Emerging pollutants: Risks in salmon fish migration. A review
- Authors: Abramova L.S.1, Kozin A.V.1, Guseva E.S.1
-
Affiliations:
- Russian Federal Research Institute of Fisheries and Oceanography (VNIRO)
- Issue: Vol 7, No 3 (2024)
- Pages: 384-393
- Section: Articles
- URL: https://ogarev-online.ru/2618-9771/article/view/311664
- DOI: https://doi.org/10.21323/2618-9771-2024-7-3-384-393
- ID: 311664
Cite item
Full Text
Abstract
About the authors
L. S. Abramova
Russian Federal Research Institute of Fisheries and Oceanography (VNIRO)
Email: abramova@vniro.ru
19, Okruzhnoy proezd, 105187, Moscow
A. V. Kozin
Russian Federal Research Institute of Fisheries and Oceanography (VNIRO)
Email: abramova@vniro.ru
19, Okruzhnoy proezd, 105187, Moscow
E. S. Guseva
Russian Federal Research Institute of Fisheries and Oceanography (VNIRO)
Email: abramova@vniro.ru
19, Okruzhnoy proezd, 105187, Moscow
References
- Câmara, J. S., Montesdeoca-Esponda, S., Freitas, J., Guedes-Alonso, R., Sosa-Ferrera, Z., Perestrelo, R. (2021). Emerging contaminants in seafront zones. Environmental impact and analytical approaches. Separations, 8(7), Article 95. https://doi.org/10.3390/separations8070095
- Sultan, M. B., Anik, A. H., Rahman, M. M. (2024). Emerging contaminants and their potential impacts on estuarine ecosystems: Are we aware of it? Marine Pollution Bulletin, 199, Article 115982. https://doi.org/10.1016/j.marpolbul.2023.115982
- Mofijur, M., Hasan, M. M., Ahmed, S. F., Djavanroodi, F., Fattah, I. M. R, Silitonga, A. S et al. (2024). Advances in identifying and managing emerging contaminants in aquatic ecosystems: Analytical approaches, toxicity assessment, transformation pathways, environmental fate, and remediation strategies. Environmental Pollution, 341, Article 122889. https://doi.org/10.1016/j.envpol.2023.122889
- Martin, O., Scholze, M., Ermler, S., McPhie, J., Bopp, S. K., Kienzler, A. et al. (2021). Ten years of research on synergisms and antagonisms inchemical mixtures: A systematic review and quantitative reappraisal of mixture studies. Environment International, 146, Article 106206. https://doi.org/10.1016/j.envint.2020.106206
- Martins, I., Soares, J., Neuparth, T., Barreiro, A. F., Xavier, C., Antunes, C. et al. (2022). Prioritizing the effects of emerging contaminants on estuarine production under global warming scenarios. Toxics, 10(2), Article 46. https://doi.org/10.3390/toxics10020046
- Lagunas-Rangel, F. A., Linnea-Niemi, J. V., Kudłak, B., Williams, M. J., Jönsson, J., Schiöth, H. B. (2022). Role of the synergistic interactions of environmental pollutants in the development of cancer. GeoHealth, 6(4), Article e2021GH000552. https://doi.org/10.1016/10.1029/2021GH000552
- National Institutes of Health (NIH). Open chemistry database PubChem. Retrieved from https://pubchem.ncbi.nlm.nih.gov. Accessed July 2, 2024.
