Active-adaptive construction project management system based on self-organizing maps for optimization of architectural and structural solutions

Cover Page

Cite item

Full Text

Abstract

This research focuses on developing and implementing an active-adaptive construction project management system based on Kohonen Self-Organizing Maps (SOM) technology. The high variability of architectural and structural solutions, complex design dynamics, and multifactorial engineering calculations in modern construction necessitate creating flexible automated management systems capable of self-regulation. The research methodology integrates cluster analysis of design characteristics, multidimensional topological mapping of structural elements, and neural network analysis using SOM algorithms. The empirical base encompasses data from 38 construction projects of various scales during 2019-2023, with a total area exceeding 4.3 million square meters. Results demonstrate a 36.4% reduction in design documentation development time, 21.7% decrease in structural material consumption, and 17.3% improvement in building energy efficiency. A strong correlation (r=0.83) was established between the degree of structural solution optimization and economic efficiency of construction projects. The developed system provides dynamic visualization of multi-parameter design solution structures, enabling real-time identification of critical contradictions and preventive correction of potentially problematic structural nodes. The research significance is confirmed by multifactorial economic implementation efficiency (ROI=2.7) and substantial reduction in construction timeframes (average 14.6%).

About the authors

Yu. V Zabaykin

Gubkin Russian State University of Oil and Gas

Email: 89264154444@yandex.ru

A. A Romanova

Russian State Agrarian University – Moscow Agricultural Academy named after K.A. Timiryazev; Russian Biotechnological University (ROSBIOTECH)

Email: romanovargaymsha@mail.ru
ORCID iD: 0000-0001-8405-0715

Yu. N Katkov

Russian State Agrarian University – Moscow Agricultural Academy named after K.A. Timiryazev

Email: kun95@yandex.ru
ORCID iD: 0000-0001-5258-1343

A. Yu Fomin

Russian State Agrarian University – Moscow Agricultural Academy named after K.A. Timiryazev

Email: sachafomin@mail.ru
ORCID iD: 0000-0001-8333-9015

A. S Apatenko

Russian State Agrarian University – Moscow Agricultural Academy named after K.A. Timiryazev

Email: a.apatenko@rgau-msha.ru
ORCID iD: 0000-0002-2492-9274

References

  1. Fediuk R., Amran M., Klyuev S., Klyuev A. Increasing the performance of a fiber-reinforced concrete for protective facilities. Fibers. 2021. 9 (11). 64.
  2. Klyuev S., Fediuk R., Ageeva M., Fomina E., Klyuev A., Shorstova E., Sabitov L., Radaykin O., Anciferov S., Kikalishvili D., de Azevedo Afonso R.G., Vatin N. Technogenic fiber wastes for optimizing concrete. Materials. 2022. 15 (14). P. 5058.
  3. Amran M., Fediuk R., Klyuev S., Qader D.N. Sustainable development of basalt fiber-reinforced high-strength eco-friendly concrete with a modified composite binder. Case Studies in Construction Materials. 2022. 17. e01550.
  4. Davenport T.H. Process Innovation: Reengineering Work Through Information Technology. Harvard Business School Press, 2013. 352 p.
  5. Hammer M., Champy J. Reengineering the Corporation: A Manifesto for Business Revolution. Nicholas Brealey Publishing, 2014. 272 p.
  6. Weske M. Business Process Management: Concepts, Languages, Architectures. Springer, 2019. 417 p.
  7. Dumas M., La Rosa M., Mendling J., Reijers H.A. Fundamentals of Business Process Management. Springer, 2018. 546 p.
  8. van der Aalst W.M.P. Process Mining: Data Science in Action. Springer, 2016. 467 p.
  9. Bosikov I.I., Klyuev R.V., Silaev I.V., Stas G.V. Comprehensive assessment of formalized ventilation difficultly and technological processes in coal mines. Sustainable Development of Mountain Territories. 2023. 15 (3). P. 516 – 527. doi: 10.21177/1998-4502-2023-15-3-516-527.
  10. Kulikova E.Yu., Balovtsev S.V., Skopintseva O.V. Geoecological monitoring during mining operations. Sustainable Development of Mountain Territories. 2024. 16 (2). P. 580 – 588. https://doi.org/10.21177/1998-4502-2024-16-2-580-588
  11. Kachurin N.M., Stas G.V., Prokhorov D.O., Gavrina O.A. Selection of technologies and directions for reducing the technogenic impact of mineral formations on the environment. Sustainable Development of Mountain Territories. 2024. 16 (1). P. 283 – 291. doi: 10.21177/1998-4502-2024-16-1-283-291
  12. Mavromatidis L. Constructal thermodynamics and its semantic ontology in autopoietic, digital, and computational architectural and urban space open systems. BioSystems. 249. 2025. 105404.
  13. Tao Yu, Haixu Ding, and Junfei Qiao. Ensemble self-organizing recursive neural network for modeling furnace temperature in municipal solid waste incineration. Applied Soft Computing. 178. 2025. 113170.
  14. Skibniewski M.J., Ghosh S. Determination of Key Performance Indicators with Enterprise Resource Planning Systems in Engineering Construction Firms. Journal of Construction Engineering and Management. 2009. 135 (10). P. 965 – 978. doi: 10.1061/(ASCE)0733-9364(2009)135:10(965)
  15. Sacks R., Eastman C., Lee G., Teicholz P. BIM Handbook: A Guide to Building Information Modeling for Owners, Designers, Engineers, Contractors, and Facility Managers. Wiley, 2018. 688 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).