Functional characteristics and molecular structural modification of plant proteins. Review
- Authors: Kolpakova V.V.1, Byzov V.A.1
-
Affiliations:
- All-Russian Research Institute of Starch and Starch — containing Raw Materials Processing — Branch of Russian Potato Research Centre
- Issue: Vol 7, No 3 (2024)
- Pages: 324-335
- Section: Articles
- URL: https://ogarev-online.ru/2618-9771/article/view/311655
- DOI: https://doi.org/10.21323/2618-9771-2024-7-3-324-335
- ID: 311655
Cite item
Full Text
Abstract
About the authors
V. V. Kolpakova
All-Russian Research Institute of Starch and Starch — containing Raw Materials Processing — Branch of Russian Potato Research Centre
Email: Val-kolpakova@rambler.ru
11, Nekrasov Str., 140051, Kraskovo, Lyubertsy, Moscow region
V. A. Byzov
All-Russian Research Institute of Starch and Starch — containing Raw Materials Processing — Branch of Russian Potato Research Centre
Email: Val-kolpakova@rambler.ru
11, Nekrasov Str., 140051, Kraskovo, Lyubertsy, Moscow region
References
- Мартинчик, А. Н., Маев, И. В., Янушевич, О. О. (2005). Общая нутрициология. М.: МЕДпресс-информ, 2005.
- Нечаев, А. П., Кочеткова, А. А., Колпакова, В. В., Траубенберг, С. Е., Витол, И. С., Кобелева, И. Б. и др. (2024). Пищевая химия. Санкт-Петербург: ГИОРД, 2024.
- Толстогузов, В. Б. (1987). Новые формы белковой пищи. М.: Агропромиздат, 1987.
- Kolpakova, V. V., Chumikina, L. V., Arabova, L. I., Lukin, D. N, Topunov, А. F, Тitov, Е. I. (2016). Functional technological properties and electrophoretic composition of modified wheat gluten. Foods and Raw Materials, 4(2), 48–57. https://doi.org/10.21179/2308-4057-2016-2-48-57
- Moll, P., Grossmann, L., Kutzli, I., Weiss, J. (2019). Influence of energy density and viscosity on foam stability — A study with pea protein (Pisum Sativum L.). Journal of Dispersion Science and Technology, 41(12), 1789–1796. https://doi.org/10.1080/01932691.2019.1635028
- Jakobson, K., Kaleda, A., Adra, K., Tammik, M. L., Vaikma, H., Kriščiunaite, T. et al. (2023). Techno-functional and sensory characterization of commercial plant protein powders. Foods, 12(14), Article 2895. https://doi.org/10.3390/foods12142805
- Onder, S., Karaca, A. C., Ozcelik, B., Alamri, A. S., Ibrahim, S. A., Galanakis, C. M. (2023). Exploring the amino-acid composition, secondary structure, and physicochemical and functional properties of chickpea protein isolates. ACS Omega, 8(1), 1486–1495. https://doi.org/10.1021/acsomega.2c06912
- Ma, W., Qi, B., Sami, R., Jiang, L., Li, Y., Wang, H. (2018). Conformational and functional properties of soybean proteins produced by extrusion-hydrolysis approach. International Journal of Analitical Chemistry, 1–11. https://doi.org/10.1155/2018/9182508
- Martinez-Velasco, A., Lobato-Calleros, C., Hernandez-Rodriguez, B. E., Roman-Guerrero, A., Alvarez-Ramirez, J., Vernon-Carter, E. J. High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes. Ultrasonics — Sonochemistry, 44, 97–105. https://doi.org/10.1016/j.ultsonch.2018.02.007
- Tontul, İ., Kasimoglu, Z., Asik, S., Atbakan, T., Topuz, A. (2017). Functional properties of chickpea protein isolates dried by refractance window drying. International Journal of Biological Macromolecules, 109, 1253–1259. https://doi.org/10.1016/j.ijbiomac.2017.11.135
- Kolpakova, V., Gaivoronskaya I., Gulakova V., Sarjveladze А. (July 2–8, 2018). Composition on the basis of plantbased proteins with the use of transgutaminase. 18 International Multidisciplinary Scientific GeoConference SGEM. Albena, Bulgaria, 2018. https://doi.org/10.5593/sgem2018/6.2
- Yan, J., Zhao, S., Xu, X., Liu, F. (2023). Enhancing pea protein isolate functionality: A comparative study of high-pressure homogenization, ultrasonic treatment, and combined processing techniques. Current Research in Nutrition and Food Science, 8, Article 100653. https://doi.org/10.1016/j.crfs.2023.1006512
- Shevkani, K., Singh, N., Chen, Y., Kaur, A., Yu, L. (2019). Pulse proteins: Secondary structure, functionality and applications. Journal of Food Science and Technology, 56(6), 2787–2798. https://doi.org/10.1007/s13197-019-03723-8
- Shevkani, K., Singh, N., Kaur, A., Rana, J. C. (2015). Structural and functional characterization of kidney bean and field pea protein isolates: A comparative study. Food Hydrocolloids, 43, 679–689. https://doi.org/10.1016/j.foodhyd.2014.07.024
- Karaca, A. C., Low, N., Nickerson, M. (2011). Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Research International, 44(9), 2742–2750. https://doi.org/10.1016/j.foodres.2011.06.012
- Колпакова, В. В., Фан, Ч. К., Гайворонская, И. С., Чумикина, Л. В. (2023). Свойства и структурные особенности белков нативных и модифицированных концентратов из белого и коричневого риса. Пищевые системы, 6(3), 317–328. https://doi.org/10.21323/2618-9771-2023-6-3-317-328
- Flory, J., Alavi, S. (2024). Use of hydration properties of proteins to understand their functionality and tailor texture of extruded plant-based meat analogues. Journal of Food Science, 89(1), 245–258. https://doi.org/10.1111/1750-3841.16804
- Колпакова, В. В., Студенникова, О. Ю. (2009). Гидратационная способность и физико-химические свойства белков пшеничной клейковины. Известия высших учебных заведений. Пищевая технология, 2–3(308–309), 5–8.