- Журкович, И. К., Мильман, Б. Л. (2023). Химическое пространство опасных веществ. Химическая безопасность, 7(2), 23–34. https://doi.org/10.25514/CHS.2023.2.25002
- Khan, N. A., López-Maldonado E. A., Majumder A., Singh S., Varshney, R., López J.R et al. (2023). A state-of-art-review on emerging contaminants: Environmental chemistry, health effect, and modern treatment methods. Chemosphere, 344, Article 140264. https://doi.org/10.1016/j.chemosphere.2023.140264
- Yu, Y., Wang, S., Yu, P., Wang, D., Hu, B., Zheng, P. et al. (2024). A bibliometric analysis of emerging contaminants (ECs) (2001–2021): Evolution of hotspots and research trends. Science of the Total Environment, 907, Article 168116. https://doi.org/10.1016/j.scitotenv.2023.168116
- Veiga-Del-Baño, J. M., Cámara, M. Á., Oliva. J., Hernández-Cegarra A. T., Andreo-Martínez, P., Motas M. (2023). Mapping of emerging contaminants in coastal waters research: A bibliometric analysis of research output during 1986–2022. Marine Pollution Bulletin, 194(PtA), Article 115366. https://doi.org/10.1016/j.marpolbul.2023.115366
- Puri, M., Gandhi, K., Kumar, M. S. (2023). Emerging environmental contaminants: A global perspective on policies and regulations. Journal of Environmental Management, 332, Article 117344. https://doi.org/10.1016/j.jenvman.2023.117344
- Feng, W., Deng, Y., Yang, F., Miao, Q., Ngien, S. K. (2023). Systematic review of contaminants of emerging concern (CECs): Distribution, risks, and implications for water quality and health. Water, 15(22), Article 3922. https://doi.org/10.3390/w15223922
- Канзепарова, А. Н., Ваизова, И. А., Никифоров, А. И., Беляев, В. А. (2024). Итоги лососевой путины в Дальневосточном рыбохозяйственном бассейне в 2023 г. Бюллетень № 18 изучения тихоокеанских лососей на Дальнем Востоке, 18, 3–18. https://doi.org/10.26428/losos_bull18-2024-3-18
- ВНИИРО (2024). Делегация России приняла участие в работе международной организации по сохранению анадромных рыб. Электронный ресурс: http://vniro.ru/ru/novosti/arkhiv-za-2024-god/delegatsiya-rossii-prinyala-uchastie-v-rabote-mezhdunarodnoj-organizatsii-po-sokhraneniyu-anadromnykh-ryb Дата доступа 04.07.2024
- Yu, Y., Wang, Z., Yao, B., Zhou, Y. (2024). Occurrence, bioaccumulation, fate, and risk assessment of emerging pollutants in aquatic environments: A review. Science of the Total Environment, 923, Article 171388. https://doi.org/10.1016/j.scitotenv.2024.171388
- Falandysz, J., Liu, G., Rutkowska, M. (2024). Analytical progress on emerging pollutants in the environment: An overview of the topics. TrAC Trends in Analytical Chemistry, 175, Article 117719. https://doi.org/10.1016/j.trac.2024.117719
- Lisco, G., Giagulli, V. A., Iovino, M., Guastamacchia, E., Pergola, G., Triggiani, V. (2022). Endocrine-disrupting chemicals: Introduction to the theme. Endocrine, Metabolic and Immune Disorders — Drug Targets, 22(7), 677–685. https://doi.org/10.2174/1871530321666210413124425
- Subaramaniyam, U., Allimuthu, R. S., Vappu, S., Ramalingam, D., Balan, R., Paital, B., et al. (2023). Effects of microplastics, pesticides and nano-materials on fish health, oxidative stress and antioxidant defense mechanism. Frontiers in Physiology, 14, Article 1217666. https://doi.org/10.3389/fphys.2023.1217666
- Jyoti, D., Sinha, R. (2023). Physiological impact of personal care product constituents on non-target aquatic organisms. Science of the Total Environment, 905, Article 167229. https://doi.org/10.1016/j.scitotenv.2023.167229
- Chakraborty, A., Adhikary, S., Bhattacharya, S., Dutta, S., Chatterjee, S., Banerjee, D. et al. (2023). Pharmaceuticals and personal care products as emerging environmental contaminants: Prevalence, toxicity, and remedial approaches. ACS Chemical Health and Safety, 30(6), 362–388. https://doi.org/10.1021/acs.chas.3c00071
- Wydro, U., Wołejko, E., Luarasi, L., Puto, K., Tarasevičienė, Ž., Jabłońska-Trypuć, A. (2024). A review on pharmaceuticals and personal care products residues in the aquatic environment and possibilities for their remediation. Sustainability, 16(1), Article 169. https://doi.org/10.3390/su16010169
- Hawash, H. B., Moneer, A. A., Galhoum, A. A., Elgarahy, A. M., Mohamed, W. A. A., Samy, M. et al. (2023) Occurrence and spatial distribution of pharmaceuticals and personal care products (PPCPs) in the aquatic environment, their characteristics, and adopted legislations. Journal of Water Process Engineering, 52, Article 103490. https://doi.org/10.1016/j.jwpe.2023.103490
