Method for monitoring the performance of spaceсraft payload in real time


Cite item

Full Text

Abstract

A method is proposed for monitoring the performance of spacecraft payload in real time. The method is based on analyzing of the equipment state and sensor readings, and detecting unlikely rare combinations of the recorded parameters as potentially dangerous for the equipment. It is noted that the method is universal, that is, it can be applied to any type of controlled parameters, regardless of the method of their registration and physical dimension. Also, the method does not require preliminary calculation of maximal values (thresholds) for the controlled nodes. Specific examples are considered based on the data obtained during the operation of spacecraft equipment and during scientific space experiments. The results obtained can be used to increase the active lifetime of spacecraft, including multi-satellite constellations and CubeSat-type devices.

About the authors

A. E. Shakhanov

Lavochkin Association, JSC

Author for correspondence.
Email: shakhanovAE@laspace.ru
ORCID iD: 0009-0008-3198-5857

Candidate of Science (Engineering), Department Head

Russian Federation

S. A. Bogachev

Space Research Institute of Russian Academy of Sciences

Email: bogachev.sergey@cosmos.ru
ORCID iD: 0000-0002-5448-8959

Doctor of Science (Phys. & Math.), Professor of RAS, Head of Laboratory

Russian Federation

References

  1. Kohlhase C.E., Penzo P.A. Voyager mission description. Space Science Reviews. 1977. V. 21, Iss. 2. P. 77-101. doi: 10.1007/BF00200846
  2. Raouafi N.E., Matteini L., Squire J., Badman S.T., Velli M., Klein K.G., Chen C.H.K., Matthaeus W.H., Szabo A., Linton M., Allen R.C., Szalay J.R., Bruno R., Decker R.B., Akhavan-Tafti M., Agapitov O.V., Bale S.D., Bandyopadhyay R., Battams K., Bercic L., Bourouaine S., Bowen T.A., Cattell C., Chandran B.D.G., Chhiber R., Cohen C.M.S., D’Amicis R., Giacalone J., Hess P., Howard R.A., Horbury T.S., Jagarlamudi V.K., Joyce C.J., Kasper J.C., Kinnison J., Laker R., Liewer P., Malaspina D.M., Mann I., McComas D.J., Niembro-Hernandez T., Nieves-Chinchilla T., Panasenco O., Pokorny P., Pusack A., Pulupa M., Perez J.C., Riley P., Rouillard A.P., Shi C., Stenborg G., Tenerani A., Verniero J.L., Viall N., Vourlidas A., Wood B.E., Woodham L.D., Woolley T. Parker solar probe: Four years of discoveries at solar cycle minimum. Space Science Reviews. 2023. V. 219, Iss. 1. doi: 10.1007/s11214-023-00952-4
  3. Saleh J.H., Castet J.F. Spacecraft reliability and multi-state failures: a statistical approach. John Wiley & Sons, 2011. 224 p.
  4. Saleh J.H., Torres-Padilla J.P., Hastings D.E., Newman D.J. To reduce or to extend a spacecraft design lifetime? Journal of Spacecraft and Rockets. 2006. V. 43, Iss. 1. P. 207-217. doi: 10.2514/1.10991
  5. Tkachenko A.I. Identification of failures in a set of sensors of a spacecraft. Cosmic Research. 2011. V. 49, Iss. 2. P. 150-159. doi: 10.1134/S0010952511020110
  6. Alyoshin V.F., Kolobov A.Yu., Petrov J.A. Challenging issues for predicting and validating reliability of sustained spacecraft operation. Science and Education of the Bauman MSTU. 2015. No. 6. P. 31-41. (In Russ.). doi: 10.7463/0615.0778993
  7. Bruskov A.A. Analysis of failures of various spacecraft systems. Informatsionno-Tekhnologicheskiy Vestnik. 2020. No. 4 (26). P. 34-46. doi: 10.21499/2409-1650-2020-26-4-34-46
  8. Ingrand F.F., Georgeff M.P., Rao A.S. An architecture for real-time reasoning and system control. IEEE Expert-Intelligent Systems and Their Applications. 1992. Т. 7, Iss. 6. P. 34-44. doi: 10.1109/64.180407
