Main approaches and features of the design of aircraft hydro-mechanical control systems


如何引用文章

全文:

详细

The main purpose of the article is to identify the main approaches and define the concept when modeling the hydro-mechanical control systems of an aircraft. The advantages and importance of a computational experiment with the aid of a virtual test bed at the stage of constructive parametric debugging of the elements of complex hydraulic systems are emphasized. The characteristics obtained from the results of the computational experiment will allow us to determine the level of adequacy of the models and subsequently choose the most optimal design and operational parameters.

作者简介

P. Petrov

Ufa University of Science and Technology

编辑信件的主要联系方式.
Email: pgl.petrov@mail.ru
ORCID iD: 0000-0001-7901-2853

Candidate of Science (Engineering), Associate Professor of the Department of Applied Hydromechanics

俄罗斯联邦

V. Tselischev

Ufa University of Science and Technology

Email: pgl.ugatu@mail.ru

Doctor of Science (Engineering), Professor, Head of Department of Applied Hydromechanics

俄罗斯联邦

D. Kuderko

R and D Center “Technodinamika”

Email: dm_kuderko@mail.ru

Candidate of Science (Engineering), Head Center

俄罗斯联邦

参考

  1. Kuderko D.A., Tselischev V.A., Tselischev D.V. Prospects for development of flight control surfaces actuators of civil aircraft. PNRPU Aerospace Engineering Bulletin. 2021. No. 67. P. 70-84. (In Russ.). doi: 10.15593/2224-9982/2021.67.07
  2. Mozaryn J., Winnicki A., Suski D. Modeling of electro-hydraulic servo-drive for advanced control system design. Springer Proceedings in Mathematics & Statistics. 2022. V. 362. P. 183-191. doi: 10.1007/978-3-030-77306-9_16
  3. Kuznetsov V.E., Dinh Khanh N., Lukichev A.N., Filatov D.M. Hybrid steering system's Pid-based adaptive control. Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2021 (January, 26-28, 2021, Moscow). doi: 10.1109/ElConRus51938.2021.9396303
  4. Gimadiev A.G., Kryuchkov A.N., Prokof'ev A.B. Avtomatika i regulirovanie aviatsionnykh dvigateley i energeticheskikh ustanovok [Automation and control of aircraft engines and power plants]. Part 1. Samara: Samara State Aerospace University Publ., 2002. 139 p.
  5. Popov D.N. Dinamika i regulirovanie gidro- i pnevmosistem [Dynamics and control of hydraulic and pneumatic systems]. Moscow: Mashinostroenie Publ., 1987. 464 p.
  6. Abbasov I.B. Computer modeling in the aerospace industry. Hoboken: Wiley-Scrivener, 2020. 282 p.
  7. Zadiraka V.K. Using reserves of computing optimization to solve complex problems. Cybernetics and Systems Analysis. 2019. V. 55, no. 1. P. 40-54. doi: 10.1007/s10559-019-00111-0
  8. Jin Z.-L., Zhou Q., Zhao W.-Z. Dynamics modeling and performance analysis for electro hydraulic braking system. Beijing Ligong Daxue Xuebao. 2018. V. 38, Iss. 7. P. 117-122. doi: 10.15918/j.tbit1001-0645.2018.1.026
  9. Petrov P.V., Tselishchev V.A. Osnovy algoritmicheskogo modelirovaniya nelineynykh gidromekhanicheskikh ustroystv: ucheb. posobie [Fundamentals of algorithmic modeling of nonlinear hydro-mechanical devices: study guide]. Ufa: Ufa State Aviation Technical University Publ., 2012. 136 p.
  10. Petrov P.V., Chernov D.D. Necessity of research of nonlinear hydro-mechanical systems in generalized parameters. Handbook. An Engineering Journal. 2019. No. 4 (265). P. 28-33. (In Russ.). doi: 10.14489/hb.2019.04.pp.028-033
  11. Mashkov M.A., Matrosov A.V., Sunarchin R.A. Obobshchennye kharakteristiki elektrogidravlicheskogo sledyashchego privoda. Materialy Nauchnogo Foruma s Mezhdunarodnym Uchastiem «Nedelya Nauki SPbPU». Institut Energetiki I Transportnykh Sistem (November 30 - December 05, 2015, Saint-Petersburg). Part 1. St. Petersburg: Peter the Great St. Petersburg Polytechnic University Publ., 2015. P. 91-93. (In Russ.)
  12. Gimranov E.G., Sunarchin R.A., Khasanova L.M. Generalized dynamic characteristics of mathematical models of hydraulic units. Bulletin of Perm State Technical University. Aerospace Engineering. 2000. No. 5. P. 99-106. (In Russ.)
  13. Gareev A., Gimadiev A., Popelnyuk I., Stadnik D., Sverbilov V. Simulation of electro-hydraulic systems taking into account typical faults. BATH/ASME 2020 Symposium on Fluid Power and Motion Control, FPMC 2020 (September, 9-11, 2020, Virtual, Online). doi: 10.1115/FPMC2020-2792
  14. Petrov P.V., Tselishchev V.A. Osnovy avtomatizirovannogo proektirovaniya gidromekhanicheskikh ustroystv [Fundamentals of computer-aided design of hydro-mechanical devices]. Ufa: RIK UGATU Publ., 2019. 241 p.
  15. Kotkin G.L., Popov L.K., Cherkasskiy V.S. Komp'yuternoe modelirovanie fizicheskikh protsessov s ispol'zovaniem MATLAB: ucheb. posobie [Computer modeling of physical processes using MATLAB: study guide]. Moscow: Yurayt Publ., 2020. 202 p.
  16. Petrov P.V., Tselischev V.A. Numerical study of SAR CCD for steady-state and transient modes. PNRPU Aerospace Engineering Bulletin. 2019. No. 57. P. 7-16. (In Russ.). doi: 10.15593/2224-9982/2019.57.01

补充文件

附件文件
动作
1. JATS XML

版权所有 © VESTNIK of Samara University. Aerospace and Mechanical Engineering, 2024

Creative Commons License
此作品已接受知识共享署名-相同方式共享 4.0国际许可协议的许可

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).