- Cunha, S. C, Menezes-Sousa, D, Mello, F. V., Miranda, J. A. T., Fogaca, F. H. S., Alonso, M. B. et al. (2022). Survey on endocrine-disrupting chemicals in seafood: Occurrence and distribution. Environmental Research, 210, Article 112886. https://doi.org/10.1016/j.envres.2022.112886
- Rohani, M. F. (2023). Pesticides toxicity in fish: Histopathological and hematobiochemical aspects — a review. Emerging Contaminants. 9(3), Article 100234. https://doi.org/10.1016/j.emcon.2023.100234
- Ceger, P., Allen D., Blankinship, A., Choksi, N., Daniel, A., Eckel, W. B. et al. (2023). Evaluation of the fish acute toxicity test for pesticide registration, Regulatory Toxicology and Pharmacology, 139, Article 105340. https://doi.org/10.1016/j.yrtph.2023.105340
- Huang, T., Zhao, Y., He, J., Cheng, H., Martyniuk, C. J., (2022). Endocrine disruption by azole fungicides in fish: A review of the evidence. Science of the Total Environment, 822, Article 153412. https://doi.org/10.1016/j.scitotenv.2022.153412
- Li, X., Shen, X., Jiang, W., Xi, Y., Li, S. (2024). Comprehensive review of emerging contaminants: Detection technologies, environmental impact, and management strategies. Ecotoxicology and Environmental Safety, 278, Article 116420. https://doi.org/10.1016/j.ecoenv.2024.116420
- Diamond, M. L., Sigmund, G., Bertram, M. G., Ford, A. T, Ågerstrand, M., Carlini, G. et al. (2024). Exploring outputs of the intergovernmental science-policy panel on chemicals, waste, and pollution prevention. Environmental Science and Technology Letters,11(7), 664–672. https://doi.org/10.1021/acs.estlett.4c00294
- IARC. (2022). Gentian violet, leucogentian violet, malachite green, leucomalachite green, and CI Direct Blue 218. IARC Monographs on the Identification of Carcinogenic Hazards to Humans, 2022.
- Liu, Y., Wu, N.-N., Xu, R., Li, Z.-H., Xu, X.-R., Liu, S. (2024). Phthalates released from microplastics can’t be ignored: Sources, fate, ecological risks, and human exposure risks. TrAC Trends in Analytical Chemistry, 179, Article 117870. https://doi.org/10.1016/j.trac.2024.117870
- Baldwin, W. S., Bain, L. J., Di Giulio, R., Kullman, S., Rice, C. D., Ringwood, A. H. et al. (2020). 20th Pollutant Responses in Marine Organisms (PRIMO 20): Global issues and fundamental mechanisms caused by pollutant stress in marine and freshwater organisms. Aquatic Toxicology, 227, Article 105620. https://doi.org/10.1016/j.aquatox.2020.105620
- Yang, W., Bu, Q., Shi, Q., Zhao, R., Huang, H., Yang, L. et al. (2024). Emerging contaminants in the effluent of wastewater should be regulated: Which and to what extent? Toxics, 12(5), Article 309. https://doi.org/10.3390/toxics12050309
- Wu, M., Miao, J., Zhang, W., Wang, Q., Sun, C., Wang, L. et al. (2024). Occurrence, distribution, and health risk assessment of pyrethroid and neonicotinoid insecticides in aquatic products of China. Science of the Total Environment, 919, Article 170880. https://doi.org/10.1016/j.scitotenv.2024.170880
- Jesus, A., Sousa, E., Cruz, M., Cidade, H., Lobo, J., Almeida, I. (2022). UV filters: Challenges and prospects. Pharmaceuticals, 15(3), Article 263. https://doi.org/10.3390/ph15030263
- Santonocito, M., Salerno, B., Trombini, C., Tonini, F., Pintado-Herrera, M. G., Martínez-Rodríguez, G. et al. (2020). Stress under the sun: Effects of exposure to low concentrations of UV-filter 4-methylbenzylidene camphor (4-MBC) in a marine bivalve filter feeder, the Manila clam Ruditapes philippinarum. Aquatic Toxicology, 221, Article 105418. https://doi.org/10.1016/j.aquatox.2020.105418
- Wang, F., Xiang, L., Sze-Yin Leung, K., Elsner, M., Zhang, Y., Guo, Y. et al. (2024). Emerging contaminants: a One Health perspective. The Innovation, 5(4), Article 100612. https://doi.org/10.1016/j.xinn.2024.100612
- Tierney, K. B., Pyle, G. G. (2024). Is salmonid migration at risk from chemical information disruption? Aquaculture and Fisheries, 9(3), 378–387. https://doi.org/10.1016/j.aaf.2023.05.009
- Mohanty, B., Mohanty, S., Mitra, T., Mahanty, A., Ganguly, S., Singh, S. (2019). Omics Technology in Fisheries and Aquaculture. Chapter in a book: Advances in Fish Research. Vol.-VII. Narendra Publishing House, Delhi, India. 2019.
