Associated production of J/ψ and direct photon in the parton Reggeization approach

封面

如何引用文章

全文:

详细

We study the associated J/ψ and direct photon production in the high energy factorization, as it is formulated in the parton Reggeization approach, using two different models for the hadronization of a heavy quark-antiquark pair into a heavy quarkonium, namely the non-relativistic quantum chromodynamics (NRQCD) and the improved color evaporation model (ICEM). We find essential differences in predictions for cross section and transverse momenta spectra obtained using the NRQCD and the ICEM, which can be used for the discrimination between these models. Our prediction for cross sections of the associated J/ψ and direct photon production at the LHC energies slightly overestimate the results early obtained in the next-to-leading order (NLO) calculation in the collinear parton model (CPM). We predict different two-particle correlation spectra in the associated J/ψ and direct photon production which may be interesting for an experimental study

全文:

Введение

Экспериментальное исследование процессов ассоциативного рождения J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  -мезонов и прямых фотонов в протон-протонных столкновениях при высоких энергиях представляет большой интерес не только для проверки предсказаний пертурбативной квантовой хромодинамики (КХД) и различных моделей адронизации тяжелых кварков в тяжелый кварконий [1, 2], но и для получения информации о глюонных функциях распределения (ГФР) в протоне, в том числе зависящих от поперечного импульса поляризованных ГФР [3, 4].

Значение константы сильного взаимодействия на масштабе массы очарованного кварка α S ( m c )0.3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadofaaeqaaOGaaGikaiaad2gadaWgaaWcbaGaam4yaaqa baGccaaIPaqeeuuDJXwAKbsr4rNCHbacfaGae83qISJaaGimaiaai6 cacaaIZaaaaa@4619@  позволяет проводить расчеты сечений рождения чармониев в рамках теории возмущений КХД. В настоящее время в коллинеарной партонной модели (КПМ) достигнута точность вычислений, отвечающая следующему за лидирующим порядку (СЛП) по α S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadofaaeqaaaaa@3AAA@  как для процессов прямого рождения J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  [5], так и для процессов ассоциативного рождения J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  -мезонов с прямыми фотонами [6].

Адронизации c c ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiqado gagaqeaaaa@39EF@  -пары в состояние чармония MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  непертурбативный процесс, который может быть описан только в рамках феноменологических моделей. В модели цветовых синглетов (МЦС) [7, 8] предполагается, что кварк-антикварковая пара формирует синглетное по цвету состояние с квантовыми числами конечного чармония. В более общем подходе нерелятивистской квантовой хромодинамики (НРКХД), в которой учитываются релятивистские поправки по степеням относительной скорости c c ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiqado gagaqeaaaa@39EF@  -пары, рождение тяжелого чармония может происходить через октетные по цвету промежуточные состояния [9]. Другой подход к описанию адронизации MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  это модель испарения цвета (МИЦ), в которой предполагается, что c c ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiqado gagaqeaaaa@39EF@  -пара с инвариантной массой от порога рождения чармония C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFce=qaaa@434C@  до порога рождения самого легкого мезона с открытым очарованием с определенной вероятностью F C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrdaahaaWcbeqa aiab=jq8dbaaaaa@4496@  превращается в чармоний C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFce=qaaa@434C@  [10, 11]. В настоящее время МИЦ была улучшена в работе Ма и Вогта [12].

Важную роль в описании рождения чармониев в протон-протонных столкновениях при высоких энергиях играет выбор подхода факторизации физики жестких и мягких процессов. В области больших поперечных импульсов p T m C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGubaabeaarqqr1ngBPrgifHhDYfgaiuaakiab=TMi=iaa d2gadaWgaaWcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUv gaiyaacqGFce=qaeqaaaaa@4C5B@ , где поперечными импульсами начальных партонов можно пренебречь, рождение чармониев в жестких протон-протонных столкновениях может быть достаточно хорошо описано с использованием КПМ [13]. Однако для описания области малых поперечных импульсов p T m C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGubaabeaarqqr1ngBPrgifHhDYfgaiuaakiab=PMi9iaa d2gadaWgaaWcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUv gaiyaacqGFce=qaeqaaaaa@4C58@  необходимо учитывать ненулевой поперечный импульс непертурбативной природы, что достигается в подходе TMD-факторизации, которая учитывает эффекты поперечного движения партонов [14]. Для описания экспериментальных данных в промежуточной области поперечных импульсов p T m C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGubaabeaarqqr1ngBPrgifHhDYfgaiuaakiab=nKi7iaa d2gadaWgaaWcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUv gaiyaacqGFce=qaeqaaaaa@4C2F@  используются различные процедуры <<сшивания>> результатов расчетов в КПМ и TMD [15]. В пределе высоких энергий применим альтернативный метод описания сечений рождения при любых поперечных импульсах p T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGubaabeaaaaa@3A01@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  подход реджезации партонов (ПРП) [16] MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ [18]. Данный подход MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  это один из вариантов реализации подхода факторизации при высоких энергиях, который основывается на модифицированном приближении мультиреджевской кинематики КХД, в котором имеет место эффект реджезации партонных амплитуд. В ПРП нами ранее были описаны существующие экспериментальные данные для процессов рождения прямых одиночных J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  -мезонов, для рождения J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  -мезонов с учетом вкладов от распадов вышележащих состояний при энергиях s =1.8 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca WGZbaaleqaaOGaaGypaiaaigdacaaIUaGaaGioaaaa@3C20@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@   13 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaio dacaaMe8oaaa@3B0C@  ТэВ, с использованием как НРКХД [19-21], так и УМИЦ [22].

