Intelligent robust controllers for tribotronic conical fluid film bearings


如何引用文章

全文:

详细

The article presents the results of the development of means for intelligent robust control of the parameters of a tribotronic rotor-support system with a tapered bearing with a removable bush. The proposed controller is implemented on the basis of deep Q-network reinforcement learning (DQN) synthesized on the basis of a numerical model of a rotor support system. The control strategy involved simultaneous control of the shaft position and friction in the lubrication layer. Methods for control synthesis are presented for both a deterministic system and a system with stochastic parameters. In the latter case, a controller synthesis technique is proposed that takes into account uncertainties in the system at the training stage. Testing of the resulting controllers shows the better ability of a controller trained to take into account uncertainties to cope with variable loads, as well as predict possible changes in the system and proactively transfer the system to more advantageous states.

作者简介

Yu. Kazakov

Orel State University named after I.S. Turgenev

编辑信件的主要联系方式.
Email: KazakYurii@yandex.ru
ORCID iD: 0000-0002-9655-4520

Postgraduate Student of the Department of Mechatronics, Mechanics and Robotics

俄罗斯联邦

D. Shutin

Orel State University named after I.S. Turgenev

Email: rover.ru@gmail.com
ORCID iD: 0000-0003-0515-7106

Candidate of Science (Engineering), Associate Professor of the Department of Mechatronics, Mechanics and Robotics

俄罗斯联邦

L. Savin

Orel State University named after I.S. Turgenev

Email: savin3257@mail.ru
ORCID iD: 0000-0002-0466-0044

Doctor of Science (Engineering), Professor of the Department of Mechatronics, Mechanics and Robotics