- Ulucan-Altuntas, K., Manav-Demir, N., Ilhan, F., Gelgor, H. B., Huddersman, K., Tiwary, A. et al. (2023). Emerging pollutants removal in full-scale biological treatment plants: a case study. Journal of Water Process Engineering, 51, Article 103336. https://doi.org/10.1016/j.jwpe.2022.103336
- Hopkins, Z. R., Blaney, L. (2016). An aggregate analysis of personal care products in the environment: Identifying the distribution of environmentally-relevant concentrations. Environment International, 92–93, 301–316. https://doi.org/10.1016/j.envint.2016.04.026
- Du, B., Lofton, J. M., Peter, K. T., Gipe, A. D., James, C. A., McIntyre, J. K. et al. (2017). Development of suspect and non-target screening methods for detection of organic contaminants in highway runoff and fish tissue with high-resolution time-of-flight mass spectrometry. Environmental Sciences: Processes and Impacts, 19(9), 1185–1196. https://doi.org/10.1039/C7EM00243B
- Tian, Z., Zhao, H., Peter, K. T., Gonzalez, M., Wetzel, J., Wu, C. et al. (2021). A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon. Science, 371(6525), 185–189. https://doi.org/10.1126/science.abd6951 Erratum in: Science. (2022), 375(6582), Article 5785. https://doi.org/10.1126/science.abo5785
- Kazmi, S. S. U. H., Xu, Q., Tayyab, M., Pastorino, P., Barcelò, D., Yaseen, Z. M. et al. (2024). Navigating the environmental dynamics, toxicity to aquatic organisms and human associated risks of an emerging tire wear contaminant 6PPD quinone. Environmental Pollution, 356, Article 124313. https://doi.org/10.1016/j.envpol.2024.124313
- Ihenetu, S. C., Xu, Q., Khan, Z. H., Kazmi, S. S. U. H., Ding, J. et al. (2024). Environmental fate of tire-rubber related pollutants 6PPD and 6PPD-Q: A review. Environmental Research, 258, Article 119492. https://doi.org/10.1016/j.envres.2024.119492
- French, B. F., Baldwin, D. H., Cameron, J., Prat, J., King, K., Davis, J. W. et al. (2022). Urban roadway runoff is lethal to Juvenile Coho, Steelhead, and Chinook Salmonids, but not Congeneric Sockeye. Environmental Science and Technology Letters, 9(9), 733–738. https://doi.org/10.1021/acs.estlett.2c00467
- Blair, S. I., Barlow, C. H., McIntyre, J. K. (2021). Acute cerebrovascular effects in juvenile coho salmon exposed to roadway runoff. Canadian Journal of Fisheries and Aquatic Sciences, 78(2), 103–109. https://doi.org/10.1139/cjfas-2020-0240
- Meador, J. P., Ball, S. C., Andrew, J. C., McIntyre, J. K. (2024). Exposure of juvenile Chinook salmon to effluent from a large urban wastewater treatment plant. Part 2. Metabolomic profiling. Aquaculture and Fisheries, 9(3), 367–377. https://doi.org/10.1016/j.aaf.2023.06.008
- Ball, S. C., Meador, J. P., Andrew, J. C., McIntyre, J. K. (2024). Exposure of juvenile Chinook salmon to effluent from a large urban wastewater treatment plant. Part 1. physiological responses. Aquaculture and Fisheries, 9(3), 355–356. https://doi.org/10.1016/j.aaf.2023.06.006
- Young, W., Wiggins, S., Limm, W., Fisher, C. M., DeJager, L., Genualdi S. (2022). Analysis of per- and poly(fluoroalkyl) substances (PFASs) in highly consumed seafood products from U.S. markets. Journal of Agricultural and Food Chemistry, 70(42), 13545–13553. https://doi.org/10.1021/acs.jafc.2c04673
- Bedi, M., Sapozhnikova, Y., Taylor, R. B., Ng, C. (2023). Per- and polyfluoroalkyl substances (PFAS) measured in seafood from a cross-section of retail stores in the United States. Journal of Hazardous Materials, 459, Article 132062. https://doi.org/10.1016/j.jhazmat.2023.132062
- Habib, Z., Song, M., Ikram, S., Zahra, Z. (2024). Overview of Per- and polyfluoroalkyl substances (PFAS). Their applications, sources, and potential impacts on human health. Pollutants, 4, 136–152. https://doi.org/10.3390/pollutants4010009
- Sunderland, E. M., Hu, X. C., Dassuncao, C., Tokranov, A. K., Wagner C. C., Allen J. G. (2019). A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. Journal of Exposure Science and Environmental Epidemiology, 29(2), 131–147. https://doi.org/10.1038/s41370-018-0094-1
- US EPA. (2024). Per- and poyfluoroalkyl substances (PFAS): Proposed PFAS national primary drinking water regulation. Retrieved from https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas Accessed June 4, 2024.
