Photocatalysts based on Zn-Ti layered double hydroxide and its calcination products for self-cleaning concretes: Structure formation and photocatalytic activity
- Authors: Balykov A.S1, Nizina T.A1, Chugunov D.B1, Davydova N.S1, Kyashkin V.M1
-
Affiliations:
- National Research Mordovia State University
- Issue: Vol 8, No 1 (2025)
- Pages: 23-39
- Section: Articles
- URL: https://ogarev-online.ru/2618-7183/article/view/379621
- DOI: https://doi.org/10.58224/2618-7183-2025-8-1-2
- ID: 379621
Cite item
Full Text
Abstract
About the authors
A. S Balykov
National Research Mordovia State University
ORCID iD: 0000-0001-9087-1608
T. A Nizina
National Research Mordovia State University
ORCID iD: 0000-0002-2328-6238
D. B Chugunov
National Research Mordovia State University
ORCID iD: 0000-0002-1612-0539
N. S Davydova
National Research Mordovia State University
ORCID iD: 0009-0008-9409-682X
V. M Kyashkin
National Research Mordovia State University
ORCID iD: 0000-0002-3413-247X
References
- Khan K., Johari M.A.M., Amin M.N., Nasir M. Development and evaluation of basaltic volcanic ash based high performance concrete incorporating metakaolin, micro and nano-silica. Developments in the Built Environment. 2024. 17. Art. no. 100330. https://doi.org/10.1016/j.dibe.2024.100330
- Tayeh B.A., Akeed M.H., Qaidi S., Bakar B.H.A. Ultra-high-performance concrete: Impacts of steel fibre shape and content on flowability, compressive strength and modulus of rupture. Case Studies in Construction Materials. 2022. 17. Art. no. e01615. https://doi.org/10.1016/j.cscm.2022.e01615
- Klyuev S., Fediuk R., Ageeva M., Fomina E., Klyuev A., Shorstova E., Zolotareva S., Shchekina N., Shapovalova A., Sabitov L. Phase formation of mortar using technogenic fibrous materials. Case Studies in Construction Materials. 2022. 16. P. e01099.
- Nizina T.A., Balykov A.S., Korovkin D.I., Volodin V.V. Physical and mechanical properties of modified fine-grained fibre-reinforced concretes containing carbon nanostructures. International Journal of Nanotechnology. 2019. 16. P. 496 – 509. https://doi.org/10.1504/IJNT.2019.106621
- Fediuk R., Amran M., Klyuev S., Klyuev A. Increasing the performance of a fiber-reinforced concrete for protective facilities. Fibers. 2021. 9 (11). Art. no. 64. https://doi.org/10.3390/fib9110064
- Balykov A.S., Nizina T.A., Volodin S.V. Optimization of technological parameters for obtaining mineral additives based on calcined clays and carbonate rocks for cement systems. Nanotechnologies in Construction. 2022. 14 (2). P. 145 – 155. https://doi.org/10.15828/2075-8545-2022-14-2-145-155
- Klyuev S., Fediuk R., Ageeva M., Fomina E., Klyuev A., Shorstova E., Sabitov L., Radaykin O., Anciferov S., Kikalishvili D., de Azevedo Afonso R.G., Vatin N. Technogenic fiber wastes for optimizing concrete. Materials. 2022. 15 (14). P. 5058.
