Структурные и филологические особенности текстовых генеративных нейронных сетей

Обложка

Цитировать

Полный текст

Аннотация

ВВЕДЕНИЕ. Исследование особенностей текстовых генеративных нейронных сетей является важным шагом в развитии искусственного интеллекта. Несмотря на то, что модели показали высокую эффективность в решении различных задач в сфере журналистики и медиакоммуникаций, они имеют ряд недостатков. В процессе работы с нейросетями можно встретить как грубые грамматические, так и смысловые ошибки. Для выявления лидера по максимально продуктивной генерации текстов необходимо проведение сравнительного анализа выдаваемых различными сервисами данных.МАТЕРИАЛЫ И МЕТОДЫ. В российском сегменте наиболее развитыми нейросетевыми сервисами являются GigaChat и YandexGPT. Для проведения сравнительного анализа выбран наиболее обсуждаемый и общепризнанный сервис – GhatGPT. Исследование проводилось на протяжении нескольких месяцев: сентябрь–декабрь 2023 г. В основе методики – филологический анализ сгенерированных текстов и сравнение точности выдачи запросов выбранных моделей. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ. Филологический и грамматический анализ трёх моделей позволяет определить актуальность сервисов для работы в сфере журналистики и медиакоммуникаций, а также программные и технические ограничения нейросетей. Анализ показал наличие определённых паттернов у всех моделей нейросетей. Генерация осуществляется по заранее запрограммированному сценарию. Результат складывается из ряда факторов: наличие имён, аббревиатур и пожеланий, указанных в запросе. Отсутствие какой-либо цензуры показал лишь ChatGPT, остальные же модели отказывались генерировать, если в запросе были указаны запрещённые разработчиком слова или имена. ЗАКЛЮЧЕНИЕ. Полученные выводы могут быть применены на практике в СМИ, блогинге и медиасфере. У всех трёх сервисов есть свои положительные и отрицательные стороны. Согласно результатам проведённого исследования, на данный момент лидером по генерации и обработке текстов является ChatGPT. Лидерство сервису обеспечивается за счёт широкого спектра возможностей и стабильности выдачи ответов на запросы. Однако в связи с наличием в сети Интернет большого количества информации, необходимой для быстрого обучения российских сетей, ситуация может измениться в ближайшее время.

Об авторах

Н. Д. Мальцев

Тамбовский государственный университет им. Г.Р. Державина

Автор, ответственный за переписку.
Email: nw23nik@yandex.ru
ORCID iD: 0000-0003-0628-2486

аспирант, ассистент кафедры журналистики, рекламы и связей с общественностью

392000, Российская Федерация, г. Тамбов, ул. Интернациональная, 33

Список литературы

  1. Зашихина И.М. Подготовка научной статьи: справится ли ChatGPT? // Высшее образование в России. 2023. Т. 32. № 8-9. С. 24-47. https://doi.org/10.31992/0869-3617-2023-32-8-9-24-47, https://elibrary.ru/jpfyuj
  2. O’Leary D. GOOGLE’S Duplex: Pretending to be human // Intelligent Systems in Accounting, Finance and Management. 2019. Vol. 26. Issue 1. P. 46-53. https://doi.org/10.1002/isaf.1443
  3. Jones C., Bergen B. Does GPT-4 Pass the Turing Test? // arXiv. 2023. P. 1-25. https://doi.org/10.48550/arXiv.2310.20216
  4. Кулаков А.С. О интеллектуальных правах на результат деятельности нейросети // Скиф. Вопросы студенческой науки. 2023. № 4 (80). С. 194-197. https://elibrary.ru/cfngsd
  5. Аннаев Г., Аннаева Г. Прикладные возможности нейронной сети // Символ науки: международный научный журнал. 2023. № 4-1. С. 22-24. https://elibrary.ru/cprxjq
  6. Ермоленко Т.В. Классификация ошибок в тексте на основе глубокого обучения // Проблемы искусственного интеллекта. 2019. № 3 (14). С. 47-57. https://elibrary.ru/jaesss
  7. Курганова Е.Б. Коммуникаторы vs нейросети: перспективы и вызовы // Журналистика в эпоху цифровых трансформаций: ценности и практики: cб. материалов 11 Междунар. науч.-практ. конф. Тамбов: Изд. дом «Державинский», 2023. С. 284-289.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».