LINGUISTIC MEANS OF A FICTIONAL HERO APPEARANCE DESCRIPTION: A COMPARATIVE ANALYSIS ON THE BASIS OF A PARALLEL TEXT CORPUS

Capa

Citar

Resumo

The present study aims to identify the specifics of constructing models of a fictional hero appearance based on a comparative analysis of parallel text corpora, which is achieved using modern methods of natural language processing. The tool used was a programming code developed by the authors in the Python programming language, as well as some ready-made software solutions, in particular, the Russian software package “Balanced Linguistic Corpus Generator and Corpus Manager”. As a result, a system of verbal portrait features was developed and a universal model for describing the appearance of a fictional hero was derived.

Sobre autores

Darya Stepanova

Minsk State Linguistic University

Autor responsável pela correspondência
Email: daryastepanova79@gmail.com

PhD (Philology), Associate Professor, Head of the Educational and Methodological Department Minsk State Linguistic University

Belarus

Anastassia Yanovskaya

Minsk State Linguistic University

Email: yanovska.nastya33@gmail.com

Lecturer at the Department of Theoretical and Applied Linguistics Minsk State Linguistic University

Belarus

Bibliografia

  1. Baranov, A. N., Dobrovol’skij, D. O. (2024). Specific features of author’s idioms in Russian literary texts of the 19 th century. Proceedings of the V. V. Vinogradov Russian Language Institute, 1, 11–23. 10.31912/pvrli-2024.1.1. EDN JBETAS. (In Russ.)
  2. Baranov, A. N., Dobrovol’skij, D. O., Fateeva, N. A. (2021). Individual style of Dostoevsky: dimensions of investigation. RUDN journal of language studies, semiotics and semantics, 12(2), 374–389. 10.22363/2313-2299-2021-12-2-374-389. EDN QGGOJP. (In Russ.)
  3. Gorozhanov, A. I., Guseynova, I. A., Stepanova, D. V. (2022а). Tools for automated analysis of fiction work translation. Issues of applied linguistics, 45, 62–89. doi: 10.25076/vpl.45.03. EDN IWBHQI. (In Russ.)
  4. Gorozhanov, A. I., Guseynova, I. A., Stepanova, D. V. (2022б). Standardized procedure for obtaining statistical parameters of a text (on the material of the stories by J. London “Smoke Bellew. Smoke and Shorty”). Minsk State Linguistic University Bulletin. Series 1. Philology, 4(119), 7–13. EDN PXAVUX. (In Russ.)
  5. Gorozhanov, A. I., Stepanova, D. V. (2022). Work of fiction interpretation: corpus approach. Philology. Theory & Practice, 1(15), 203–208. EDN TCZLAF. (In Russ.)
  6. Gorozhanov, A. I., Guseynova, I. A., Stepanova, D. V. (2024). Natural Language Processing and Fiction Text: Basis for Corpus Research. RUDN Journal of Language Studies, Semiotics and Semantics, 15(1), 195–210. 10.22363/2313-2299-2024-15-1-195-210. EDN FKVAOI.
  7. Petasis, G. et al. (2001). Using Machine Learning to Maintain Rule-based Named-Entity Recognition and Classification Systems. ACL ‘01 (pp. 426–433): Proceedings of the 39 th Annual Meeting on Association for Computational Linguistics.
  8. Krasikova, E. A. The role of the corpus manager in analyzing the use of proper names in electronic media texts (on the material of the English-speaking CNN corpus). Filologicheskie nauki v xxi veke: aktual’’nost’’, mnogopolyarnost’’, perspektivy razvitiya = Philological sciences in the 21 st century: relevance, multipolarity, development prospects (pp. 45–49). Conference papers. Krasnodar: Kuban State University. 2024. EDN JPRHAE.
  9. Zhu, H., Mitrofanova, O. A. (2024). Automatic extraction of named entities in the Chinese-Russian corpus of parallel and comparable texts on political topics. Philology. Theory & Practice, 17(9), 3030–3042. 10.30853/phil20240430. EDN GPIUBV. (In Russ.)
  10. Chernukhina, I. Y. (1987). Obshchie osobennosti poeticheskogo teksta = General features of a poetic text. Voronezh: Izdatel’skii dom VGU. (In Russ.)
  11. Galanov, B. E. (1967). Iskusstvo portreta = The art of the portrait. Moscow: Prosveshchenie. (In Russ.)
  12. Maletina, O. A. (2007). Functional-communicative approach to the study of verbal portrait in a work of fiction. Volgograd State University Bulletin. Series 2. Yazykoznanie, 6, 154–157. EDN KDNMKB. (In Russ.)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).