- European Food Safety Authority. (2020). PFAS in food: EFSA assesses risks and sets tolerable intake. Retrieved from https://www.efsa.europa.eu/en/news/pfas-food-efsa-assesses-risks-and-sets-tolerable-intake Accessed June 4, 2024.
- Giraudo, M., Douville, M., Letcher, R. J., Houde, M. (2017). Effects of food-borne exposure of juvenile rainbow trout (Oncorhynchus mykiss) to emerging brominated flame retardants 1,2-bis(2,4,6-tribromophenoxy)ethane and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate. Aquatic Toxicology, 186, 40–49. https://doi.org/10.1016/j.aquatox.2017.02.023
- Kratschmer, K., Schachtele A., Malisch R., Vetter W. (2019). Chlorinated paraffins (CPs) in salmon sold in southern Germany: Concentrations, homologue patterns and relation to other persistent organic pollutants. Chemosphere, 227, 630–637. https://doi.org/10.1016/j.chemosphere.2019.04.016
- Conference of the Parties of the Stockholm Convention (COP.8) (2017). Decision SC-8/11 Listing Short-Chain Chlorinated Paraffins (SCCPs) in Annex A of the Convention. Geneva, 74 Retrieved from https://chm.pops.int/theconvention/conferenceoftheparties/meetings/cop8/tabid/5309/default.asp Accessed June 4, 2024.
- McIntosh, S., King, T., Wu, D., Hodson, P.V. (2010). Toxicity of dispersed weathered crude oil to early life stages of Atlantic herring (Clupea harengus). Environmental Toxicology and Chemistry, 29(5), 1160–1167. https://doi.org/10.1002/etc.134
- Forth, H. P., Rissing, M., Travers, C. (2021). Use of correlated water sample chemistry and synthetic aperture radar footprints to estimate oil concentrations in the upper water column during the Deepwater Horizon oil spill. ACS Earth and Space Chemistry, 5(11), 3097–3103. https://doi.org/10.1021/acsearthspacechem.1c00196
- Пряжевская, Т. С., Черкашин, С. А. (2007). Влияние нефтеуглеводородов на ранний онтогенез рыб. Известия ТИНРО, 149, 359–365.