- Ванин, С. В., Колпакова, В. В. (2007). Функциональные свойства сухой пшеничной клейковины разного качества. Известия высших учебных заведений. Пищевая технология, 1(296), 21–24.
- Колпакова, В. В., Зайцева, Л. В., Мартынова, И. В., Осипов Е. А. (2007). Белок из пшеничных отрубей: повышение выхода и функциональные свойства. Хранение и переработка сельхозсырья, 2, 23–25.
- Колпакова, В. В., Чумикина, Л. В., Арабова, Л. И. (2019). Модификация функциональных свойств белковых концентратов из белого и коричневого риса. Вестник Воронежского государственного университета инженерных технологий, 81(1), 181–189. https://doi.org/10.20914/2310-1202-2019-1-181-189
- Колпакова, В. В., Куликов, Д. С., Гулакова, В. А., Уланова, Р. В. (2023). Комплексная модификация картофельного сока с получением белковых препаратов. Пищевая промышленность, 9, 74–79. https://doi.org/10.52653/PPI.2023.9.9.013
- O′Flynn, T. D., Hogan, S. A., Daly, D. F. M., O′Mahony, J. A., McCarthy, N. A. (2021). Rheological and solubility properties of soy protein isolate. Molecules, 26(10), Article 3015. https://doi.org/10.3390/molecules26103015
- Lei, D., Li, J., Zhang, C., Li, S., Zhu, Z., Wang, F. et al. (2022). Complexation of soybean protein isolate with β-glucan and myricetin: Different affinity on 7S and 11S globulin by QCM-D and molecular simulation analysis. Food Chemistry: X, 15, Article 100426. https://doi.org/10.1016/j.fochx.2022.100426
- Kolpakova, V. V., Lukin, N. D., Gaivoronskaya, I. S. (2018). Interrelation of functional properties of protein products from wheat with the composition and physicochemical characteristics of their proteins. Chapter in a book: Global Wheat Production. London: IntechOpen, 2018. http://doi.org/10.5772/intechopen.75803
- Колпакова, В. В., Уланова, Р. В., Куликов, Д. С., Гулакова, В. А., Семёнов, Г. В., Шевякова, Л. В. (2022). Показатели качества гороховых и нутовых белковых концентратов. Техника и технология пищевых производств, 52(4), 650–664. http://doi.org/10.21603/2074-9414-2022-4-2394
- Rashwan, A. K., Osman, A. I., Abdelshafy, A. M., Mo, J., Chen, W. (2023). Plantbased proteins: Advanced extraction technologies, interactions, physicochemical and functional properties, food and related applications, and health benefits. Critical Reviews in Food Science and Nutrition, 1–28. http://doi.org/10.1080/10408398.2023.2279696
- Huang, L., Ding, X., Dai, C., Ma, H. (2017). Changes in the structure and dissociation of soybean protein isolate induced by ultrasound-assisted acid pretreatment. Food Chemistry, 232, 727–732. https://doi.org/10.1016/j.foodchem.2017.04.077
- Lu, Z. X., He, J. F., Zhang, Y. C., Bing, D. J. (2020). Composition, physicochemical properties of pea protein and its application in functional foods. Critical Reviews in Food Science and Nutrition, 60(15), 2593–2605. https://doi.org/10.1080/10408398.2019.1651248
- Singhal, A., Karaca. A. C., Tyler, R., Nickerson, M. (2016). Pulse Proteins: From processing to structure-function relationships. Chapter in a book: Grain Legumes. London: IntechOpen, 2016. https://doi.org/10.5772/64020
- Stone, A. K., Karalash, A., Tyler, R. T., Warkentin, T. D., Nickerson, M. T. (2015). Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food Research International, 76, 31–38. https://doi.org/10.1016/j.foodres.2014.11.017
- Gültekin Subaşı, B., Vahapoğlu, B., Capanoglu, E., Mohammadifar, M. A. (2022). A review on protein extracts from sunflower cake: Techno-functional properties and promising modification methods. Critical Reviews in Food Science and Nutrition, 62(24), 6682–6697. https://doi.org/10.1080/10408398.2021.1904821
