
  41. Uttam, A. N., Padte, S., Raj, G. J. V., Govindaraju, K., Kumar, S. (2023). Isolation, characterization, and utilization of wheat bran protein fraction for food application. Journal of Food Science and Technology, 60(2), 464–473. https://doi.org/10.1007/s13197-022-05617-8
  42. Chaquilla-Quilca, G., Balandrán-Quintana, R. R., Huerta-Ocampo, J. Á., Ramos-Clamont Montfort, G., Luna-Valdez, J. G. (2018). Identification of proteins contained in aqueous extracts of wheat bran through a proteomic approach. Journal of Cereal Science, 80, 31–36. https://doi.org/10.1016/j.jcs.2018.01.005
  43. Sopanen, T., Laurière, C. (1989). Release and Activity of Bound β-Amylase in a Germinating Barley Grain. Plant Physiology, 89(1), 244–249. https://doi.org/10.1104/pp.89.1.244
  44. Mamytova, N., Sergalykyzy, Z., Kuzovlev, V., Khakimzhanov, A., Yrgynbayeva, S. (2024). Features of amylase inhibitors in wheat grains. Experimental Biology, 100(3), 166–174. https://doi.org/10.26577/bb.2024.v100.i3.014
  45. Pastorello, E. A., Farioli, L., Conti, A., Pravettoni, V., Bonomi, S., Iametti, S. et al. (2007). Wheat IgE-mediated food allergy in European patients: Alpha-amylase inhibitors, lipid transfer proteins and low-molecular-weight glutenins. Allergenic molecules recognized by double-blind, placebo-controlled food challenge. International Archives of Allergy and Immunology, 144(1), 10–22. https://doi.org/10.1159/000102609
  46. Mustafa, A., Åman, P., Andersson, R., Kamal-Eldin, A. (2007). Analysis of free amino acids in cereal products. Food Chemistry, 105(1), 317–324. https://doi.org/10.1016/j.foodchem.2006.11.044
  47. Ertl, P., Zebeli, Q., Zollitsch, W., Knaus, W. (2016). Feeding of wheat bran and sugar beet pulp as sole supplements in high-forage diets emphasizes the potential of dairy cattle for human food supply. Journal of Dairy Science, 99(2), 1228–1236. https://doi.org/10.3168/jds.2015-10285
  48. Noort, M. W. J., van Haaster, D., Hemery, Y., Schols, H. A., Hamer, R. J. (2010). The effect of particle size of wheat bran fractions on bread quality — Evidence for fibre–protein interactions. Journal of Cereal Science, 52(1), 59–64. https://doi.org/10.1016/j.jcs.2010.03.003
  49. Nogata, Y., Nagamine, T. (2009). Production of free amino acids and γ-Aminobutyric acid by autolysis reactions from wheat bran. Journal of Agricultural and Food Chemistry, 57(4), 1331–1336. https://doi.org/10.1021/jf802420w
  50. Brandolini, A., Hidalgo, A. (2012). Wheat germ: Not only a by-product. International Journal of Food Sciences and Nutrition, 63(sup. 1), 71–74. https://doi.org/10.3109/09637486.2011.633898
  51. Wood, I. P., Cook, N. M., Wilson, D. R., Ryden, P., Robertson, J. A., Waldron, K. W. (2016). Ethanol from a biorefinery waste stream: Saccharification of amylase, protease and xylanase treated wheat bran. Food Chemistry, 198, 125–131. https://doi.org/10.1016/j.foodchem.2015.09.108
  52. Di Lena, G., Vivanti, V., Quaglia, G. B. (1997). Amino acid composition of wheat milling by-products after bioconversion by edible fungi mycelia. Food / Nahrung, 41(5), 285–288. https://doi.org/10.1002/food.19970410507
  53. Roberts, P. J., Simmonds, D. H., Wootton, M., Wrigley, C. W. (1985). Extraction of protein and solids from wheat bran. Journal of the Science of Food and Agriculture, 36(1), 5–10. https://doi.org/10.1002/jsfa.2740360103
  54. Jung, G.-W., Uddin, M. S., Kwon, K.-T., Chun, B.-S. (2010). Comparison of supercritical and near-critical carbon dioxide extraction of carotenoid enriched wheat bran oil. African Journal of Biotechnology, 9(45), 7702–7709.