- Barron, M. G., Carls, M. G., Heintz, R., Rice, S. D. (2004). Evaluation of fish early life-stage toxicity models of chronic embryonic exposures to complex polycyclic aromatic hydrocarbon mixtures. Toxicological Sciences, 78(1), 60–67. https://doi.org/10.1093/toxsci/kfh051
- Monteiro, V., Dias da Silva, D., Martins, M., Guedes de Pinho, P., Pinto, J. (2024). Metabolomics perspectives of the ecotoxicological risks of polycyclic aromatic hydrocarbons: A scoping review. Environmental Research, 249, Article 118394. https://doi.org/10.1016/j.envres.2024.118394
- Takeshita, R., Bursian, S. J., Colegrove, K. M., Collier, T. K., Deak, K., Dean, K. M. et al. (2021). A review of the toxicology of oil in vertebrates: What we have learned following the Deepwater Horizon oil spill. Journal of Toxicology and Environmental Health: Part B, Critical Reviews, 24(8), 355–394. https://doi.org/10.1080/10937404.2021.1975182
- Pasparakis, C., Esbaugh, A. J., Burggren, W., Grosell, M. (2019). Physiological impacts of Deepwater Horizon oil on fish. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 224, Article 108558. https://doi.org/10.1016/j.cbpc.2019.06.002
- Bender, M. L., Giebichenstein, J., Teisrud, R. N., Laurent, J., Frantzen, M., Meador, J. P. et al. (2021). Combined effects of crude oil exposure and warming on eggs and larvae of an arctic forage fish. Scientific Reports, 11(1), Article 8410. https://doi.org/10.1038/s41598-021-87932-2
- Grosell, M., Pasparakis, C. (2021). Physiological responses of fish to oil spills. Annual Review of Marine Science, 13,137–160. https://doi.org/10.1146/annurevmarine-040120-094802
- Meador, J. P., Nahrgang, J. (2019). Characterizing crude oil toxicity to early-life stage fish based on a complex mixture: Are we making unsupported assumptions? Environmental Science and Technology, 53(19), 11080–11092. https://doi.org/10.1021/acs.est.9b02889
- Commission Regulation (EU) 2023/915 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. (2023). Official Journal of the European, 119, 103–157. Retrieved from https://eur-lex.europa.eu/eli/reg/2023/915/oj Accessed June 3, 2024.
- Osman, A. I., Hosny, M., Eltaweil, A. S., Omar, S., Elgarahy, A. M., Farghali, M. et al. (2023). Microplastic sources, formation, toxicity and remediation: A review. Environmental Chemistry Letters, 21(4), 2129–2169. https://doi.org/10.1007/s10311-023-01593-3
- Kibria, G. (2023). Impacts of microplastic on fisheries and seafood security — Global analysis and synthesis. Science of the Total Environment, 904, Article 166652. https://doi.org/10.1016/j.scitotenv.2023.166652
- Oza, J., Rabari, V., Yadav, V. K., Sahoo, D. K., Patel, A., Trivedi, J. (2024). A systematic review on microplastic contamination in fishes of Asia: Polymeric risk assessment and future prospectives. Environmental Toxicology and Chemistry, 43(4), 671–685. https://doi.org/10.1002/etc.5821
- Granby, K., Bhattarai, B., Johannsen, N., Kotterman, M. J. J., Sloth, J. J., Cederberg, T. L. et al. (2024). Microplastics in feed affect the toxicokinetics of persistent halogenated pollutants in Atlantic salmon. Environmental Pollution, 357, Article 124421. https://doi.org/10.1016/j.envpol.2024.124421
- EUR-Lex (2008). Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008L0056 Accessed June 4, 2024.
- National Oceanic and Atmospheric Administration. (2023). Microplastics. Retrieved from https://marinedebris.noaa.gov/what-marine-debris/microplastics Accessed June 4, 2024.
- Gomiero, A., Haave, M., Bjorǿy, Ø., Herzke, D., Kögel, T., Nikiforov, V. et al. (2020). Quantification of microplastic in fillet and organs of farmed and wild salmonids- a comparison of methods for detection and quantification salmodetect. NORCE Report 8–2020 Retrieved from https://www.hi.no/resources/Salmodetect-report-final.pdf Accessed June 3, 2024.