- Le Priol, L., Dagmey, A., Morandat, S., Saleh, K., El Kirat, K., Nesterenko, A. (2019). Comparative study of plant protein extracts aswall materials for the improvement of the oxidative stability of sunflower oil by microencapsulation. Food Hydrocolloids, 95(2), 105–115. https://doi.org/10.1016/j.foodhyd.2019.04.026
- Albe Slabi, S., Mathe, C., Basselin, M., Framboisier, X., Ndiaye, M., Galet, O. et al. (2020). Multi-objective optimization of solid/liquid extraction of total sunflower proteins from cold press meal. Food Chemistry, 317, Article 126423. https://doi.org/10.1016/j.foodchem.2020.126423
- Malik, M. A., Saini, C. S. (2017). Polyphenol removal from sunflower seed and kernel: Effect on functional and rheological properties of protein isolates. Food Hydrocolloids, 63, 705–715. https://doi.org/10.1016/j.foodhyd.2016.10.026
- Alexandrino, T. D., Ferrari, R. A., de Oliveira, L. M., de Cássia, S. C. Ormenese, R., Pacheco, M. T. B. (2017). Fractioning of the sunflower flour components: Physical, chemical and nutritional evaluation of the fractions. LWT, 84, 426–432. https://doi.org/10.1016/j.lwt.2017.05.062
- Shen, Y., Tang, X., Li, Y. (2021). Drying methods affect physicochemical and functional properties of quinoa protein isolate. Food Chemistry, 339, Article 127823. https://doi.org/10.1016/j.foodchem.2020.127823
- Osen, R., Toelstede, S., Wild, F., Eisner, P., Schweiggert-Weisz, U. (2014). High moisture extrusion cooking of pea protein isolates: Raw material characteristics, extruder responses, and texture properties. Journal of Food Engineering, 127, 67–74. https://doi.org/10.1016/j.jfoodeng.2013.11.023
- Pietrysiak, E., Smith, D. M., Smith, B. M., Ganjyal, G. M. (2018). Enhanced functionality of pea-rice protein isolate blends through direct steam injection processing. Food Chemistry, 243, 338–344. https://doi.org/10.1016/j.foodchem.2017.09.132
- Ma, K. К., Greis, M., Lu, J., Nolden, A. A., McClements, D. I., Kinchla, A. J. (2022). Functional performance of plant proteins. Foods, 11(4), Article 594. https://doi.org/10.3390/foods11040594
- Lafarga, T., Álvarez, C., Villaró, S., Bobo, G., Aguiló-Aguayo, I. (2019). Potential of pulse-derived proteins for developing novel vegan edible foams and emulsions. International Journal of Food Science and Technology, 55(2), 475–481. https://doi.org/10.1111/ijfs.14286
- Gundogan, R., Can Karaca, A. (2020). Physicochemical and functional properties of proteins isolated from local beans of Turkey. LWT, 130, Article 109609. https://doi.org/10.1016/j.lwt.2020.109609
- Keskin, S. O., Ali, T. M., Ahmed, J., Shaikh, M., Siddiq, M., Uebersax, M. A. (2021). Physico-chemical and functional properties of legume protein, starch, and dietary fiber–A review. Legume Science, 4(1), Article e117. https://doi.org/10.1002/leg3.117
- Pasupuleti, V. K., Braun, S. (2010). State of the art manufacturing of protein hydrolysates. Chapter in a book: Protein Hydrolysates in Biotechnology. Springer Dordrecht, 2010. https://doi.org/10.1007/978-1-4020-6674-0_2
- Jeong, M.-S., Cho, S.-J. (2024). Effect of pH-shifting on the water holding capacity and gelation properties of mung bean protein isolate. Food Research International, 177, Article, 113912. https://doi.org/10.1016/j.foodres.2023.113912
- Ramani, A., Kushwaha, R., Malaviya, R., Kumar, R., Yadav, N. (2021). Molecular, functional and nutritional properties of chickpea (Cicer arietinum L.) protein isolates prepared by modified solubilization methods. Journal of Food Measurement and Characterization, 15(3), 2352–2368. https://doi.org/10.1007/s11694-020-00778-6
- Brayden, M., L. Xu, G., Barbay, G., Koros, W. (March 26–30, 2017). Impact of impurities on carbon molecular sieve membranes for applications in olefins units. Spring Meeting and 13th Global Congress on Process Safety. Henry Gonzalez Convention Center, San Antonio, 2017.
