Spatial regularities of long-term dynamics of passenger flow at Moscow metro stations

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper discusses the hypothesis that the spatial arrangement of Moscow metro stations influences the variability of passenger flow over time. This hypothesis is based on the fact that, due to the peculiarities of the spatial structure of the city, the passenger flow in the central part of Moscow is influenced by a larger number of factors than in the stations located in the periphery of the city, and as a result, the passenger flow in the stations located in the center of the city should be more uneven in time dynamics. The study uses topological and statistical methods to confirm this hypothesis. The spatial position of each station is calculated using the closeness centrality indicator, and two indicators are selected as parameters for the analysis: the variability of passenger flow over time (volatility), calculated using the variation coefficient, and the relative change in passenger flow volume between the beginning and the end of the study period. The results showed that stations with the highest volatility are located chaotically, but stations with medium and low volatility form more compact spatial groups according to the center-periphery gradient. The relative change in passenger traffic over the study period is determined more by the spatial location of the stations: most stations in the central part of the agglomeration core show a decrease in passenger traffic, while on the periphery there is a slowing of the rate of decrease or even growth. It is concluded that the spatial location is an important factor to consider when forecasting passenger traffic, since stations located in the city center are affected by more factors than stations located in the outskirts, which ultimately affects the volatility.

Sobre autores

I. Kiselev

Institute of Geography, Russian Academy of Sciences

Email: schwertberg98@yandex.ru
Moscow, Russia

Bibliografia

  1. Бернштейн-Коган С.В. Очерки географии транспорта: учеб. пособие для вузов. М.: Гос. изд-во, 1930. 348 с.
  2. Беленький М.Н. Экономика пассажирских перевозок. М.: Транспорт, 1974. 271 с.
  3. Гольц Г.А. Транспорт и расселение. М.: Наука, 1981. 247 с.
  4. Киселев И.В. Влияние особенностей пространственной структуры города на неравномерность пассажиропотоков на московском метрополитене // Социально-экономические проблемы развития и функционирования транспортных систем городов и зон их влияния: матер. XXVII Международ. (тридцатой Екатеринбургской) науч.-практич. конф. (19–20 июня 2021 г.) / науч. ред. С.А. Ваксман. Екатеринбург: АМБ, 2021. С. 259–269.
  5. Махрова А., Нефедова Т., Трейвиш А. Москва: мегаполис? агломерация? мегалополис? // Демоскоп Weekly. 2012. № 517–518.
  6. Некраплённая М.Н., Намиот Д.Е. Анализ матриц корреспонденции метро // Int. J. Open Information Technologies. 2019. Т. 7. № 7. С. 68–80.
  7. Тархов С.А. Эволюционная морфология транспортных сетей. М.: ИГ АН СССР, 1989. 382 с.
  8. Alfred Chu K.K., Chapleau R., Trepanier M. Driver-assisted bus interview: Passive transit travel survey with smart card automatic fare collection system and applications // Transportation Res. Record. 2009. Vol. 2105. № 1. P. 1–10.
  9. Bagchi M., White P.R. The potential of public transport smart card data // Transport Policy. 2005. Vol. 12. № 5. P. 464–474.
  10. Barry J.J., et al. Origin and destination estimation in New York City with automated fare system data // Transportation Res. Record. 2002. Vol. 1817. № 1. P. 183–187.
  11. Brandes U. A faster algorithm for betweenness centrality // J. Mathematical Sociology. 2001. Vol. 25. № 2. P. 163–177.
  12. Cats O., Jenelius E. Dynamic vulnerability analysis of public transport networks: mitigation effects of real-time information // Networks and Spatial Economics. 2014. Vol. 14. P. 435–463.
  13. Chen M.C., Wei Y. Exploring time variants for short-term passenger flow // J. Transport Geography. 2011. Vol. 19. № 4. P. 488–498.
  14. Fan Y., et al. Dynamic robustness analysis for subway network with spatiotemporal characteristic of passenger flow // Ieee Access. 2020. № 8. P. 544–555.
  15. Hasan S., et al. Spatiotemporal patterns of urban human mobility // J. Statistical Physics. 2013. Vol. 151. P. 304–318.
  16. Sørensen J.B. The use and misuse of the coefficient of variation in organizational demography research // Sociological Methods & Research. 2002. Vol. 30. № 4. P. 475–491.
  17. Sedgwick P. Spearman’s rank correlation coefficient // Bmj. 2014. Vol. 349.
  18. Sun L., et al. Understanding metropolitan patterns of daily encounters // Proceedings of the National Academy of Sciences. 2013. Vol. 110. № 34. P. 13774–13779.
  19. Sun Y., Shi J., Schonfeld P.M . Identifying passenger flow characteristics and evaluating travel time reliability by visualizing AFC data: a case study of Shanghai Metro // Public Transport. 2016. Vol. 8. P. 341–363.
  20. Tan Q., et al. Statistical analysis and prediction of regional bus passenger flows // Int. J. of Modern Physics B. 2019. Vol. 33. № 11. P. 1950094.
  21. Zhao J., et al. Spatio-temporal analysis of passenger travel patterns in massive smart card data // IEEE Transactions on Intelligent Transportation Systems. 2017. Vol. 18. № 11. P. 3135–3146.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).