В настоящее время накоплено большое количество экспериментальных данных по рождению J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  -мезонов в адронных взаимодействиях от энергий s =19 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca WGZbaaleqaaOGaaGypaiaaigdacaaI5aGaaGjbVdaa@3CF6@  ГэВ до s =13 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca WGZbaaleqaaOGaaGypaiaaigdacaaIZaGaaGjbVdaa@3CF0@  ТэВ [23]. Рождение одиночных прямых фотонов в адрон-адронных столкновениях было изучено экспериментально в широком диапазоне энергий в экспериментах с фиксированной мишенью [24] и на коллайнерах RICH, Тэватрон, БАК [25-27]. В ПРП были проведены исследования одиночного, двойного и тройного рождения фотонов при энергии БАК [28-31].

Однако до настоящего времени сечение ассоциативного рождения J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  -мезонов и прямых фотонов не было измерено ни в одном эксперименте. В этой работе мы изучаем ассоциативное рождение J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  -мезонов и прямых фотонов в ПРП, используя две различные модели адронизации пары тяжелых кварка и антикварка в тяжелый кварконий: НРКХД и УМИЦ. Мы предсказываем сечения рождения и различные спектры J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  -мезонов и прямых фотонов в протон-протонных столкновениях при энергии s =13 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca WGZbaaleqaaOGaaGypaiaaigdacaaIZaGaaGjbVdaa@3CF0@  ТэВ.

1 Подход реджезации партонов

ПРП MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  калибровочно инвариантная реализация подхода k T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaWGubaabeaaaaa@39FC@  -факторизации, который доказан в лидирующем логарифмическом приближении (ЛЛП) в пределе высоких энергий КХД [32-34]. Ключевыми элементами ПРП являются факторизация амплитуд в реджевском пределе КХД, эффективная теория поля (ЭТП) для реджезованных глюонов и кварков Л.Н. Липатова [35] и неинтегрированные ПФР (нПФР) [18], построенные в модифицированной модели Кимбера MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  Мартина MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  Рискина MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  Ватта (КМРВ) [36, 37].

В ПРП сечение процесса ассоциативного рождения J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  -мезонов и прямых фотонов с большим поперечным импульсом p Tγ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGubGaeq4SdCgabeaaaaa@3BA8@ , ppJ/ψγX MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaadc hacqGHsgIRcaWGkbGaaG4laiabeI8a5jabeo7aNjaadIfaaaa@41B8@  выражается как свертка реджезованного партонного сечения подпроцесса и нПФР. Для подпроцесса глюон-глюонного слияния дифференциальное сечение может быть записано:

             dσ(ppJ/ψγX)= d x 1 x 1 d 2 q T1 π Φ g ( x 1 , t 1 , μ 2 ) d x 2 x 2 d 2 q T2 π Φ g ( x 2 , t 2 , μ 2 )× MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabeo 8aZjaaiIcacaWGWbGaamiCaiabgkziUkaadQeacaaIVaGaeqiYdKNa eq4SdCMaamiwaiaaiMcacaaI9aWaa8qaaeqaleqabeqdcqGHRiI8aO WaaSaaaeaacaWGKbGaamiEamaaBaaaleaacaaIXaaabeaaaOqaaiaa dIhadaWgaaWcbaGaaGymaaqabaaaaOWaa8qaaeqaleqabeqdcqGHRi I8aOWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaamyCamaa BaaaleaacaWGubGaaGymaaqabaaakeaacqaHapaCaaGaeuOPdy0aaS baaSqaaiaadEgaaeqaaOGaaGikaiaadIhadaWgaaWcbaGaaGymaaqa baGccaaISaGaamiDamaaBaaaleaacaaIXaaabeaakiaaiYcacqaH8o qBdaahaaWcbeqaaiaaikdaaaGccaaIPaWaa8qaaeqaleqabeqdcqGH RiI8aOWaaSaaaeaacaWGKbGaamiEamaaBaaaleaacaaIYaaabeaaaO qaaiaadIhadaWgaaWcbaGaaGOmaaqabaaaaOWaa8qaaeqaleqabeqd cqGHRiI8aOWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaam yCamaaBaaaleaacaWGubGaaGOmaaqabaaakeaacqaHapaCaaGaeuOP dy0aaSbaaSqaaiaadEgaaeqaaOGaaGikaiaadIhadaWgaaWcbaGaaG OmaaqabaGccaaISaGaamiDamaaBaaaleaacaaIYaaabeaakiaaiYca cqaH8oqBdaahaaWcbeqaaiaaikdaaaGccaaIPaGaey41aqlaaa@7F1C@

                                                           ×d σ ^ ПРП (RRJ/ψγ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aqRaam izaiqbeo8aZzaajaWaaWbaaSqabeaacaqGFqGaaeiieiaab+bbaaGc caaIOaGaamOuaiaadkfacqGHsgIRcaWGkbGaaG4laiabeI8a5jabeo 7aNjaaiMcacaaISaaaaa@49B7@                                                                 (1)