- Adebiyi, A. P., Aluko, R. E. (2011). Functional properties of protein fractions obtained from commercial yellow field pea (Pisum sativum L.) seed protein isolate. Food Chemistry, 128(4), 902–908. https://doi.org/10.1016/j.foodchem.2011.03.116
- Vélez-Erazo, E. M., Silva, I. L., Comunian, T., Kurozawa, L. E., Hubinger, M. D. (2021). Effect of chia oil and pea protein content on stability of emulsions obtained by ultrasound and powder production by spray drying. Journal of Food Science and Technology, 58(10), 3765–3779. https://doi.org/10.1007/s13197-020-04834-3
- Houde, M., Khodaei, N., Benkerroum, N., Karboune, S. (2018). Barley protein concentrates: Extraction, structural and functional properties. Food Chemistry, 254, 367–376. https://doi.org/10.1016/j.foodchem.2018.01.156
- Olagunju, A. I., Omoba, O. S., Enujiugha, V. N., Alashi, A. M., Aluko, R. E. (2018). Antioxidant properties, ACE/renin inhibitory activities of pigeon pea hydrolysates and effects on systolic blood pressure of spontaneously hypertensive rats. Food Science and Nutrition, 6(7), 1879–1889. https://doi.org/10.1002/fsn3.740
- Lam, A. C. Y., Can Karaca, A., Tyler, R. T., Nickerson, M. T. (2018). Pea protein isolates: Structure, extraction, and functionality. Food Reviews International, 34(2), 126–147. https://doi.org/10.1080/87559129.2016.1242135
- Lobanov, V. G., Slepokurova, Y. I., Zharkova, I. M., Koleva, T. N., Roslyakov, Y. F., Krasteva, A. P. (2018). Economic effect of innovative flour-based functional foods production. Foods and Raw Materials, 6(2), 474–482. https://doi.org/10.21603/2308-4057-2018-2-474-482
- Akter, D., Begum, R., Rahman, Md. N., Talukder, N., Alam, J. (2020). Optimization of extraction process parameter for rice bran protein concentrate and its utilization in high protein biscuit formulation. Current Research in Nutrition and Food Science, 8(2), 596–608. https://doi.org/10.12944/CRNFSJ.8.2.25
- Higa, F., House, J. D., Nickerson, M. T. (2023). Functionality and nutritional properties of yellow pea, green lentil, chickpea, and navy bean proteins extracted by different methods. European Food Research and Technology, 250(1), 273–286. https://doi.org/10.1007/s00217-023-04385-9
- Bajaj, P. R., Bhunia, K., Kleiner, L., Joyner (Melito), H. S., Smith, D., Ganjyal, G. et al. (2017). Improving functional properties of pea protein isolate for microencapsulation of flaxseed oil. Journal of Microencapsulation, 34(2), 218–230. https://doi.org/10.1080/02652048.2017.1317045
- Mession, J.-L., Chihi, M. L., Sok N., Saurel, R. (2015). Effect of globular pea proteins fractionation on their heat-induced aggregation and acid cold-set gelation. Food Hydrocolloids, 46, 233–243. https://doi.org/10.1016/j.foodhyd.2014.11.025
- Sun, X. D., Arntfield, S. D. (2011). Gelation properties of salt-extracted pea protein isolate induced by heat treatment: Effect of heating and cooling rate. Food Chemistry, 124(3), 1011–1016. https://doi.org/10.1016/j.foodchem.2010.07.063
- Moreno, H. M., Domínguez-Timón, F., Díaz, M. T., Pedrosa, M. M., Borderías, A. J., Tovar, C. A. (2020). Evaluation of gels made with different commercial pea protein isolate: Rheological, structural and functional properties. Food Hydrocolloids, 99(4), Article 105375. https://doi.org/10.1016/j.foodhyd.2019.105375
- Knopfe, C., Shwenke, K. D., Mothes, R., Mikheeva, L. M., Grinberg, V., Görnitz, E. et al. (1998). Acetilation and succinylated of faba bean legumin: Modification of hydrophobicity and conformation. Food/Nahrung, 42(03–04), 194–196.
