Method for searching defects in gas turbine engine blades under visible light using the U-NET model


Cite item

Full Text

Abstract

In the production of aircraft engine parts, methods that allow detecting surface discontinuities in the material are widely used in testing operations. One of these methods is the capillary method of non-destructive testing. To solve one of the specific tasks – detection of contamination on the inspected surface, a description of the method for searching for defects on the surfaces of gas turbine engine blades under visible light is presented. The solution to the problem of searching for contamination during inspection of blade surfaces is based on image segmentation using the U-NET convolutional neural network. The results of using the trained model on blades in the production units of PJSC “UEC-Saturn” are presented.

About the authors

E. A. Alekseev

Public Joint-Stock Company UEC-Saturn

Author for correspondence.
Email: evgeny.alekseev@uec-saturn.ru

Director for Digital Transformation

Russian Federation

A. N. Lomanov

Rybinsk State Aviation Technical University named after P.A. Solovyov

Email: frei@rsatu.ru
ORCID iD: 0000-0001-9271-1552

Candidate of Science (Engineering), Associate Professor, Director of the Institute of Information Technologies and Management Systems

Russian Federation

References

  1. Ermakov A.A. Metody i algoritmy obrabotki i analiza snimkov v kapillyarnoy defektoskopii. Dis. …. kand. tekhn. nauk [Methods and algorithms of image processing and analysis in capillary flaw detection. Thesis for a Candidate Degree in Science (Engineering)]. Vladimir, 2009. 129 p.
  2. Bobkov A.V. Intercepting image in problem of orientation by visual information. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering. 2002. No. 3 (48). P. 45-54. (In Russ.)
  3. Shipway N.J., Barden T.J., Huthwaite P., Lowe M.J.S. Automated defect detection for Fluorescent Penetrant Inspection using random forest. NDT and E International. 2019. V. 101. P. 113-123. doi: 10.1016/j.ndteint.2018.10.008
  4. Shipway N.J., Huthwaite P., Lowe M.J.S., Barden T.J. Using ResNets to perform automated defect detection for Fluorescent Penetrant Inspection. NDT and E International. 2021. V. 119. doi: 10.1016/j.ndteint.2020.102400
  5. Niccolai A., Caputo D., Chieco L., Grimaccia F., Mussetta M. Machine learning-based detection technique for NDT in industrial manufacturing. Mathematics. 2021. V. 9, Iss. 11. doi: 10.3390/math9111251
  6. Tout K. Automatic vision system for surface inspection and monitoring: Application to wheel inspection. Signal and image processing. Université de Technologie de Troyes – UTT, 2018. Available at: https://theses.hal.science/tel-01801803/document

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).