 где q 1,2 = x 1,2 P 1,2 + q 1,2T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaaIXaGaaGilaiaaikdaaeqaaOGaaGypaiaadIhadaWgaaWc baGaaGymaiaaiYcacaaIYaaabeaakiaadcfadaWgaaWcbaGaaGymai aaiYcacaaIYaaabeaakiabgUcaRiaadghadaWgaaWcbaGaaGymaiaa iYcacaaIYaGaamivaaqabaaaaa@47C9@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  это 4-импульсы реджезованных глюонов; P 1,2 μ = s 2 (1,0,0,±1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIXaGaaGilaiaaikdaaeaacqaH8oqBaaGccaaI9aWaaSaa aeaadaGcaaqaaiaadohaaSqabaaakeaacaaIYaaaaiaaiIcacaaIXa GaaGilaiaaicdacaaISaGaaGimaiaaiYcacqGHXcqScaaIXaGaaGyk aaaa@4805@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  4-импульсы протонов; q 1,2T =(0, q 1,2T ,0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaaIXaGaaGilaiaaikdacaWGubaabeaakiaai2dacaaIOaGa aGimaiaaiYcacaWGXbWaaSbaaSqaaiaaigdacaaISaGaaGOmaiaads faaeqaaOGaaGilaiaaicdacaaIPaaaaa@4577@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  это 4-поперечные импульсы глюонов; t 1,2 = q 1,2T 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaaIXaGaaGilaiaaikdaaeqaaOGaaGypaiabgkHiTiaadgha daqhaaWcbaGaaGymaiaaiYcacaaIYaGaamivaaqaaiaaikdaaaaaaa@41FC@ , Φ g (x,t, μ 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaaiaadEgaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiYca cqaH8oqBdaahaaWcbeqaaiaaikdaaaGccaaIPaaaaa@4213@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  нПФР реджезованного глюона.

Отметим, что для модифицированных КМРВ нПФР при произвольном x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@3904@  выполняется условие точной нормировки[18]:

             0 μ 2 Φ g (x,t, μ 2 )dt=x f g (x, μ 2 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaeqiVd02aaWbaaeqabaGaaGOmaaaaa0Gaey4kIipa kiabfA6agnaaBaaaleaacaWGNbaabeaakiaaiIcacaWG4bGaaGilai aadshacaaISaGaeqiVd02aaWbaaSqabeaacaaIYaaaaOGaaGykaiaa dsgacaWG0bGaaGypaiaadIhacaWGMbWaaSbaaSqaaiaadEgaaeqaaO GaaGikaiaadIhacaaISaGaeqiVd02aaWbaaSqabeaacaaIYaaaaOGa aGykaiaai6caaaa@5401@                                                                                                           (2)

 Сечение партонного подпроцеса d σ ^ ПРП (RRJ/ψγ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiqbeo 8aZzaajaWaaWbaaSqabeaacaqGFqGaaeiieiaab+bbaaGccaaIOaGa amOuaiaadkfacqGHsgIRcaWGkbGaaG4laiabeI8a5jabeo7aNjaaiM caaaa@46EA@ , так же как и d σ ^ ПРП (RR ψ γ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiqbeo 8aZzaajaWaaWbaaSqabeaacaqGFqGaaeiieiaab+bbaaGccaaIOaGa amOuaiaadkfacqGHsgIRcuaHipqEgaqbaiabeo7aNjaaiMcaaaa@456E@  и d σ ^ ПРП (RR χ cJ γ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiqbeo 8aZzaajaWaaWbaaSqabeaacaqGFqGaaeiieiaab+bbaaGccaaIOaGa amOuaiaadkfacqGHsgIRcqaHhpWydaWgaaWcbaGaam4yaiaadQeaae qaaOGaeq4SdCMaaGykaaaa@4738@ , записываются через усреднение квадрированных реджезованных амплитуд |M | 2 ¯ ПРП MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca aI8bGaamytaiaaiYhadaahaaWcbeqaaiaaikdaaaaaaOWaaSbaaSqa aiaab+bbcaqGGqGaae4heaqabaaaaa@3E08@  обычным образом, см. (5) и (6).

Амплитуды партон-партонного рассеяния в ПРП вычисляются с использованием правил Фейнмана ЭТП Липатова. В данном подходе амплитуды калибровочно-инвариантны и начальные партоны рассматриваются как реджезованные партоны. Чтобы получить реджезованные амплитуды мы используем программный пакет FeynArts [38] для системы Mathematica и модельный файл ReggeQCD [17].

Калибровочная инвариантность всех амплитуд подтверждается аналитически. Кроме того, квадраты амплитуд в ПРП имеют явный коллинеарный предел, который был проверен аналитически для каждой рассматриваемой квадрированной амплитуды:

             lim t 1 , t 2 0 0 2π 0 2π d ϕ 1 d ϕ 2 (2π) 2 |M | 2 ¯ ПРП = |M | 2 ¯ КПМ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWG0bWaaSbaaeaacaaIXaaabeaacaaISaGaamiDamaaBaaabaGa aGOmaaqabaGaeyOKH4QaaGimaaqabOqaaiGacYgacaGGPbGaaiyBaa aadaWdXbqabSqaaiaaicdaaeaacaaIYaGaeqiWdahaniabgUIiYdGc daWdXbqabSqaaiaaicdaaeaacaaIYaGaeqiWdahaniabgUIiYdGcda WcaaqaaiaadsgacqaHvpGzdaWgaaWcbaGaaGymaaqabaGccaWGKbGa eqy1dy2aaSbaaSqaaiaaikdaaeqaaaGcbaGaaGikaiaaikdacqaHap aCcaaIPaWaaWbaaSqabeaacaaIYaaaaaaakmaanaaabaGaaGiFaiaa d2eacaaI8bWaaWbaaSqabeaacaaIYaaaaaaakmaaBaaaleaacaqGFq Gaaeiieiaab+bbaeqaaOGaaGypamaanaaabaGaaGiFaiaad2eacaaI 8bWaaWbaaSqabeaacaaIYaaaaaaakmaaBaaaleaacaqGAqGaae4hei aabYbbaeqaaOGaaGOlaaaa@6763@                                                                                                   (3)

ПРП использовалась для описания рождения прямых J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  -мезонов и рождения J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  через распады вышележащих состояний при высокой энергии в протон-протонных столкновениях. В предыдущих работах было обнаружено хорошее соответствие между вычислениями ЛП ПРП [19-21, 39-41] и экспериментальными данными коллабораций CDF, ATLAS, CMS, LHCb.