- Shih, F. F., Hamada, J. S., Marshall, W. E. (1999). Deamidation and phosphorylation to improve protein functionality in foods. Chapter in a book: Molecular aapproaches to improving food quality and safety. Springer New York, NY, 1999. https://doi.org/10.1007/978-1-4684-8070-2_2
- Fang, L., Xiang, H., Sun-Waterhouse, D., Cui, C., Lin, J. (2020). Enhancing the usability of pea protein isolate in food applications through modifying its structural and sensory properties via deamidation by glutaminase. Journal of Agricultural and Food Chemistry, 68 (6), 1691–1697. https://doi.org/10.1021/acs.jafc.9b06046
- Gallart-Palau, X., Serra A., Sze, S. K. (2015). Uncovering neurodegenerative protein modifications via proteomic profiling. Chapter in a book: International Review of Neurobiology. Academic Press, 2015. https://doi.org/10.1016/bs.irn.2015.06.002
- Schwenke, K. D., Mothes, R., Dudek, S., Görnitz, E. (2000). Phosphorylation of the 12S globulin from rapeseed (Brassica napus L.) by phosphorous oxychloride: Chemical and conformational aspects. Journal of Agricultural and Food Chemistry, 48(3), 708–715. https://doi.org/10.1021/jf9907900
- Liu, Y., Wang, D., Wang, J., Yang, Y., Zhang, L., Li, J., et al. (2019). Functional properties and structural characteristics of phosphorylated pea protein isolate. International Journal of Food Science and Technology. https://doi.org/10.1111/ijfs.14391
- Nikbakht Nasrabadi, M., Sedaghat Doost, A., Mezzenga, R. (2021). Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocolloids, 118, Article 106789. https://doi.org/10.1016/j.foodhyd.2021.106789
- Ma, W., Wang, T., Wang, J., Wu, D., Wu, C., Du, M. (2020). Enhancing the thermal stability of soy proteins by preheat treatment at lower protein concentration. Food chemistry, 306, Article 125593. https://doi.org/10.1016/j.foodchem.2019.125593
- Zhao, M., Xiong, W., Chen, B., Zhu, J., Wang, L. (2020). Enhancing the solubility and foam ability of rice glutelin by heat treatment at pH12: Insight into protein structure. Food Hydrocolloids, 103. Article 105626. https://doi.org/10.1016/j.foodhyd.2019.105626
- Mir, N. A., Riar, C. S., Singh, S. (2020). Сtructural modification in album (Chenopodium album) protein isolates due to controlled thermal modification and its relationship with protein digestibility and its relationship with protein digestibility and functionality. Food Hydrocolloids, 103, Article 105708. https://doi.org/10.1016/j.foodhyd.2020.105708
- Bühler, J. M., Dekkers, B. L., Bruins, M. E., van der Goot, A. J. (2020). Modifying faba bean protein concentrate using dry heat to increase water holding capacity. Foods, 9(8), Article 1077. https://doi.org/10.3390/foods9081077
- Ling, B., Cheng, T., Wang, S. (2019). Recent developments in applications of radio frequency heating for improving safety and quality of food grains and their products: A review. Critical Reviews in Food Science and Nutrition, 60(15), 2622– 2642. https://doi.org/10.1080/10408398.2019.1651690
- Guo, C., Wang, X., Wang, Y. (2018). Dielectric properties of soy protein isolate dispersion and its temperature profile during radio frequency heating. Journal of Food Processing and Preservation, 42(7), Article e13659. https://doi.org/10.1111/jfpp.13659
- Ling, B., Ouyang, S., Wang, S. (2019). Effect of radio frequency treatment on functional, structural and thermal behaviors of protein isolates in rice bran. Food Chemistry, 289, 537–544. https://doi.org/10.1016/j.foodchem.2019.03.072
- Hassan, A. B., von Hoersten, D., Mohamed Ahmed, I. A. (2019). Effect of radio frequency heat treatment on protein profile and functional properties of maize grain. Food Chemistry, 271, 142–147. https://doi.org/10.1016/j.foodchem.2018.07.190
- Moll, P., Salminen, H., Schmitt, C., Weiss, J. (2021). Impact of microfluidization on colloidal properties of insoluble pea protein fractions. European Food Research and Technology, 247(3), 545–554. https://doi.org/10.1007/s00217-020-03629-2
- Vall-llosera, M., Jessen, F., Henriet, P., Marie, R., Jahromi, M., Sloth, J. J. (2021). Physical stability and interfacial properties of oil in water emulsion stabilized with pea protein and fish skin gelatin. Food Biophysics, 16(1), 139–151. https://doi.org/10.1007/s11483-020-09655-7
- Asif, M. N., Imran, M., Ahmad, M. H., Khan M. K., Hailu, G. G. (2024). Physicochemical and functional properties of Moringa seed potein treated with ultrasound. ACS Omega, 9(3), 4102–4110. https://doi.org/10.1021/acsomega.3c09323