  9. Zelentsov V.A. Potryasaev S.A., Sokolov B.V., Skobtsov V.Yu., Korenyako S.A., Kim D.S., Vakulchyk E.N., Kulbak L.I., Nikolaenya E.D., Lapitskaya N.V., Saksonov R.V. Service-oriented distributed software complex for evaluation and multi-criteria analysis of reliability and survivability of on-board equipment of small satellites: Russian and Belarusian segments. Vestnik of Samara University. Aerospace and Mechanical Engineering. 2017. V. 16, no. 4. P. 118-129. (In Russ.). doi: 10.18287/2541-7533-2017-16-4-118-129
  10. Georgeff M.P., Ingrand F.F. Real-time reasoning: The monitoring and control of spacecraft systems. Proceedings of the Sixth Conference on Artificial Intelligence for Applications (May, 05-09, 1990, Santa Barbara, CA, USA). 1990. P. 198-204. doi: 10.1109/CAIA.1990.89190
  11. Shakhanov A.E. System for emergency transmission of information from automatic spacecraft. Proposal for implementation, possible composition and main characteristics. Vestnik Vozdushno-Kosmicheskoy Oborony. 2023. No. 3 (39). P. 78-83. (In Russ.)
  12. Kuzin S.V., Zhitnik I.A., Shestov S.V., Bogachev S.A., Ignat’ev A.P., Pertsov A.A., Ulyanov A.S., Reva A.A., Slemzin V.A., Sukhodrev N.K., Ivanov Y.S., Goncharov L.A., Mitrofanov A.V., Popov S.G., Shergina T.A., Solov’ev V.A., Oparin S.N., Zykov A.M. The TESIS experiment on the CORONAS-PHOTON spacecraft. Solar System Research. 2011. V. 45, Iss. 2. P. 162-173. doi: 10.1134/S0038094611020110
  13. Kuzin S.V., Bogachev S.A., Zhitnik I.A., Pertsov A.A., Ignatiev A.P., Mitrofanov A.M., Slemzin V.A., Shestov S.V., Sukhodrev N.K., Bugaenko O.I. TESIS experiment on EUV imaging spectroscopy of the Sun. Advances in Space Research. 2009. V. 43, Iss. 6. P. 1001-1006. doi: 10.1016/j.asr.2008.10.021
  14. Loto’aniu T.M., Redmon R.J., Califf S., Singer H.J., Rowland W., Macintyre S., Chastain C., Dence R., Bailey R., Shoemaker E., Rich F.J., Chu D., Early D., Kronenwetter J., Todirita M. The GOES-16 spacecraft science magnetometer. Space Science Reviews. 2019. V. 215, Iss. 4. doi: 10.1007/s11214-019-0600-3
  15. Glassmeier K.-H., Motschmann U., Dunlop M., Balogh A., Acuña M.H., Carr C., Musmann G., Fornaçon K.-H., Schweda K., Vogt J., Georgescu E., Buchert S. Cluster as a wave telescope – first results from the fluxgate magnetometer. Annales Geophysicae. 2001. V. 19, Iss. 10/12. P. 1439-1447. doi: 10.5194/angeo-19-1439-2001
  16. Bogachev S.A., Golovin A.A., Dyatkov S.Yu., Yegorochkin K.A., Kirichenko A.S., Kuzin S.V., Pertsov A.A., Tenenbaum S.M., Shakhanov A.E. A miniaturized space magnetometer for nanosatellite Yareelo № 3. Kosmonavtika i Raketostroenie. 2023. No. 1 (130). P. 123-134. (In Russ.)
  17. Chulliat A., Brown W., Alken P., Beggan C., Nair M., Cox G., Woods A., Macmillan S., Meyer B., Paniccia M. The US/UK world magnetic model for 2020-2025. Technical report. 2020. doi: 10.25923/ytk1-yx35
  18. Pertsov A.A., Dyatkov S.Y., Erkhova N.F., Kholodilov A.A., Lykov D.V., Trushina A.A., Chervinsky V.I., Fateev F.V., Grekov A.V., Trifonov A.V., Loboda I.P., Bogachev S.A., Kirichenko A.S. A Telescope for imaging the Sun on board CubeSat small spacecraft. Instruments and Experimental Techniques. 2022. V. 65, Iss. 2. P. 326-331. doi: 10.1134/S0020441222020051
  19. Bogachev S.A., Kirichenko A.S., Loboda I.P., Reva A.A. On the possibility to detect particle acceleration regions on the Sun using small devices on Cubsats. Kosmonavtika i Raketostroenie. 2023. No. 2 (131). P. 104-114. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).