 2 ПРП и НРКХД

Подход НРКХД MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  это теоретическая модель, в которой разделяются эффекты физики больших и малых расстояний. Сечение рождения чармония C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFce=qaaa@434C@  в подпроцессе глюонного слияния может быть выражено как сумма по всем возможным состояниям c c ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiqado gagaqeaaaa@39EF@  -пары с соответствующими квантовыми числами [9]:

             σ(RRCγ)= n σ ^ (RRc c ¯ [n]γ) O C [n] N col N pol , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaaG ikaiaadkfacaWGsbGaeyOKH46efv3ySLgznfgDOfdaryqr1ngBPrgi nfgDObYtUvgaiuaacqWFce=qcqaHZoWzcaaIPaGaaGypamaaqafabe WcbaGaamOBaaqab0GaeyyeIuoakiqbeo8aZzaajaGaaGikaiaadkfa caWGsbGaeyOKH4Qaam4yaiqadogagaqeaiaaiUfacaWGUbGaaGyxai abeo7aNjaaiMcadaWcaaqaaiabgMYiHlab=5q8pnaaCaaaleqabaGa e8NaXpeaaOGaaG4waiaad6gacaaIDbaabaGaamOtamaaBaaaleaaca WGJbGaam4BaiaadYgaaeqaaOGaamOtamaaBaaaleaacaWGWbGaam4B aiaadYgaaeqaaaaakiaaiYcaaaa@6D7B@                                                                                             (1)

 где [n ]=[ 2S+1 L J (1,8) ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaad6 gacaaIDbGaaGypaiaaiUfadaahaaWcbeqaaiaaikdacaWGtbGaey4k aSIaaGymaaaakiaadYeadaqhaaWcbaGaamOsaaqaaiaaiIcacaaIXa GaaGilaiaaiIdacaaIPaaaaOGaaGyxaaaa@4630@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  состояние c c ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiqado gagaqeaaaa@39EF@  -пары, записанное в спектроскопической нотации; квантовое число в верхнем индексе (1,8) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWbaaSqabe aacaaIOaGaaGymaiaaiYcacaaI4aGaaGykaaaaaaa@3BCC@  определяет синглетное или октетное по цвету состояние; σ ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aaaaa@39DA@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  сечение партонного подпроцесса рождения состояния c c ¯ [n] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiqado gagaqeaiaaiUfacaWGUbGaaGyxaaaa@3CAE@ , а O C [n] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyykJe+efv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFoe=tdaah aaWcbeqaaiab=jq8dbaakiaaiUfacaWGUbGaaGyxaiabgQYiXdaa@4B98@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  это непертурбативные матричные элементы (НМЭ), которые описывают переход промежуточного состояния в чармоний C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFce=qaaa@434C@ . Также N col =2 N c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaWGJbGaam4BaiaadYgaaeqaaOGaaGypaiaaikdacaWGobWa aSbaaSqaaiaadogaaeqaaaaa@3F47@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  для синглетных по цвету состояний, N col = N c 2 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaWGJbGaam4BaiaadYgaaeqaaOGaaGypaiaad6eadaqhaaWc baGaam4yaaqaaiaaikdaaaGccqGHsislcaaIXaaaaa@40FA@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  для октетных по цвету состояний, N pol =2J+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaWGWbGaam4BaiaadYgaaeqaaOGaaGypaiaaikdacaWGkbGa ey4kaSIaaGymaaaa@3FD9@ .

При изучении рождения J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  -мезонов мы рассматриваем вклады прямого рождения подпроцесса

             R+RJ/ψ+γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiabgU caRiaadkfacqGHsgIRcaWGkbGaaG4laiabeI8a5jabgUcaRiabeo7a Nbaa@4263@                                                                                                                   (2)

 и рождение в подпроцессах

             R+R ψ +γ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiabgU caRiaadkfacqGHsgIRcuaHipqEgaqbaiabgUcaRiabeo7aNjaaiYca aaa@419D@                                                                                                                     (3)

             R+R χ cJ +γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiabgU caRiaadkfacqGHsgIRcqaHhpWydaWgaaWcbaGaam4yaiaadQeaaeqa aOGaey4kaSIaeq4SdCgaaa@42B1@                                                                                                                    (4)

 через распады ψ J/ψX MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbau aacqGHsgIRcaWGkbGaaG4laiabeI8a5jaadIfaaaa@4001@  и χ cJ J/ψγ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aaS baaSqaaiaadogacaWGkbaabeaakiabgkziUkaadQeacaaIVaGaeqiY dKNaeq4SdCgaaa@4295@ . При энергиях большого адронного коллайдера (БАК) вклад подпроцесса кварк-антикварковой аннигиляции в J/ψ+γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEcqGHRaWkcqaHZoWzaaa@3DE6@  мал и может быть упущен. Мы получили аналитические формулы квадрированных амплитуд с использованием программных пакетов FeynArts и ReggeQCD, которые громоздки для представления в печатной статье, но могут быть получены у авторов по запросу.