  55. Gebruers, K., Dornez, E., Boros, D., Fraś, A., Dynkowska, W., Bedo, Z. et al. (2008). Variation in the content of dietary fiber and components thereof in wheats in the healthgrain diversity screen. Journal of Agricultural and Food Chemistry, 56(21), 9740–9749. https://doi.org/10.1021/jf800975w
  56. Sun, Y., Cui, S. W., Gu, X., Zhang, J. (2011). Isolation and structural characterization of water unextractable arabinoxylans from Chinese black-grained wheat bran. Carbohydrate Polymers, 85(3), 615–621. https://doi.org/10.1016/j.carbpol.2011.03.021
  57. Li, W., Cui, S. W., Kakuda, Y. (2006). Extraction, fractionation, structural and physical characterization of wheat β-d-glucans. Carbohydrate Polymers, 63(3), 408–416. https://doi.org/10.1016/j.carbpol.2005.09.025
  58. Ou, S., Kwok, K. -C. (2004). Ferulic acid: Pharmaceutical functions, preparation and applications in foods. Journal of the Science of Food and Agriculture, 84(11), 1261–1269. https://doi.org/10.1002/jsfa.1873
  59. Buranov, A. U., Mazza, G. (2009). Extraction and purification of ferulic acid from flax shives, wheat and corn bran by alkaline hydrolysis and pressurised solvents. Food Chemistry, 115(4), 1542–1548. https://doi.org/10.1016/j.foodchem.2009.01.059
  60. Das, S., Singh, S., Garg, S. (2022). Agri-residual waste, wheat bran as a biosorbent for mitigation of dye pollution in industrial wastewaters. Journal of Basic Microbiology, 62(3–4), 465–479. https://doi.org/10.1002/jobm.202100502
  61. Chung, W. J., Shim, J., Ravindran, B. (2022). Application of wheat bran based biomaterials and nano-catalyst in textile wastewater. Journal of King Saud University — Science, 34(2), Article 101775. https://doi.org/10.1016/j.jksus.2021.101775
  62. Haq, H. A., Javed, T., Abid, M. A., Zafar, S., Din, M. I. (2021). Adsorption of crystal violet dye from synthetic textile effluents by utilizing wheat bran (Triticum aestivum). Desalination and Water Treatment, 224, 395–406. https://doi.org/10.5004/dwt.2021.27178
  63. Adachi, A., Ikeda, C., Takagi, S., Fukao, N., Yoshie, E., Okano, T. (2001). Efficiency of rice bran for removal of organochlorine compounds and benzene from industrial wastewater. Journal of Agricultural and Food Chemistry, 49(3), 1309–1314. https://doi.org/10.1021/jf001147c
  64. Chen, S., Yue, Q., Gao, B., Xu, X. (2010). Equilibrium and kinetic adsorption study of the adsorptive removal of Cr(VI) using modified wheat residue. Journal of Colloid and Interface Science, 349(1), 256–264. https://doi.org/10.1016/j.jcis.2010.05.057
  65. Bulut, Y., Baysal, Z. (2006). Removal of Pb(II) from wastewater using wheat bran. Journal of Environmental Management, 78(2), 107–113. https://doi.org/10.1016/j.jenvman.2005.03.010
  66. Singh, K. K., Singh, A. K., Hasan, S. H. (2006). Low cost bio-sorbent ‘wheat bran’ for the removal of cadmium from wastewater: Kinetic and equilibrium studies. Bioresource Technology, 97(8), 994–1001. https://doi.org/10.1016/j.biortech.2005.04.043
  67. Ogata, F., Uematsu, Y., Nagai, N., Nakamura, M., Tabuchi, A., Saenjum, C. et al. (2022). Wheat brans as waste biomass based on a potential bio–adsorbent for removing platinum(IV) ions from aqueous phase. Bioresource Technology Reports, 20, Article 101238. https://doi.org/10.1016/j.biteb.2022.101238
  68. Dey, T., Bhattacharjee, T., Nag, P., Ritika, Ghati, A., Kuila, A. (2021). Valorization of agro-waste into value added products for sustainable development. Bioresource Technology Reports, 16, Article 100834. https://doi.org/10.1016/j.biteb.2021.100834
  69. Wang, D., Min, Y., Yu, Y. (2015). Facile synthesis of wheat bran-derived honeycomb-like hierarchical carbon for advanced symmetric supercapacitor applications. Journal of Solid State Electrochemistry, 19(2), 577–584. https://doi.org/10.1007/S10008-014-2639-0
  70. Wang, H., Zhang, P., Song, X., Zhang, M., Kong, X., Jin, S. et al. (2020). Wheat bran derived carbon toward cost-efficient and high performance lithium storage. ACS Sustainable Chemistry and Engineering, 8(42), 15898–15905. https://doi.org/10.1021/acssuschemeng.0c04670