- Landrigan, P. J., Raps, H., Cropper, M., Bald, C., Brunner, M., Canonizado, E. M. et al. (2023). The Minderoo-Monaco commission on plastics and human health. Annals of Global Health, 89(1), Article 23. https://doi.org/10.5334/aogh.4056
- O’Neill, S. M., Carey, A. J., Harding, L. B., West, J. E., Ylitalo, G. M., Chamberlin, J. W. (2020). Chemical tracers guide identification of the location and source of persistent organic pollutants in juvenile Chinook salmon (Oncorhynchus tshawytscha), migrating seaward through an estuary with multiple contaminant inputs. Science of the Total Environment, 712, Article 135516. https://doi.org/10.1016/j.scitotenv.2019.135516
- Donets, M. M., Tsygankov, V. Yu., Gumovskiy, A. N., Gumovskaya, Y. P., Boyarova, M. D., Kulshova, V. I. et al. (2022). Fish as a risk source for human health: OCPs and PCBs in Pacific salmon. Food Control, 134, Article 108696. https://doi.org/10.1016/j.foodcont.2021.108696
- Cunha, S. C., Trabalón, L., Jacobs, S., Castro, M., Fernandez-Tejedor, M., Granby, K. et al. (2018). UV-filters and musk fragrances in seafood commercialized in Europe Union: Occurrence, risk and exposure assessment. Environmental Research, 161, 399–408. https://doi.org/10.1016/j.envres.2017.11.015
- Carrizo, J. C., Griboff, J., Bonansea, R. I., Nimptsch, J., Valdés, M. E., Wunderlin, D. A. et al. (2021). Different antibiotic profiles in wild and farmed Chilean salmonids. Which is the main source for antibiotic in fish? Science of the Total Environment, 800, Article 149516. https://doi.org/10.1016/j.scitotenv.2021.149516
- Undas, A. K., Escher, S., Hahn, S., Hajslova, J., Hrbek, V., Kosek, V. et al. (2024). Screening for emerging chemical risks in the food chain (SCREENER). EFSA Journal, 21(7), Article 8962E. https://doi.org/10.2903/sp.efsa.2024.EN-8962
- Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). Retrieved from https://eur-lex.europa.eu/eli/reg/2006/1907/2014-04-10. Accessed June 3, 2024.
- Мильман, Б. Л, Журкович, И. К. (2020). Обобщенные критерии идентификации химических соединений методами хроматографии — масс-спектрометрии. Аналитика и контроль, 24(3), 164–173. https://doi.org/15826/analitika.2020.24.3.003
- Мильман, Б. Л., Журкович, И. К. (2022). Современная практика нецелевого химического анализа. Журнал аналитической химии, 77(5), 412–426. https://doi.org/10.31857/S0044450222050085
- Gómez-Regalado, M. del C., Martín-Pozo, L., Martín, J., Santos, J. L., Aparicio, I., Alonso, E. et al. (2022). An overview of analytical methods to determine pharmaceutical active compounds in aquatic organisms. Molecules, 27(21), Article 7569. https://doi.org/10.3390/molecules27217569
- Turnipseed, S. B. (2024). Analysis of chemical contaminants in fish using high resolution mass spectrometry — A review. Trends in Environmental Analytical Chemistry, 42, Article e00227. https://doi.org/10.1016/j.teac.2024.e00227
- Chiesa, L. M., Pavlovic, R., Panseri, S., Arioli, F. (2018). Evaluation of parabens and their metabolites in fish and fish products: A comprehensive analytical approach using LC-HRMS. Food Additives and Contaminants: Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 35(12), 2400–2413. https://doi.org/10.1080/19440049.2018.1544721
- Baesu, A., Audet, C., Bayen, S. (2021). Application of non-target analysis to study the thermal transformation of malachite and leucomalachite green in brook trout and shrimp. Current Research in Food Science, 4, 707–715. https://doi.org/10.1016/j.crfs.2021.09.010
- EUR-Lex (2021). Commission Implementing Regulation (EU) 2021/808 of 22 March 2021 on the performance of analytical methods for residues of pharmacologically active substances used in food-producing animals and on the interpretation of results as well as on the methods to be used for sampling and repealing Decisions 2002/657/EC and 98/179/EC (Text with EEA relevance). Retrieved from https://eur-lex.europa.eu/eli/reg_impl/2021/808/oj Accessed June 3, 2024.
- Cappello, T. (2020). NMR-Based metabolomics of aquatic organisms. eMagRes, 9(1), 81–100. https://doi.org/10.1002/9780470034590.emrstm1604
- Lulijwa, R., Alfaro, A. C., Young, T. (2022). Metabolomics in salmonid aquaculture research: Applications and future perspectives. Reviews in Aquaculture, 14(2), 547–577. https://doi.org/10.1111/raq.12612
- Liu, L., Wu, Q., Miao, X., Fan, T., Meng, Z., Chen, X. et al. (2022). Study on toxicity effects of environmental pollutants based on metabolomics: A review. Chemosphere, 286(2), Article 131815. https://doi.org/10.1016/j.chemosphere.2021.131815
- Wishart, D. S., Cheng, L. L., Copié, V., Edison, A. S., Eghbalnia, H. R., Hoch, J. C. et al. (2020). NMR and metabolomics — a roadmap for the future. Metabolites, 23, 12(8), Article 678. https://doi.org/10.3390/metabo1208067
Supplementary files