- Yao, G., Guo, Y., Cheng, T., Wang, Z., Li, B., Xia, C. et al. (2022). Effect of γ-irradiation on the physicochemical and functional properties of rice protein. Food Science and Technology (Campinas), 42(1), Article e12422. http://dx.doi.org/10.1590/fst.12422
- Helmick, H., Rodriguez, N., Kokini, J. L. (2023). Utilization of creep ringing and bioinformatic modelling in study of cold denatured pea protein emulsions. Innovative Food Science and Emerging Technologies, 88, Article 103420. https://doi.org/10.1016/j.ifset.2023.103420
- Zhang, Z., Zhang, L., He, S., Li, X., Jin, R., Liu, Q. et al. (2023). High-moisture extrusion technology application in the processing of textured plant protein meat analogues: A review. Food Reviews International, 39(8), 4873–4908. http://doi.org/10.1080/87559129.2021.2024223
- Meng, X.-Y., Zhu, X.-Q., An, H.-Z., Yang, J.-F., Dai, H.-H. (2023). Study on the relationship between raw material characteristics of soybean protein concentrate and textured vegetable protein quality. Food Science Technology (Campinas), 43(2), Article e121822. https://doi.org/10.1590/fst.121822
- Kyriakopoulou, K., Dekkers, B., van der Goot, A. J. (2019). Plant-based meat analogues. Chapter in a book: Sustainable Meat Production and Processing, Cambridge: Academic Press, 2019. http://dx.doi.org/10.1016/B978-0-12-814874-7.00006-7
- Liu, Y., Huang, Z.-H., Hu, Z.-X., Yu, Z., An, H.-Z. (2022). Texture and rehydration properties of texturised soy protein: analysis based on soybean 7S and 11S proteins. International Journal of Food Science and Technology, 58(1), 323–333. https://doi.org/10.1111/ijfs.15787
- Samard, S., Ryu, G.-H. (2019). Physicochemical and functional characteristics of plant protein-based meat analogs. Journal of Food Processing and Preservation, 43(2), Article 14123. https://doi.org/10.1111/jfpp.14123
- Semenova, M. (2017). Protein-polysaccharide associative interactions in the design of tailor-made colloidal particles. Current Opinion in Colloid and Interface Science, 28, 15–21. https://doi.org/10.1016/j.cocis.2016.12.003
- Liu, S., Low, N. H., Nickerson, M. T. (2009). Effect of pH, salt, and biopolymer ratio on the formation of pea protein isolate-gum Arabic complexes. Journal of Agricultural and Food Chemistry, 57(4), 1521–1506. https://doi.org/10.1021/jf802643n
- Klemmer, K. J., Waldner, L., Stone, A., Low, N. H., Nickerson, M. T. T. (2012). Complex coacervation of pea protein isolate and alginate polysaccharides. Food Chemistry, 130(3), 710–715. https://doi.org/10.1016/j.foodchem.2011.07.114
- Lan, Y., Chen, B., Rao, J. (2018). Pea protein isolate–high methoxyl pectin soluble complexes for improving pea protein functionality: Effect of pH, biopolymer ratio and concentrations. Food Hydrocolloids, 80, 245–253. https://doi.org/10.1016/j.foodhyd.2018.02.021
- Yekta, R., Assadpour, E., Hosseini, H., Jafari, S. M. (2023). The influence of ionic polysaccharides on the physicochemical and techno-functional properties of soy proteins; a comprehensive review. Carbohydrate Polymers, 319, Article 21191. https://doi.org/10.1016/j.carbpol.2023.121191
- Silva, F. G., Passerini, A. B. S., Ozorio, L., Picone, C. S. F., Perrechil, F. A. (2024). Interactions between pea protein and gellan gum for the development of plantbased structures. International Journal of Biological Macromolecules, 255, Article 128113. https://doi.org/10.1016/j.ijbiomac.2023.128113
- Lopes-da-Silva, J. A., Monteiro, S. R. (2019). Gelling and emulsifying properties of soy protein hydrolysates in the presence of a neutral polysaccharide. Food Chemistry, 294, 216–223. https://doi.org/10.1016/j.foodchem.2019.05.039
- Beniwal, A. S., Singh, J., Kaur, L., Hardacre, A., Singh, H. (2021). Meat analogs: Protein restructuring during thermomechanical processing. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1221–1249. https://doi.org/10.1111/1541-4337.12721
- Florowska, A., Hilal, A., Florowski, T., Wroniak, M. (2020). Addition of selected plant-derived proteins as modifiers of inulin hydrogels properties. Foods, 9(7), Article 845. https://doi.org/10.3390/foods9070845
- Salles, J., Gueugneau, M., Patrac, V., Malnero-Fernandez, C., Guillet, C., Le Bacquer, O. et al. (2023). Associating inulin with a pea protein improves fast-twitch skeletal muscle mass and muscle mitochondrial activities in old rats. Nutrients, 15(17), Article 3766. https://doi.org/10.3390/nu15173766