  71. Ren, J., Du, X., Zhang, W., Xu, M. (2017). From wheat bran derived carbonaceous materials to a highly stretchable and durable strain sensor. RSC Advances, 7(37), 22619–22626. https://doi.org/10.1039/c7ra01837a
  72. Schmid, D., Olsson, E.L., Vainio, E., Wu, H., Karlström, O., Hupa, L. (2025). Fate of phosphorus and potassium in gasification of wheat bran and sunflower seed shells. Fuel, 384, Article 133950. https://doi.org/10.1016/j.fuel.2024.133950
  73. Kumar, A., Pandit, S., Sharma, K., Agrawal, S., Kuhad, R. C., Mathuriya, A. S. et al. (2024). Microbial degradation of cellulose extracted from wheat bran for bioelectricity production using microbial fuel cell. Process Safety and Environmental Protection, 190(Part A), 574–585. https://doi.org/10.1016/j.psep.2024.06.076
  74. Al-Mazrouei, N., Ahmed, W., Al-Marzouqi, A. H. (2023). Characterization and comparative analysis of natural, sustainable composite material properties using bio-binder for eco-friendly construction applications. Buildings, 13(5), Article 1324. https://doi.org/10.3390/buildings13051324
  75. Gaydabrus, M., Mussafirov, D., Tabakaev, R. (2018). Research of the opportunity of using bran as a building material. MATEC Web of Conferences, 194, Article 01018. https://doi.org/10.1051/matecconf/201819401018
  76. Subash, M. ch., Muthiah, P. (2021). Eco-friendly degumming of natural fibers for textile applications: A comprehensive review. Cleaner Engineering and Technology, 5, Article 100304. https://doi.org/10.1016/j.clet.2021.100304
  77. Di Canto, J. A.T., Malfait, W. J., Wernery, J. (2023). Turning waste into insulation — A new sustainable thermal insulation board based on wheat bran and banana peels. Building and Environment, 244, Article 110740. https://doi.org/10.1016/j.buildenv.2023.110740
  78. Rahman, A., Fehrenbach, J., Ulven, C., Simsek, S., Hossain, K. (2021). Utilization of wheat-bran cellulosic fibers as reinforcement in bio-based polypropylene composite. Industrial Crops and Products, 172, Article 114028. https://doi.org/10.1016/j.indcrop.2021.114028
  79. Zou, Z., Purnawan, M. A., Wang, Y., Ismail, B. B., Zhang, X., Yang, Z. et al. (2025). A novel antimicrobial peptide WBp-1 from wheat bran: Purification, characterization and antibacterial potential against Listeria monocytogenes. Food Chemistry, 463(Part 2), Article 141261. https://doi.org/10.1016/j.foodchem.2024.141261
  80. Zhuang, M., Li, J., Wang, A., Li, G., Ke, S., Wang, X. et al. (2024). Structurally manipulated antioxidant peptides derived from wheat bran: Preparation and identification. Food Chemistry, 442, Article 138465. https://doi.org/10.1016/j.foodchem.2024.138465
  81. Ahmed, M. A. M., Ali, M. F., Mohamed, N. M., Bayoumi, S. A. L., Zahran, A. M., Elsayh, K. I. (2024). Exploring the efficacy of various wheat bran extracts in promoting burn wound healing: A comparative analysis. Journal of Ethnopharmacology, 319(Part 1), Article 117174. https://doi.org/10.1016/j.jep.2023.117174
  82. Gong, Y., Fu, L., Wang, C., Deng, T., Chen, N., Chen, J. (2023). Study on the preparation of wheat bran carbon material (CM) and its preliminary tanning property in leather industry. Industrial Crops and Products, 205, Article 117468. https://doi.org/10.1016/j.indcrop.2023.117468
  83. Yang, T., Zhang, Y., Guo, L., Li, D., Liu, A., Bilal, M. et al. (2023). Antifreeze polysaccharides from wheat bran: The structural characterization and antifreeze mechanism. Biomacromolecules, 25(7), 3877–3892. https://doi.org/10.1021/acs.biomac.3c00958
  84. Zhao, A., Shi, P., Yang, R., Gu, Z., Jiang, D., Wang, P. (2022). Isolation of novel wheat bran antifreeze polysaccharides and the cryoprotective effect on frozen dough quality. Food Hydrocolloids, 125, Article 107446. https://doi.org/10.1016/j.foodhyd.2021.107446
  85. Galbe, M., Zacchi, G. (2002). A review of the production of ethanol from soft-wood. Applied Microbiology and Biotechnology, 59(6), 618–628. https://doi.org/10.1007/S00253-002-1058-9
  86. Abbas, M., Atiq-ur-Rahman, M., Manzoor, F., Farooq, A. (2012). A quantitative analysis and comparison of nitrogen, potassium and phosphorus in rice husk and wheat bran samples. Pure and Applied Biology, 1(1), 14–15.
