Application of Large Language Models for the Analysis of Value-Patriotic Discourse of Russian-Speaking Users
- Authors: Balakina Y.V.1, Grigoryeva M.V.1, Sokolova E.N.1
-
Affiliations:
- National Research University Higher School of Economics
- Issue: No 4(123) (2025)
- Pages: 56-69
- Section: SOCIETY OF COEXISTENCE OF NATURAL AND ARTIFICIAL INTELLIGENCE
- URL: https://ogarev-online.ru/2587-6090/article/view/368521
- DOI: https://doi.org/10.22204/2587-8956-2025-123-04-56-69
- ID: 368521
Cite item
Full Text
Abstract
The article explores the potential of using large language models (LLMs) for the automated analysis of value-laden patriotic discourse among Russian-speaking social media users. Drawing on a corpus of messages from VK, Odnoklassniki, and Telegram (2023–2025), it investigates the degree of alignment between automated coding results and expert annotations based on a specially developed categorical scheme. The codebook includes eight dimensions: Sh. Schwartz's basic values; R. Inglehart’s two axes (traditionalism/secularism and survival/self-expression); A. Maslow’s hierarchy of needs; types of patriotism (constructive/aggressive), drawing on the concepts of K.D. Ushinsky and V.S. Solovyov; dominant speech act types per J. Austin; and binary indicators for explicit patriotism and civic identity. The experiment was conducted on the Pride and Patriotism message cluster (N = 456), where the density of value markers is highest; the comparison was implemented through error matrices, accuracy, macro/weighted F1, and Cohen's κ coefficient. It was shown that while the LLM reliably identifies explicit patriotic themes, its agreement with experts is significantly lower in multi-class and fine-grained value classification (Schwartz, Maslow, Inglehart scales, types of patriotism, Austin's speech acts). The model demonstrated systematic biases and a tendency to over-diagnose certain categories. It is concluded that LLMs in their current configuration can serve as auxiliary tools for preliminary markup and hypothesis generation but cannot function as an autonomous substitute for expert-led content analysis of value discourse.
About the authors
Y. V. Balakina
National Research University Higher School of Economics
Author for correspondence.
Email: julianaumova@gmail.com
candidate of Philology, associate professor, professor
Russian Federation, Nizhniy NovgorodM. V. Grigoryeva
National Research University Higher School of Economics
Email: mariya.grigoreva@hse.ru
senior lecturer
Russian Federation, MoscowE. N. Sokolova
National Research University Higher School of Economics
Email: e.sokolova@hse.ru
candidate of political sciences, head of the research and educational laboratory
Russian Federation, MoscowReferences
- Schwartz S.H. Universals in the content and structure of values: Theoretical advances and empirical tests in 20 countries. In: Advances in Experimental Social Psychology. Vol. 25. San Diego: Academic Press, 1992. Pp. 1–65. https://doi.org/10.1016/S0065-2601(08)60281-6.
- Solov'ev V.S. Patriotizm. In: Entsiklopedicheskii slovar' Brokgauza i Efrona. T. XXIII: Patenty na izobreteniya — Petropavlovskii. St Petersburg: Tip.-lit. I.A. Efrona, 1898. Pp. 36–38 (in Russian).
- Solov'ev V.S. O narodnosti i narodnykh delakh v Rossii (O soedinenii Tserkvei). 1884 (in Russian).
- Solov'ev V.S. Natsional'nyi vopros v Rossii. Vyp. pervyi. St Petersburg, 1891 (in Rus-sian).
- Kozlova N.N., Rassadin S.V. Setevoi diskurs patrioticheskikh onlain-soobshchestv v sovremennoi Rossii: problemnoe pole i aksiologicheskie modusy. Vestnik Rossiiskogo uni-versiteta druzhby narodov. Seriya: Politologiya (RUDN Journal of Political Science). 2025. Vol. 27. № 3. Pp. 494–506. doi: 10.22363/2313-1438-2025-27-3-494-506 (in Russian).
- Ankudinov I.A. Patrioticheskii diskurs v Runete: do i posle 24 fevralya 2022 g. Moni-toring obshchestvennogo mneniya: ekonomicheskie i sotsial'nye peremeny. 2024. № 2. Pp. 153–177. https://doi.org/10.14515/monitoring.2024.2.2515 (in Russian).
- Petrovska I. Typology of civic identity. Current Issues in Personality Psychology. 2022. Vol. 11. № 2. Pp. 150–161. doi: 10.5114/cipp.2022.116324.
- World Values Survey Association. Inglehart–Welzel Cultural Map. 2023 version.
- Inglehart R., Welzel C. Modernization, Cultural Change, and Democracy. Cambridge: Cambridge University Press, 2005. doi: 10.1017/CBO9780511790881.
- Austin J.L. How to Do Things with Words. Oxford: Clarendon Press, 1962. (2nd ed. 1975).
- Searle J.R. Speech Acts: An Essay in the Philosophy of Language. Cambridge: Cam-bridge University Press, 1969. doi: 10.1017/CBO9781139173438.
- Milkova M., Rudnev M., Okolskaya L. Detecting value-expressive text posts in Rus-sian social media. Preprint, arXiv:2312.08968. 2023. doi: 10.48550/arXiv.2312.08968.
- Plotnikov T. Analyzing GPT-4 Misinterpretations of Russian Grammatical Construc-tions. Linguística. Revista de Estudos Linguísticos da Universidade do Porto. 2024. Vol. 19. Pp. 157–182. doi: 10.21747/16466195/ling19a7.
- Zhang Y., Zou C., Lian Z., Tiwari P., Qin J. SarcasmBench: Towards Evaluating Large Language Models on Sarcasm Understanding. Preprint, arXiv:2408.11319. 2024. doi: 10.48550/arXiv.2408.11319.
- Zhou J. An Evaluation of State-of-the-Art Large Language Models for Sarcasm Detec-tion. Preprint, arXiv:2312.03706. 2023. doi: 10.48550/arXiv.2312.03706.
- Bojić L., Zagovora O., Zelenkauskaite A. et al. Comparing large language models and human annotators in latent content analysis of sentiment, political leaning, emotional intensity and sarcasm. Scientific Reports. 2025. Vol. 15. 11477. https://doi.org/10.1038/s41598-025-96508-3.
- Gilardi F., Alizadeh M., Kubli M. ChatGPT outperforms crowd workers for text-annotation tasks. Proceedings of the National Academy of Sciences. 2023. Vol. 120. № 30. e2305016120. doi: 10.1073/pnas.2305016120.
Supplementary files