- Maumela, P., van Rensbur., E., Chimphango, A. F. A., Görgens, J. F. (2020). Sequential extraction of protein and inulin from the tubers of Jerusalem artichoke (Helianthus tuberosus L.). Journal of Food Science and Technology, 57(2), 775–786. https://doi.org/10.1007/s13197-019-04110-z
- Strasser, R. (2016). Plant protein glycosylation. Glycobiology, 26(9), 926–939. https://doi.org/10.1093/glycob/cww023
- Zhao, C., Yin, H., Yan, J., Qi, B., Liu, J. (2020). Structural and physicochemical properties of soya bean protein isolate/maltodextrin mixture and glycosylation conjugates. International Journal of Food Science and Technology, 55(10), 3315– 3326. https://doi.org/10.1111/ijfs.14595
- Abe, R., Matsukaze, N., Kobayashi, H., Yamaguchi, Y., Uto-Kondo, H., Kumagai, H. et al. (2020). Allergenicity of deamidated and/or peptide-bond-hydrolyzed wheat gliadin by transdermal administration. Foods, 9(5), Article 635. https://doi.org/10.3390/foods9050635
- Klost, M., Drusch, S. (2019). Functionalisation of pea protein by tryptic hydrolysis — characterisation of interfacial and functional properties. Food Hydrocolloids, 86(1), 134–140. https://doi.org/10.1016/j.foodhyd.2018.03.013
- Brückner-Gühmann, M., Heiden-Hecht, T., Sözer, N., Drusch, S. (2018). Foaming characteristics of oat protein and modification by partial hydrolysis. European Food Research and Technology, 244(12), 2095–2106. https://doi.org/10.1007/s00217-018-3118-0
- Tamm, F., Herbst, S., Brodkorb, A., Drusch S. (2016). Functional properties of pea protein hydrolysates in emulsions and spray-dried microcapsules. Food Hydrocolloids, 58, 204–214. https://doi.org/10.1016/j.foodhyd.2016.02.032
- García Arteaga, V., Apéstegui Guardia, M., Muranyi, I., Eisner, P., Schweiggert-Weisz, U. (2020). Effect of enzymatic hydrolysis on molecular weight distribution, techno-functional properties and sensory perception of pea protein isolates. Innovative Food Science and Emerging Technologies, 65, Article 102449. https://doi.org/10.1016/j.ifset.2020.102449
- Eckert, E., Han, J., Swallow, K., Tian, Z., Jarpa-Parra, M., Chen, L. (2019). Effects of enzymatic hydrolysis and ultrafiltration on physicochemical and functional properties of faba bean protein. Cereal Chemistry, 96(4), 725–741. https://doi.org/10.1002/cche.10169
- Barać, M., Čabrilo, S., Pešić, M., Stanojević, S., Pavlićević, M., Maćej, O. et al. (2011). Functional properties of pea (Pisum sativum, L.) protein isolates modified with chymosin. International Journal of Molecular Sciences, 12(12), 8372– 8387. https://doi.org/10.3390/ijms12128372
- Лозовский, И. В. Орлова, Т. В. (13–15 июля 2022). Модификация функциональных свойств белков гороха (Pisum sativum l.). Сборник докладов IV Международной научно-практической конференции «Проблемы и перспективы научно-инновационного обеспечения агропромышленного комплекса регионов». Курск, 2022.
- Cruz-Chamorro, I., Santos-Sánchez, G., Álvarez-López, A. I., Pedroche, J., Lardone, P. J., Arnoldi, A. et al. (2023). Pleiotropic biological effects of Lupinus spp. protein hydrolysates. Trends in Food Science and Technology. 133, 244–266 https://doi.org/10.1016/j.tifs.2023.02.011
- Esfandi, R., Willmore, W. G., Tsopmo, A. (2019). Peptidomic analysis of hydrolyzed oat bran proteins and their in vitro antioxidant and metal chelating properties. Food Chemistry, 279, 49–57. https://doi.org/10.1016/j.foodchem.2018.11.110
- Chen, L., Chen, J., Yu, L., Wu, K., Zhao, M. (2018). Emulsification performance and interfacial properties of enzymically hydrolyzed peanut protein isolate pretreated by extrusion cooking. Food Hydrocolloids, 77, 607–616. https://doi.org/10.1016/j.foodhyd.2017.11.002
- Schlegel, K., Leidigkeit, A., Eisner, P., Schweiggert–Weisz, U. (2019). Technofunctional and sensory properties of fermented lupin protein isolates. Foods, 8(12), Article 678. https://doi.org/10.3390/foods8120678
- Балабан, Н. П., Шарипова, М. Р. (2011). Практическое применение бациллярных протеаз. Ученые записки Казанского университета. Серия Естественные науки. 153(2), 29–40. [Balaban, N. P., Sharipova, M. R. (2011). Practical application of bacilli proteases. Proceedings of Kazan University. Natural Sciences Series, 153(2), 29–40. (In Russian)]
- Колпакова, В. В., Чумикина, Л. В., Васильев, А. В., Арабова, Л. И., Топунов, А. Ф. (2011). Особенности действия эндо- и экзопротеиназных ферментных препаратов на белки пшеничной клейковины. Биотехнология, 3, 63–73.