  87. Saroj, R., Kaur, S., Malik, M. A., Puranik, V., Kaur, D. (2024). Thermal processing of wheat bran: Effect on the bioactive compounds and dietary fiber. Bioactive Carbohydrates and Dietary Fibre, 32, Article 100433. https://doi.org/10.1016/j.bcdf.2024.100433
  88. Tavanai, T., Kadivar, M., Alsharif, M. A. (2025). The effect of hydrothermal treatment on the physico-chemical properties of wheat bran and the rheological characteristics of the resulting dough. Journal of Cereal Science, 121, Article 104098. https://doi.org/10.1016/j.jcs.2024.104098
  89. Farkas, C., Rezessy-Szabó, J. M., Gupta, V. K., Truong, D. H., Friedrich, L., Felföldi, J. et al. (2019). Microbial saccharification of wheat bran for bioethanol fermentation. Journal of Cleaner Production, 240, Article 118269. https://doi.org/10.1016/j.jclepro.2019.118269
  90. Chamlagain, B., Edelmann, M., Katina, K., Varmanen, P., Piironen, V. (2024). Vitamin B 12 production in solubilized protein extract of bioprocessed wheat bran with Propionibacterium freudenreichii. LWT, 192, Article 115731. https://doi.org/10.1016/j.lwt.2024.115731
  91. Chamlagain, B., Peltonen, L., Edelmann, M., Ramos-Diaz, J. M., Kemppinen, A., Jouppila, K. et al. (2021). Bioaccessibility of vitamin B12 synthesized by Propionibacterium freudenreichii and from products made with fermented wheat bran extract. Current Research in Food Science, 4, 499–502. https://doi.org/10.1016/j.crfs.2021.07.009
  92. Li, M., Tang, H., Hu, H., Liu, X., Xue, D., Yu, X. et al. (2024). Production of acetic acid from wheat bran by catalysis of an acetoxylan esterase. Bioresource Technology, 396, Article 130443. https://doi.org/10.1016/j.biortech.2024.130443
  93. Liu, M. -qi, Huo, W. -kang, Xu, X., Weng, X. -yan. (2017). Recombinant Bacillus amyloliquefaciens xylanase A expressed in Pichia pastoris and generation of xylooligosaccharides from xylans and wheat bran. International Journal of Biological Macromolecules, 105, 656–663. https://doi.org/10.1016/j.ijbiomac.2017.07.073
  94. Zhang, D., Liu, H., Wang, S., Liu, Y., Ji, H. (2023). Wheat bran fermented by Lactobacillus regulated the bacteria–fungi composition and reduced fecal heavy metals concentrations in growing pigs. Science of The Total Environment, 858(Part 3), Article 159828. https://doi.org/10.1016/j.scitotenv.2022.159828
  95. Bhavana, B. K., Mudliar, S. N., Debnath, S. (2023). Life cycle assessment of fermentative xylitol production from wheat bran: A comparative evaluation of sulphuric acid and chemical-free wet air oxidation-based pretreatment. Journal of Cleaner Production, 423, Article 138666. https://doi.org/10.1016/j.jclepro.2023.138666
  96. Verma, N., Kumar, V. (2020). Impact of process parameters and plant polysaccharide hydrolysates in cellulase production by Trichoderma reesei and Neurospora crassa under wheat bran based solid state fermentation. Biotechnology Reports, 25, Article e00416. https://doi.org/10.1016/j.btre.2019.e00416