- Balykov A.S., Nizina T.A., Kyashkin V.M., Volodin S.V. Evaluation of the effectiveness of mineral additives in cement systems in the development of “core – shell” photocatalytic compositions. Nanotechnologies in Construction. 2022. 14 (5). P. 405 – 418. https://doi.org/10.15828/2075-8545-2022-14-5-405-418
- Amor F., Baudys M., Racova Z., Scheinherrová L., Ingrisova L., Hajek P. Contribution of TiO2 and ZnO nanoparticles to the hydration of Portland cement and photocatalytic properties of High Performance Concrete. Case Studies in Construction Materials. 2022. 16. Art. no. e00965. https://doi.org/10.1016/j.cscm.2022.e00965
- Balykov A.S., Nizina T.A., Kyashkin V.M., Chugunov D.B. Siliceous rocks as modifiers of structure of photocatalytic self-cleaning concrete. Impact assessment on phase composition of cement stone. Nanotechnologies in Construction. 2024. 16 (2). P. 158 – 169. https://doi.org/10.15828/2075-8545-2024-16-2-158-169
- Janczarek M., Klapiszewski Ł., Jędrzejczak P., Klapiszewska I., Ślosarczyk A., Jesionowski T. Progress of functionalized TiO2-based nanomaterials in the construction industry: A comprehensive review. Chemical Engineering Journal. 2022. 430 (3). Art. no. 132062. https://doi.org/10.1016/j.cej.2021.132062
- Yang L., Hakki A., Wang F., Macphee D.E. Photocatalyst efficiencies in concrete technology: The effect of photocatalyst placement. Applied Catalysis B: Environmental. 2018. 222. P. 200 – 208. https://doi.org/10.1016/j.apcatb.2017.10.013
- Amran M., Fediuk R., Klyuev S., Qader D.N. Sustainable development of basalt fiber-reinforced high-strength eco-friendly concrete with a modified composite binder. Case Studies in Construction Materials. 2022. 17. e01550.
- Klyuev S., Klyuev A., Fediuk R., Ageeva M., Fomina E., Amran M., Murali G. Fresh and mechanical properties of low-cement mortars for 3D printing. Construction and Building Materials. 2022. № 338. P. 127644. doi: 10.1016/j.conbuildmat.2022.127644
- Janani F.Z., Khiar H., Taoufik N., Elhalil A., Sadiq M., Puga A.V., Mansouri S., Barka N. ZnO–Al2O3–CeO2–Ce2O3 mixed metal oxides as a promising photocatalyst for methyl orange photocatalytic degradation. Materials Today Chemistry. 2021. 21. Art. no. 100495. https://doi.org/10.1016/j.mtchem.2021.100495
- Al Miad A., Saikat S.P., Alam Md.K., Hossain Md. S., Bahadur N.M., Ahmed S. Metal oxide-based photocatalysts for the efficient degradation of organic pollutants for a sustainable environment: a review. Nanoscale Advances. 2024. 6 (19). P. 4781 – 4803. https://doi.org/10.1039/d4na00517a
- Peng D., Zhang Y. Engineering of mixed metal oxides photocatalysts derived from transition-metal-based layered double hydroxide towards selective oxidation of cyclohexane under visible light. Applied Catalysis A: General. 2023. 653. Art. no. 119067. https://doi.org/10.1016/j.apcata.2023.119067
- Jiménez A., Trujillano R., Rives V., Vicente M.A. Mixed–metal–oxide photocatalysts generated by high–temperature calcination of CaAlFe, hydrocalumite–LDHs prepared from an aluminum salt–cake. Catalysis Today. 2023. 423. Art. no. 114008. https://doi.org/10.1016/j.cattod.2023.01.015
- Boumeriame H., Da Silva E.S., Cherevan A.S. Layered double hydroxide (LDH)-based materials: A mini-review on strategies to improve the performance for photocatalytic water splitting. Journal of Energy Chemistry. 2022. 64. P. 406 – 431. https://doi.org/10.1016/j.jechem.2021.04.050
- Yang Z.Z., Zhang C., Zeng G.M., Tan X.F., Huang D.L., Zhou J.W., Fang Q.Z., Yang K.H., Wang H., Wei J., Nie K. State-of-the-art progress in the rational design of layered double hydroxide based photocatalysts for photocatalytic and photoelectrochemical H2/O2 production. Coordination Chemistry Reviews. 2021. 446. Art. no. 214103. https://doi.org/10.1016/j.ccr.2021.214103