Формула для численных расчетов может быть получена в ПРП из формулы факторизации (1) и сечения партонного подпроцесса

             d σ ^ ПРП (RRJ/ψγ)=(2π ) 4 δ (4) ( q 1 + q 2 p ψ k γ ) M 2 ¯ ПРП I d 3 p ψ (2π) 3 2 p ψ 0 d 3 k γ (2π) 3 2 k γ 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiqbeo 8aZzaajaWaaWbaaSqabeaacaqGFqGaaeiieiaab+bbaaGccaaIOaGa amOuaiaadkfacqGHsgIRcaWGkbGaaG4laiabeI8a5jabeo7aNjaaiM cacaaI9aGaaGikaiaaikdacqaHapaCcaaIPaWaaWbaaSqabeaacaaI 0aaaaOGaeqiTdq2aaWbaaSqabeaacaaIOaGaaGinaiaaiMcaaaGcca aIOaGaamyCamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadghadaWg aaWcbaGaaGOmaaqabaGccqGHsislcaWGWbWaaSbaaSqaaiabeI8a5b qabaGccqGHsislcaWGRbWaaSbaaSqaaiabeo7aNbqabaGccaaIPaWa aSaaaeaadaqdaaqaaiaad2eadaahaaWcbeqaaiaaikdaaaaaaOWaaS baaSqaaiaab+bbcaqGGqGaae4heaqabaaakeaacaWGjbaaamaalaaa baGaamizamaaCaaaleqabaGaaG4maaaakiaadchadaWgaaWcbaGaeq iYdKhabeaaaOqaaiaaiIcacaaIYaGaeqiWdaNaaGykamaaCaaaleqa baGaaG4maaaakiaaikdacaWGWbWaa0baaSqaaiabeI8a5bqaaiaaic daaaaaaOWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIZaaaaOGaam4A amaaBaaaleaacqaHZoWzaeqaaaGcbaGaaGikaiaaikdacqaHapaCca aIPaWaaWbaaSqabeaacaaIZaaaaOGaaGOmaiaadUgadaqhaaWcbaGa eq4SdCgabaGaaGimaaaaaaGccaaISaaaaa@7FC4@                                                                 (5)

 где I=2 x 1 x 2 s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaai2 dacaaIYaGaamiEamaaBaaaleaacaaIXaaabeaakiaadIhadaWgaaWc baGaaGOmaaqabaGccaWGZbaaaa@3F2D@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  потоковый фактор; p ψ μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaDa aaleaacqaHipqEaeaacqaH8oqBaaaaaa@3CAD@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  4-импульс J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  -мезона; k γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacqaHZoWzaeqaaaaa@3ACA@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  4-импульс фотона.

Таким образом, в ПРП с использованием НРКХД сечение рождения J/ψ+γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEcqGHRaWkcqaHZoWzaaa@3DE6@  может быть записано как

             dσ(ppJ/ψγ) d p ψT d y ψ d k γT d y γ dΔϕ = p ψT k γT 16 π 3 d t 1 d ϕ 1 Φ g ( x 1 , t 1 , μ 2 ) Φ g ( x 2 , t 2 , μ 2 ) M 2 ¯ PRA ( x 1 x 2 s) 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbGaeq4WdmNaaGikaiaadchacaWGWbGaeyOKH4QaamOsaiaai+ca cqaHipqEcqaHZoWzcaaIPaaabaGaamizaiaadchadaWgaaWcbaGaeq iYdKNaamivaaqabaGccaWGKbGaamyEamaaBaaaleaacqaHipqEaeqa aOGaamizaiaadUgadaWgaaWcbaGaeq4SdCMaamivaaqabaGccaWGKb GaamyEamaaBaaaleaacqaHZoWzaeqaaOGaamizaiabfs5aejabew9a MbaacaaI9aWaaSaaaeaacaWGWbWaaSbaaSqaaiabeI8a5jaadsfaae qaaOGaam4AamaaBaaaleaacqaHZoWzcaWGubaabeaaaOqaaiaaigda caaI2aGaeqiWda3aaWbaaSqabeaacaaIZaaaaaaakmaapeaabeWcbe qab0Gaey4kIipakiaadsgacaWG0bWaaSbaaSqaaiaaigdaaeqaaOWa a8qaaeqaleqabeqdcqGHRiI8aOGaamizaiabew9aMnaaBaaaleaaca aIXaaabeaakiabfA6agnaaBaaaleaacaWGNbaabeaakiaaiIcacaWG 4bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadshadaWgaaWcbaGaaG ymaaqabaGccaaISaGaeqiVd02aaWbaaSqabeaacaaIYaaaaOGaaGyk aiabfA6agnaaBaaaleaacaWGNbaabeaakiaaiIcacaWG4bWaaSbaaS qaaiaaikdaaeqaaOGaaGilaiaadshadaWgaaWcbaGaaGOmaaqabaGc caaISaGaeqiVd02aaWbaaSqabeaacaaIYaaaaOGaaGykamaalaaaba Waa0aaaeaacaWGnbWaaWbaaSqabeaacaaIYaaaaaaakmaaBaaaleaa caWGqbGaamOuaiaadgeaaeqaaaGcbaGaaGikaiaadIhadaWgaaWcba GaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaam4Caiaa iMcadaahaaWcbeqaaiaaikdaaaaaaOGaaGilaaaa@9557@                                                                     (6)