俄罗斯联邦

参考

  1. Santos I.F. Controllable sliding bearings and controllable lubrication principles – An overview. Lubricants. 2018. V. 6, Iss. 1. doi: 10.3390/lubricants6010016
  2. Santos I.F. Trends in controllable oil film bearings. IUTAM Bookseries. 2011. V. 25. P. 185-199. doi: 10.1007/978-94-007-0020-8_17
  3. Bently D.E., Grant J.W., Hanifan P.C. Active controlled hydrostatic bearings for a new generation of machines. Proceedings of the ASME Turbo Expo (May, 8-11, 2000, Munich). 2000. V. 2. doi: 10.1115/2000-GT-0354
  4. Santos I.F., Nicoletti R., Scalabrin A. Feasibility of applying active lubrication to reduce vibration in industrial compressors. Journal of Engineering for Gas Turbines and Power. 2004. V. 126, Iss. 4. P. 848-854. doi: 10.1115/1.1765123
  5. Rehman W.U., Jiang G., Luo Y., Wang Y., Khan W., Rehman Sh.U., Iqbal N. Control of active lubrication for hydrostatic journal bearing by monitoring bearing clearance. Advances in Mechanical Engineering. 2018. V. 10, Iss. 4. doi: 10.1177/1687814018768142
  6. Rehman W.U., Luo Y., Wang Y., Jiang G., Iqbal N., Rehman Sh.U., Bibi Sh. Fuzzy logic-based intelligent control for hydrostatic journal bearing. Measurement and Control. 2019. V. 52, Iss. 3-4. P. 229-243. doi: 10.1177/0020294019830110
  7. Gupta S., Biswas P.K., Aljafari B., Thanikanti S.B., Das S.K. Modelling, simulation and performance comparison of different membership functions based fuzzy logic control for an active magnetic bearing system. The Journal of Engineering. 2023. V. 2023, Iss. 2. doi: 10.1049/tje2.12229
  8. Camino J.F., Santos I.F. A periodic linear-quadratic controller for suppressing rotor-blade vibration. Journal of Vibration and Control. 2019. V. 25, Iss. 17. P. 2351-2364. doi: 10.1177/1077546319853358
  9. Zhang G., Liu M., Zou H., Wang X., Xi G. Vibration control of a rotor-magnetic bearing system on the moving base through H∞ control. Proceedings of the ASME Turbo Expo (June, 26-30, 2023, Boston). 2023. V. 11B. doi: 10.1115/GT2023-102528
  10. Li S., Babin A., Shutin D., Kazakov Yu., Liu Y., Chen Zh., Savin L. Active hybrid journal bearings with lubrication control: Towards machine learning. Tribology International. 2022. V. 175. doi: 10.1016/j.triboint.2022.107805
  11. Luo L., Zhao N., Zhu Y., Sun Y. A* guiding DQN algorithm for automated guided vehicle pathfinding problem of robotic mobile fulfillment systems. Computers & Industrial Engineering. 2023. V. 178. doi: 10.1016/j.cie.2023.109112
  12. Train DQN agent to swing up and balance pendulum. Available at: https://www.mathworks.com/help/reinforcement-learning/ug/train-dqn-agent-to-swing-up-and-balance-pendulum.html
  13. Yu Y., Liu Y., Wang J., Noguchi N., He Y. Obstacle avoidance method based on double DQN for agricultural robots. Computers and Electronics in Agriculture. 2023. V. 204. doi: 10.1016/j.compag.2022.107546
  14. Kazakov Y.N., Kornaev A.V., Shutin D.V., Li Sh., Savin L.A. Active fluid-film bearing with deep q-network agent-based control system. Journal of Tribology. 2022. V. 144, Iss. 8. doi: 10.1115/1.4053776
  15. Kazakov Yu.N., Kornaev A.V., Shutin D.V., Kornaeva E.P., Savin L.A. Reducing rotor vibrations in active conical fluid film bearings with controllable gap. Russian Journal of Nonlinear Dynamics. 2022. V. 18, no. 5. P. 873-883. doi: 10.20537/nd221226
  16. Genkin M., McArthur J.J. A transfer learning approach to minimize reinforcement learning risks in energy optimization for automated and smart buildings. Energy and Buildings. 2024. V. 303. doi: 10.1016/j.enbuild.2023.113760
  17. Kitchat K., Lin M.-H., Chen H.-Sh., Sun M.T., Sakai K., Ku W.-Sh., Surasak T. A deep reinforcement learning system for the allocation of epidemic prevention materials based on DDPG. Expert Systems with Applications. 2024. V. 242. doi: 10.1016/j.eswa.2023.122763
  18. He X., Hu Zh., Yang H., Lv Ch. Personalized robotic control via constrained multi-objective reinforcement learning. Neurocomputing. 2024. V. 565. doi: 10.1016/j.neucom.2023.126986
  19. Baltes J., Christmann G., Saeedvand S. A deep reinforcement learning algorithm to control a two-wheeled scooter with a humanoid robot. Engineering Applications of Artificial Intelligence. 2023. V. 126. doi: 10.1016/j.engappai.2023.106941
  20. Deep Q-network agent. Available at: https://www.mathworks.com/help/reinforcement-learning/ug/dqn-agents.html
  21. Antunovic R., Halep A., Bucko M., Peric S. Mathematical model for temperature change of a journal bearing. Thermal Science. 2018. V. 22, Iss. 1, Part A. P. 323-333. doi: 10.2298/tsci160713109a
  22. Kelly E., Amagbor A., Blessing T. Design and fabrication of a journal bearing test rig for pressure and temperature variation evaluation. NIPES Journal of Science and Technology Research. 2022. V. 4, Iss. 1. P. 234-243. doi: 10.37933/nipes/4.1.2022.20
  23. Savin L.A., Solomin O.V. Modelirovanie rotornykh sistem s oporami zhidkostnogo treniya [Modeling of rotor systems with fluid friction supports]. Moscow: Mashinostroenie-1 Publ., 2006. 443 p.
  24. Sozinando D.F., Tchomeni B.X., Alugongo A.A. Experimental study of coupled torsional and lateral vibration of vertical rotor-to-stator contact in an inviscid fluid. Mathematical and Computational Applications. 2023. V. 28, Iss. 2. doi: 10.3390/mca28020044

补充文件

附件文件
动作
1. JATS XML

版权所有 © VESTNIK of Samara University. Aerospace and Mechanical Engineering, 2024

Creative Commons License
此作品已接受知识共享署名-相同方式共享 4.0国际许可协议的许可

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).