- Taoufik N., Sadiq M., Abdennouri M., Qourzal S., Khataee A., Sillanpää M., Barka N. Recent advances in the synthesis and environmental catalytic applications of layered double hydroxides-based materials for degradation of emerging pollutants through advanced oxidation processes. Materials Research Bulletin. 2022. 154. Art. no. 111924. https://doi.org/10.1016/j.materresbull.2022.111924
- Seftel E.M., Niarchos M., Vordos N., Nolan J.W., Mertens M., Mitropoulos A.Ch., Vansant E.F., Cool P. LDH and TiO2/LDH-type nanocomposite systems: A systematic study on structural characteristics. Microporous and Mesoporous Materials. 2015. 203. P. 208 – 215. https://doi.org/10.1016/j.micromeso.2014.10.029
- Ludvíková J., Jirátová K., Kovanda F. Mixed oxides of transition metals as catalysts for total ethanol oxidation. Chemical Papers. 2012. 66 (6). P. 589 – 597. https://doi.org/10.2478/s11696-011-0127-x
- Al-Aani H.M.S., Trandafir M.M., Fechete I., Leonat L.N., Badea M., Negrilă C., Popescu I., Florea M., Marcu, I.-C. Highly Active Transition Metal-Promoted CuCeMgAlO Mixed Oxide Catalysts Obtained from Multicationic LDH Precursors for the Total Oxidation of Methane. Catalysts. 2020. 10 (6). Art. no. 613. https://doi.org/10.3390/catal10060613
- Puscasu C.M., Seftel E.M., Mertens M., Cool P., Carja G. ZnTiLDH and the Derived Mixed Oxides as Mesoporous Nanoarchitectonics with Photocatalytic Capabilities. Journal of Inorganic and Organometallic Polymers and Materials. 2015. 25. P. 259 – 266. https://doi.org/10.1007/s10904-014-0132-y
- Sahu R.K., Mohanta B.S., Das N.N. Synthesis, characterization and photocatalytic activity of mixed oxides derived from ZnAlTi ternary layered double hydroxides. Journal of Physics and Chemistry of Solids. 2013. 74 (9). P. 1263 – 1270. https://doi.org/10.1016/j.jpcs.2013.04.002
- Bukhtiyarova M.V., Bulavchenko O.A., Bukhtiyarov A.V., Nuzhdin A.L., Bukhtiyarova G.A. Selective Hydrogenation of 5-Acetoxymethylfurfural over Cu-Based Catalysts in a Flow Reactor: Effect of Cu-Al Layered Double Hydroxides Synthesis Conditions on Catalytic Properties. Catalysts. 2022. 12 (8). Art. no. 878. https://doi.org/10.3390/catal12080878
- Bulyga D.V., Evstropiev S.K. Kinetics of adsorption and photocatalytic decomposition of a diazo dye by nanocomposite ZnO–MgO. Optics and Spectroscopy. 2022. 130 (9). P. 1176. https://doi.org/10.21883/eos.2022.09.54839.3617-22
- Syuleiman Sh.A., Yakushova N.D., Pronin I.A., Kaneva N.V., Bojinova A.S., Papazova K.I., Gancheva M.N., Dimitrov D.Tz., Averin I.A., Terukov E.I., Moshnikov V.A. Study of the photodegradation of brilliant green on mechanically activated powders of zinc oxide. Technical Physics. 2017. 62 (11). P. 1709 – 1713. https://doi.org/10.1134/S1063784217110287
- Man H., Wen C., Luo W., Bian J., Wang W., Li C. Simultaneous deSOx and deNOx of marine vessels flue gas on ZnO-CuO/rGO: Photocatalytic oxidation kinetics. Journal of Industrial and Engineering Chemistry. 2020. 92. P. 77 – 87. https://doi.org/10.1016/j.jiec.2020.08.022
- Fatimah I., Yahya A., Iqbal R.M., Tamyiz M., Doong R.-a., Sagadevan S., Oh W.-C. Enhanced Photocatalytic Activity of Zn-Al Layered Double Hydroxides for Methyl Violet and Peat Water Photooxidation. Nanomaterials. 2022. 12 (10). Art. no. 1650. https://doi.org/10.3390/nano12101650
- Irani M., Mohammadi T., Mohebbi S. Photocatalytic Degradation of Methylene Blue with ZnO Nanoparticles; a Joint Experimental and Theoretical Study. Journal of the Mexican Chemical Society. 2016. 60 (4). P. 218 – 225.
- Khamizov R.Kh. A Pseudo-Second Order Kinetic Equation for Sorption Processes. Russian Journal of Physical Chemistry A. 2020. 94 (1). P. 171 – 176. https://doi.org/10.1134/S0036024420010148
Supplementary files