 где q 2T = p T + k T q 1T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaaIYaGaamivaaqabaGccaaI9aGaamiCamaaBaaaleaacaWG ubaabeaakiabgUcaRiaadUgadaWgaaWcbaGaamivaaqabaGccqGHsi slcaWGXbWaaSbaaSqaaiaaigdacaWGubaabeaaaaa@4417@ , x 1 =( p ψ 0 + k γ 0 + p ψ z + k γ z )/ s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaakiaai2dacaaIOaGaamiCamaaDaaaleaacqaH ipqEaeaacaaIWaaaaOGaey4kaSIaam4AamaaDaaaleaacqaHZoWzae aacaaIWaaaaOGaey4kaSIaamiCamaaDaaaleaacqaHipqEaeaacaWG 6baaaOGaey4kaSIaam4AamaaDaaaleaacqaHZoWzaeaacaWG6baaaO GaaGykaiaai+cadaGcaaqaaiaadohaaSqabaaaaa@4F95@ , x 2 =( p ψ 0 + k γ 0 p ψ z k γ z )/ s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIYaaabeaakiaai2dacaaIOaGaamiCamaaDaaaleaacqaH ipqEaeaacaaIWaaaaOGaey4kaSIaam4AamaaDaaaleaacqaHZoWzae aacaaIWaaaaOGaeyOeI0IaamiCamaaDaaaleaacqaHipqEaeaacaWG 6baaaOGaeyOeI0Iaam4AamaaDaaaleaacqaHZoWzaeaacaWG6baaaO GaaGykaiaai+cadaGcaaqaaiaadohaaSqabaaaaa@4FAC@ , y ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacqaHipqEaeqaaaaa@3AFF@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  быстрота J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@ ; y γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacqaHZoWzaeqaaaaa@3AD8@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  быстрота фотона; Δϕ= ϕ ψ ϕ γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaeq y1dyMaaGypaiabew9aMnaaBaaaleaacqaHipqEaeqaaOGaeyOeI0Ia eqy1dy2aaSbaaSqaaiabeo7aNbqabaaaaa@4450@ . Квадрированные амплитуды |M | 2 ¯ ПРП MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca aI8bGaamytaiaaiYhadaahaaWcbeqaaiaaikdaaaaaaOWaaSbaaSqa aiaab+bbcaqGGqGaae4heaqabaaaaa@3E08@  являются функциями переменных Мандельштама s ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4Cayaaja aaaa@390F@ , t ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiDayaaja aaaa@3910@ , u ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyDayaaja aaaa@3911@  и переменных t 1 , t 2 , a k , a p , b k , b p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaaIXaaabeaakiaaiYcacaWG0bWaaSbaaSqaaiaaikdaaeqa aOGaaGilaiaadggadaWgaaWcbaGaam4AaaqabaGccaaISaGaamyyam aaBaaaleaacaWGWbaabeaakiaaiYcacaWGIbWaaSbaaSqaaiaadUga aeqaaOGaaGilaiaadkgadaWgaaWcbaGaamiCaaqabaaaaa@479C@ , где a k =2( k γ P 2 )/s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaWGRbaabeaakiaai2dacaaIYaGaaGikaiaadUgadaWgaaWc baGaeq4SdCgabeaakiaadcfadaWgaaWcbaGaaGOmaaqabaGccaaIPa GaaG4laiaadohaaaa@4340@ , a p =2( p ψ P 2 )/s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaWGWbaabeaakiaai2dacaaIYaGaaGikaiaadchadaWgaaWc baGaeqiYdKhabeaakiaadcfadaWgaaWcbaGaaGOmaaqabaGccaaIPa GaaG4laiaadohaaaa@4371@ , b k =2( k γ P 1 )/s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa aaleaacaWGRbaabeaakiaai2dacaaIYaGaaGikaiaadUgadaWgaaWc baGaeq4SdCgabeaakiaadcfadaWgaaWcbaGaaGymaaqabaGccaaIPa GaaG4laiaadohaaaa@4340@ , b p =2( p ψ P 1 )/s. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa aaleaacaWGWbaabeaakiaai2dacaaIYaGaaGikaiaadchadaWgaaWc baGaeqiYdKhabeaakiaadcfadaWgaaWcbaGaaGymaaqabaGccaaIPa GaaG4laiaadohacaaIUaaaaa@4429@

3 ПРП и УМИЦ

Описание ассоциативного рождения J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  -мезона и прямого фотона с большим p T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGubaabeaaaaa@3A01@  в ПРП с использованием УМИЦ в лидирующем порядке по α S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadofaaeqaaaaa@3AAA@  возможно через подпроцессы

             R+Rc+ c ¯ +γ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiabgU caRiaadkfacqGHsgIRcaWGJbGaey4kaSIabm4yayaaraGaey4kaSIa eq4SdCMaaGilaaaa@428D@                                                                                                                   (1)

             Q+ Q ¯ c+ c ¯ +γ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiabgU caRiqadgfagaqeaiabgkziUkaadogacqGHRaWkceWGJbGbaebacqGH RaWkcqaHZoWzcaaIUaaaaa@42A5@                                                                                                                   (2)

 Как и в случае использования НРКХД, вклад процесса кварк-антикварковой аннигиляции пренебрежимо мал и может быть опущен.

В УМИЦ сечение рождения J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  -мезонов с учетом распадов вышележащих состояний записывается следующим образом:

             σ(ppJ/ψγX)= F ψ m ψ 2 4 m D 2 dσ(ppc c ¯ γX) d M 2 d M 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaaG ikaiaadchacaWGWbGaeyOKH4QaamOsaiaai+cacqaHipqEcqaHZoWz caWGybGaaGykaiaai2dacaWGgbWaaWbaaSqabeaacqaHipqEaaGcda WdXbqabSqaaiaad2gadaqhaaqaaiabeI8a5bqaaiaaikdaaaaabaGa aGinaiaad2gadaqhaaqaaiaadseaaeaacaaIYaaaaaqdcqGHRiI8aO WaaSaaaeaacaWGKbGaeq4WdmNaaGikaiaadchacaWGWbGaeyOKH4Qa am4yaiqadogagaqeaiabeo7aNjaadIfacaaIPaaabaGaamizaiaad2 eadaahaaWcbeqaaiaaikdaaaaaaOGaamizaiaad2eadaahaaWcbeqa aiaaikdaaaGccaaISaaaaa@6456@                                                                                        (3)

 где M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaaaa@38D9@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  инвариантная масса c c ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiqado gagaqeaaaa@39EF@  -пары; m D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa aaleaacaWGebaabeaaaaa@39EE@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  масса самого легкого D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraaaa@38D0@  мезона.

