Aircraft electric power plants


如何引用文章

全文:

详细

The paper presents a review of electrification of the existing propulsion systems and creating new hybrid propulsion systems based on the concept of more electric aircraft and all-electric aircraft in Russia and abroad. New promising directions of electrification of the existing aircraft propulsion systems and creating new hybrid aircraft propulsion systems are specified on the basis of the review.

作者简介

A. Kondryakov

Moscow Aviation Institute;
Lyulka Design Bureau

编辑信件的主要联系方式.
Email: tetra1337@mail.ru
ORCID iD: 0009-0007-5649-650X

Postgraduate Student of Department “Design and Construction of Engines”; 

Head of the Stator Group, Compressor Design Department

俄罗斯联邦

M. Leontiev

Moscow Aviation Institute;
Alfa-Transit LLC

Email: lemk@alfatran.com

Doctor of Science (Engineering), Professor of Department “Design and Construction of Engines”;

General Director 

俄罗斯联邦

参考

  1. Skibin V.A., Solonin V.I., Palkin V.A. Raboty vedushchikh aviadvigatelestroitel'nykh kompaniy v obespechenie sozdaniya perspektivnykh aviatsionnykh dvigateley: analiticheskiy obzor [The work of leading aircraft engine companies to ensure the creation of advanced aircraft engines: Analytical review]. Moscow: TsIAM Publ., 2010. 673 p
  2. Pavlov A.M., Spindzak I.I., Egorova P.S. Operation of electric engine of motorglider Taurus Electro G2. System Analysis and Logistics. 2018. No. 3 (18). P. 3-13. (In Russ.)
  3. Palkin V.A. Review of works in the USA and Europe on aero engines for civil aircraft of 2020...2040’s. Aviation Engines. 2019. No. 3 (4). P. 63-83. (In Russ.). doi: 10.54349/26586061_2019_3_63
  4. Zhmurov B.V., Khalyutin S.P., Davidov A.O. Information-energy methodology of the aircraft with electric propulsion energy complex design. Civil Aviation High Technologies. 2017. V. 20, no. 1. P. 167-176. (In Russ.)
  5. Faleiro L. Summary of the European power optimised aircraft (POA) project. 25th International Congress of the Aeronautical Sciences, ICAS 2006.
  6. Madonna V., Giangrande P., Galea M. Electrical power generation in aircraft: Review, challenges and opportunities. IEEE Transactions on Transportation Electrification. 2018. V. 4, Iss. 3. P. 646-659. doi: 10.1109/tte.2018.2834142
  7. Volotkina E.V., Vlasov A.I., Danilov N.A., Moskvin E.V., Nikitin V.V. Determination of optimal features and structure of all electric aircraft power system. Electronics and Electrical Equipment of Transport. 2010. No. 4. P. 2-7. (In Russ.)
  8. Noland J.K., Leandro M., Suul J.A., Molinas M., Nilsen R. Electrical machines and power electronics for starter-generators in more electric aircrafts: A technology review. Proceedings of the 45th Annual Conference of the IEEE Industrial Electronics Society – IECON 2019 (October, 14-17, 2019, Lisbon, Portugal). 2019. doi: 10.1109/IECON.2019.8926789
  9. Juve L., Fosse J., Joubert E., Fouquet N. Airbus Group electrical aircraft program. The E-Fan project. 52nd AIAA/SAE/ASEE Joint Propulsion Conference (July, 25-27, 2016, Salt Lake City, UT). 2016. doi: 10.2514/6.2016-4613
  10. Kirk G.E. The design of the Rolls-Royce Trent 500 aeroengine. Proceedings of the 14th International Conference on Engineering Design, ICED 03 (August, 19-21, 2003, Stockholm). 2003. P. 503-504.
  11. Voronovich S., Kargopoltsev V., Kutakhov V. All-electric aircraft. Aviaponorama. 2009. No. 2. P. 14-17. (In Russ.)
  12. KRET razrabatyvaet «istochnik zhizni» dlya polnost'yu elektricheskogo samoleta [KRET is developing a “source of life” for an all-electric aircraft]. Available at: https://rostec.ru/content/files/press-rel/press-release-KRET-istochnik.pdf
  13. Tkacheva M.L. CIAM at MAKS-2021: The world premiere of superconductivity electric aircraft and vectors of engine development. Aviation Engines. 2021. No. 3 (12). P. 73-77. (In Russ.)
  14. Balagurov V.A. Proektirovanie spetsial'nykh elektricheskikh mashin peremennogo toka: uchebnoe posobie dlya vuzov [Designing of special alternating-current electric machines: Textbook for universities]. Moscow: Vysshaya Shkola Publ., 1982. 272p.
  15. Aslanov V.V., Kut'ko V.I. Ispol'zovanie energii vozdushnoy strui ot ventilyatora turboventilyatornogo dvigatelya dlya privedeniya vo vrashchenie generatora postoyannogo toka. Sbornik nauchnykh statey po materialam VII Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Innovatsionnye Nauchnye Issledovaniya v sovremennom Mire: Teoriya, Metodologiya, Praktika» (January, 31, 2022, Ufa). Ufa: NITs Vestnik Nauki Publ., 2022. P. 11-21. (In Russ.)
  16. Gurevich O.S., Gulienko A.I. The gas turbine engine for a «electric» long-range aircraft – the «electric» GTE. Aviation Engines. 2019. No. 1 (2). P. 7-14. (In Russ.). doi: 10.54349/26586061_2019_1_7
  17. Legkonogikh D.S., Golev I.M., Preobrazhensky A.P., Zelenin A.N. Application specifics of electrically driven units in an aircraft power plants. Trudy MAI. 2018. No. 101. (In Russ.). Available at: https://trudymai.ru/eng/published.php?ID=96939
  18. Speak T.H., Sellick R.J. Compressor system. Patent WO/2014/177836, 06.11.2014.
  19. Bolotin N.B. Vodorodnyy vozdushno-reaktivnyy dvigatel' [Hydrogen air-jet engine]. Patent RF, no. 2553052, 2015. (Publ. 10.06.2015, bull. no. 16)

补充文件

附件文件
动作
1. JATS XML

版权所有 © VESTNIK of Samara University. Aerospace and Mechanical Engineering, 2024

Creative Commons License
此作品已接受知识共享署名-相同方式共享 4.0国际许可协议的许可

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).