- Felix, M., Cermeño, M., FitzGerald, R. J. (2020). Influence оf hydrolysis оn the bioactive properties and stability of chickpea–protein–based o/w emulsions. Journal of Agricultural and Food Chemistry, 68(37), 10118–10127. https://doi.org/10.1021/acs.jafc.0c02427
- Liu, X., Wang, C., Zhang, X., Zhang, G., Zhou, J., Chen, J. (2022). Application prospect of protein-glutaminase in the development of plant-based protein. Foods, 11(3), Article 440. https://doi.org/10.3390/foods11030440
- Zheng, N., Long, M., Zhang, Z., Zan. Q., Osire, T., Zhou, H. et al. (2022). Proteinglutaminase engineering based on isothermal compressibility perturbation for enhanced modification of soy protein usolate. Journal of Agricultural and Food Chemistry, 70(43), 13969–13978. https://doi.org/10.1021/acs.jafc.2c06063
- Qu, R., Zhu, X., Tian, M., Liu, Y., Yan, W., Ye, J. et al. (2018). Complete genome sequence and characterization of a protein–glutaminase producing strain, Chryseobacterium proteolyticum QSH1265. Frontiers in Microbiology, 9, Article 1975. https://doi.org/10.3389/fmicb.2018.01975
- Amobonye, A., Singh, S., Pillai, S. (2019). Recent advances in microbial glutaminase production and applications–a concise review. Critical Reviews in Biotechnology, 39(7), 944–963. https://doi.org/10.1080/07388551.2019.1640659
- Kumagai, H., Urade, R. (2019). Deamidation of gluten proteins as a tool for improving the properties of bread. Chapter in a book: Flour and breads and their fortification in health and disease prevention. Academic Press, 2019. https://doi.org/10.1016/B978-0-12-814639-2.00001-0
- Chen, X., Fu, W., Luo, Y., Cui, C., Suppavorasatit, I., Liang, L. (2021). Protein deamidation to produce processable ingredients and engineered colloids for emerging food applications. Comprehensive Reviews in Food Science and Food Safety, 20(4), 3788–3817. https://doi.org/10.1111/1541-4337.12759
- Moreno, H. M., Tovar, C. A., Domínguez-Timón, F., Cano-Báez, J., Díaz, M. T., Pedrosa, M. M. et al. (2020). Gelation of commercial pea protein isolate: Effect of microbial transglutaminase and thermal processing. Food Science and Technology (Campinas), 40(4), 800–809. http://dx.doi.org/10.1590/fst.19519
- Yaputri, B. P., Feyzi, S., Ismail, B. P. (2023). Transglutaminase-induced polymerization of pea and chickpea protein to enhance functionality. Gels, 10(1), Article 11. http://dx.doi.org/10.3390/gels10010011
- Masiá, C., Ong, L., Logan, A., Stockmann, R., Gambetta, J., Jensen, P. et al. (2023). Enhancing the textural and rheological properties of fermentationinduced pea protein emulsion gels with transglutaminase. Soft Matter, 20(1), 133–143. https://doi.org/10.1039/D3SM01001E
- Zhang, J., Li, T., Chen, Q., Liu, H., Kaplan, D. L., Wang, Q. (2023). Application of transglutaminase modifications for improving protein fibrous structures from different sources by high-moisture extruding. Food Research International, 166(2), Article 112623. https://doi.org/10.1016/j.foodres.2023.112623
- Redd, A. J., Pike, O. A., Ahlborn, G. J. (2023). Effects of microbial transglutaminase on gluten-free sourdough bread structure and loaf characteristics. Journal of Cereal Science, 115(10), Article 103833. https://doi.org/10.1016/j.jcs.2023.103833
- Shen, Y., Hong, S., Li, Y. (2022). Pea protein composition, functionality, modification, and food applications: A review. Advances in Food and Nutrition Research, 101, 71–127. https://doi.org/10.1016/bs.afnr.2022.02.002
- Fernández Sosa, E. I., Chaves, M. G., Quiroga, A. V., Avanza, M. V. (2021). Comparative study of structural and physicochemical properties of pigeon pea (Cajanus cajan L.) protein isolates and its major protein fractions. Plant Foods for Human Nutrition, 76(1), 37–45. https://doi.org/10.1007/s11130-020-00871-7
- Lei, D., Li, J., Zhang, C., Li, S., Zhu, Z., Wang, F. et al. (2022). Complexation of soybean protein isolate with β-glucan and myricetin: Different affinity on 7S and 11S globulin by QCM-D and molecular simulation analysis. Food Chemistry: X, 15(3), Article 100426. https://doi.org/10.1016/j.fochx.2022.100426
- Feng, X., Wu, X., Gao, T., Geng, M., Teng, F., Li, Y. (2024). Revealing the interaction mechanism and emulsion properties of carboxymethyl cellulose on soy protein isolate at different pH. Food Hydrocolloids, 150(4), Article 109739. https://doi.org/10.1016/j.foodhyd.2024.109739
- Soto–Madrid, D., Pérez, N., Gutiérrez-Cutiño, M., Matiacevich, S., Zúñiga, R. N. (2023). Structural and physicochemical characterization of extracted proteins fractions from chickpea (Cicer arietinum L.) as a potential food ingredient to replace ovalbumin in foams and emulsions. Polymers, 1(15), Article 110. https://doi.org/10.3390/polym15010110
- Chang, L., Lan, Y., Bandillo, N., Ohm, J.-B., Chen, B., Rao, J. (2021). Plant proteins from green pea and chickpea: Extraction, fractionation, structural characterization and functional properties. Food Hydrocolloids, 123(20), Article 107165. https://doi.org/10.1016/j.foodhyd.2021.107165
- Verkempinck, S. H. E., Duijsens, D., Mukherjee, A., Wilde, P. J. (2024). Pea protein extraction method impacts the protein (micro)structural organisation and in vitro digestion kinetics. Food and Function, 15(20), 953–966. https://doi.org/10.1039/D3FO04225A
- GopikaJayaprakash, Chawla, P., Sridhar, K., Bains, A. (2023). Interactions of legume phenols-rice protein concentrate towards improving vegan food quality: Development of a protein–phenols enriched fruit smoothie. Food Research International, 171(1), Article 113075. https://doi.org/10.1016/j.foodres.2023.113075
Supplementary files