Другими словами, интегрирование проводится от массы чармония до порога рождения мезонов с открытым очарованием. В УМИЦ также учитывается, что масса промежуточного состояния (то есть инвариантная масса c c ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiqado gagaqeaaaa@39EF@  -пары) отлична от массы J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  -мезона, что учитывается соотношением между 4-импульсами p ψ μ = p μ m ψ M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaDa aaleaacqaHipqEaeaacqaH8oqBaaGccaaI9aGaamiCamaaCaaaleqa baGaeqiVd0gaaOWaaSaaaeaacaWGTbWaaSbaaSqaaiabeI8a5bqaba aakeaacaWGnbaaaaaa@4438@ , где p μ = p c μ + p c ¯ μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaeqiVd0gaaOGaaGypaiaadchadaqhaaWcbaGaam4yaaqa aiabeY7aTbaakiabgUcaRiaadchadaqhaaWcbaGabm4yayaaraaaba GaeqiVd0gaaaaa@4434@ . При описании сечений рождения J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  -мезонов при энергии БАК в ПРП с использованием УМИЦ было показано, что хорошее описание экспериментальных данных достигается при значении параметра адронизации F ψ 0.02 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaCa aaleqabaGaeqiYdKhaaebbfv3ySLgzGueE0jxyaGqbaOGae83qISJa aGimaiaai6cacaaIWaGaaGOmaaaa@4380@  при энергии s =13 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca WGZbaaleqaaOGaaGypaiaaigdacaaIZaaaaa@3B63@  ТэВ [22].

Сечение партонного подпроцесса (1) записывается также как (5), но с учетом того, что это подпроцесс 23 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabgk ziUkaaiodaaaa@3B6D@ :

             d σ ^ ПРП (R+Rc+ c ¯ +γ)=(2π ) 4 δ (4) ( q 1 + q 2 p c p c ¯ k γ ) |M | 2 ¯ ПРП 2 x 1 x 2 s × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiqbeo 8aZzaajaWaaWbaaSqabeaacaqGFqGaaeiieiaab+bbaaGccaaIOaGa amOuaiabgUcaRiaadkfacqGHsgIRcaWGJbGaey4kaSIabm4yayaara Gaey4kaSIaeq4SdCMaaGykaiaai2dacaaIOaGaaGOmaiabec8aWjaa iMcadaahaaWcbeqaaiaaisdaaaGccqaH0oazdaahaaWcbeqaaiaaiI cacaaI0aGaaGykaaaakiaaiIcacaWGXbWaaSbaaSqaaiaaigdaaeqa aOGaey4kaSIaamyCamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadc hadaWgaaWcbaGaam4yaaqabaGccqGHsislcaWGWbWaaSbaaSqaaiqa dogagaqeaaqabaGccqGHsislcaWGRbWaaSbaaSqaaiabeo7aNbqaba GccaaIPaWaaSaaaeaadaqdaaqaaiaaiYhacaWGnbGaaGiFamaaCaaa leqabaGaaGOmaaaaaaGcdaWgaaWcbaGaae4heiaabccbcaqGFqaabe aaaOqaaiaaikdacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaamiEamaa BaaaleaacaaIYaaabeaakiaadohaaaGaey41aqlaaa@6F66@

                                                      × d 3 p c (2π) 3 2 p c0 d 3 p c ¯ (2π) 3 2 p c ¯ 0 d 3 k γ (2π) 3 2 k γ0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aaS aaaeaacaWGKbWaaWbaaSqabeaacaaIZaaaaOGaamiCamaaBaaaleaa caWGJbaabeaaaOqaaiaaiIcacaaIYaGaeqiWdaNaaGykamaaCaaale qabaGaaG4maaaakiaaikdacaWGWbWaaSbaaSqaaiaadogacaaIWaaa beaaaaGcdaWcaaqaaiaadsgadaahaaWcbeqaaiaaiodaaaGccaWGWb WaaSbaaSqaaiqadogagaqeaaqabaaakeaacaaIOaGaaGOmaiabec8a WjaaiMcadaahaaWcbeqaaiaaiodaaaGccaaIYaGaamiCamaaBaaale aaceWGJbGbaebacaaIWaaabeaaaaGcdaWcaaqaaiaadsgadaahaaWc beqaaiaaiodaaaGccaWGRbWaaSbaaSqaaiabeo7aNbqabaaakeaaca aIOaGaaGOmaiabec8aWjaaiMcadaahaaWcbeqaaiaaiodaaaGccaaI YaGaam4AamaaBaaaleaacqaHZoWzcaaIWaaabeaaaaGccaaIUaaaaa@618B@                                                             (4)

 Формула для численных расчетов в ПРП с использованием УМИЦ может быть получена из (3) и (4):

            