  97. Abdella, A., Mazeed, T. E. -S., El-Baz, A. F., Yang, S. -T. (2016). Production of β-glucosidase from wheat bran and glycerol by Aspergillus niger in stirred tank and rotating fibrous bed bioreactors. Process Biochemistry, 51(10), 1331–1337. https://doi.org/10.1016/j.procbio.2016.07.004
  98. Gomathi, D., Muthulakshmi, C., Kumar, D. G., Ravikumar, G., Kalaiselvi, M., Uma, C. (2012). Submerged fermentation of wheat bran by Aspergillus flavus for production and characterization of carboxy methyl cellulase. Asian Pacific Journal of Tropical Biomedicine, 2(1Sup), S67-S73. https://doi.org/10.1016/s2221-1691(12)60132-4
  99. Cruz-Davila, J., Perez, J. V., del Castillo, D. S., Diez, N. (2022). Fusarium graminearum as a producer of xylanases with low cellulases when grown on wheat bran. Biotechnology Reports, 35, Article e00738. https://doi.org/10.1016/j.btre.2022.e00738
  100. Demir, H., Tari, C. (2014). Valorization of wheat bran for the production of polygalacturonase in SSF of Aspergillus sojae. Industrial Crops and Products, 54, 302–309. https://doi.org/10.1016/j.indcrop.2014.01.025
  101. Demir, H., Tari, C. (2016). Bioconversion of wheat bran for polygalacturo-nase production by Aspergillus sojae in tray type solid-state fermentation. International Biodeterioration and Biodegradation, 106, 60–66. https://doi.org/10.1016/j.ibiod.2015.10.011
  102. Yin, Z. N., Wu, W. J., Sun, C. Z., Liu, H. F., Chen, W. B., Zhan, Q. P. et al. (2019). Antioxidant and anti-inflammatory capacity of ferulic acid released from wheat bran by solid-state fermentation of Aspergillus niger. Biomedical and Environmental Sciences, 32(1), 11–21. https://doi.org/10.3967/bes2019.002
  103. Deng, H., Jia, P., Jiang, J., Bai, Y., Fan, T. -P., Zheng, X., et al. (2019). Expression and characterisation of feruloyl esterases from Lactobacillus fermentum JN248 and release of ferulic acid from wheat bran. International Journal of Biological Macromolecules, 138, 272–277. https://doi.org/10.1016/j.ijbiomac.2019.07.086
  104. Liu, Z., Ying, Y., Li, F., Ma, C., Xu, P. (2010). Butanol production by Clostridium beijerinckii ATCC55025 from wheat bran. Journal of Industrial Microbiology and Biotechnology, 37(5), 495–501. https://doi.org/10.1007/s10295-010-0695-8
  105. Wu, X., Liu, Q., Deng, Y., Li, J., Chen, X., Gu, Y. et.al. (2017). Production of itaconic acid by biotransformation of wheat bran hydrolysate with Aspergillus terreus CICC40205 mutant. Bioresource Technology, 241, 25–34. https://doi.org/10.1016/j.biortech.2017.05.080
  106. Favaro, L., Basaglia, M., Casella, S. (2012). Processing wheat bran into ethanol using mild treatments and highly fermentative yeasts. Biomass and Bioenergy, 46, 605–617. https://doi.org/10.1016/j.biombioe.2012.07.001
  107. Di Fidio, N., Carmassi, L., Kasmiarti, G., Fulignati, S., Licursi, D., Galletti, A. M. R. et al. (2024). Chemical and enzymatic hydrolysis of waste wheat bran to sugars and their simultaneous biocatalytic conversion to valuable carotenoids and lipids. Catalysis Today, 442, Article 114941. https://doi.org/10.1016/j.cattod.2024.114941

补充文件

附件文件
动作
1. JATS XML

版权所有 © Piŝevye sistemy, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».