                                                 × 1 4 m c 2 M 2 Φ g ( x 1 , t 1 , μ 2 ) Φ g ( x 2 , t 2 , μ 2 ) |M | 2 ¯ ПРП ( x 1 x 2 s) 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aaO aaaeaacaaIXaGaeyOeI0YaaSaaaeaacaaI0aGaamyBamaaDaaaleaa caWGJbaabaGaaGOmaaaaaOqaaiaad2eadaahaaWcbeqaaiaaikdaaa aaaaqabaGccqqHMoGrdaWgaaWcbaGaam4zaaqabaGccaaIOaGaamiE amaaBaaaleaacaaIXaaabeaakiaaiYcacaWG0bWaaSbaaSqaaiaaig daaeqaaOGaaGilaiabeY7aTnaaCaaaleqabaGaaGOmaaaakiaaiMca cqqHMoGrdaWgaaWcbaGaam4zaaqabaGccaaIOaGaamiEamaaBaaale aacaaIYaaabeaakiaaiYcacaWG0bWaaSbaaSqaaiaaikdaaeqaaOGa aGilaiabeY7aTnaaCaaaleqabaGaaGOmaaaakiaaiMcadaWcaaqaam aanaaabaGaaGiFaiaad2eacaaI8bWaaWbaaSqabeaacaaIYaaaaaaa kmaaBaaaleaacaqGFqGaaeiieiaab+bbaeqaaaGcbaGaaGikaiaadI hadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaikdaaeqa aOGaam4CaiaaiMcadaahaaWcbeqaaiaaikdaaaaaaOGaaGilaaaa@6712@                                                        (5)

 где d Ω c c ¯ =sin(θ)dθdϕ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabfM 6axnaaBaaaleaacaWGJbGabm4yayaaraaabeaakiaai2daciGGZbGa aiyAaiaac6gacaaIOaGaeqiUdeNaaGykaiaadsgacqaH4oqCcaWGKb Gaeqy1dygaaa@48A6@ , углы θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@39BD@  и ϕ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dygaaa@39CF@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  полярный и азимутальный углы в системе покоя c c ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiqado gagaqeaaaa@39EF@  -пары.

В численных расчетах мы полагаем массу c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@38EF@  -кварка m c =1.3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa aaleaacaWGJbaabeaakiaai2dacaaIXaGaaGOlaiaaiodaaaa@3D0E@  ГэВ, массу D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraaaa@38D0@  -мезона m D =1.86 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa aaleaacaWGebaabeaakiaai2dacaaIXaGaaGOlaiaaiIdacaaI2aaa aa@3DB4@  ГэВ, и массу J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  -мезона m J/ψ =3.097 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa aaleaacaWGkbGaaG4laiabeI8a5bqabaGccaaI9aGaaG4maiaai6ca caaIWaGaaGyoaiaaiEdaaaa@40FF@  ГэВ.

Для численных вычислений удобно записать 4-импульсы c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@38EF@  -кварка и c ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4yayaara aaaa@3907@  -антикварка следующим образом:

             p c μ = 1 2 p μ + r μ и p c ¯ μ = 1 2 p μ r μ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaDa aaleaacaWGJbaabaGaeqiVd0gaaOGaaGypamaalaaabaGaaGymaaqa aiaaikdaaaGaamiCamaaCaaaleqabaGaeqiVd0gaaOGaey4kaSIaam OCamaaCaaaleqabaGaeqiVd0gaaOGaaeioeiaadchadaqhaaWcbaGa bm4yayaaraaabaGaeqiVd0gaaOGaaGypamaalaaabaGaaGymaaqaai aaikdaaaGaamiCamaaCaaaleqabaGaeqiVd0gaaOGaeyOeI0IaamOC amaaCaaaleqabaGaeqiVd0gaaOGaaGilaaaa@531F@                                                                                                        (6)

 где r μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaCa aaleqabaGaeqiVd0gaaaaa@3AE1@  4-импульс относительного движения записан через инвариантную массу M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaaaa@38D9@ , поперечный импульс p T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGubaabeaaaaa@3A01@  и быстроту y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@3905@   c c ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiqado gagaqeaaaa@39EF@  -пары как

             r μ = 1 2 M 2 4 m c 2 X μ sin(θ)cos(ϕ)+ Y μ sin(θ)sin(ϕ)+ Z μ cos(θ) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaCa aaleqabaGaeqiVd0gaaOGaaGypamaalaaabaGaaGymaaqaaiaaikda aaWaaOaaaeaacaWGnbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaG inaiaad2gadaqhaaWcbaGaam4yaaqaaiaaikdaaaaabeaakmaabmaa baGaamiwamaaCaaaleqabaGaeqiVd0gaaOGaci4CaiaacMgacaGGUb GaaGikaiabeI7aXjaaiMcaciGGJbGaai4BaiaacohacaaIOaGaeqy1 dyMaaGykaiabgUcaRiaadMfadaahaaWcbeqaaiabeY7aTbaakiGaco hacaGGPbGaaiOBaiaaiIcacqaH4oqCcaaIPaGaci4CaiaacMgacaGG UbGaaGikaiabew9aMjaaiMcacqGHRaWkcaWGAbWaaWbaaSqabeaacq aH8oqBaaGcciGGJbGaai4BaiaacohacaaIOaGaeqiUdeNaaGykaaGa ayjkaiaawMcaaiaaiYcaaaa@6DC3@                                                                          (7)

 где

             X μ = 1 M p T cosh(y), M 2 + p T 2 ,0, p T sinh(y) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCa aaleqabaGaeqiVd0gaaOGaaGypamaalaaabaGaaGymaaqaaiaad2ea aaWaaeWaaeaacaWGWbWaaSbaaSqaaiaadsfaaeqaaOGaci4yaiaac+ gacaGGZbGaaiiAaiaaiIcacaWG5bGaaGykaiaaiYcadaGcaaqaaiaa d2eadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGWbWaa0baaSqaai aadsfaaeaacaaIYaaaaaqabaGccaaISaGaaGimaiaaiYcacaWGWbWa aSbaaSqaaiaadsfaaeqaaOGaci4CaiaacMgacaGGUbGaaiiAaiaaiI cacaWG5bGaaGykaaGaayjkaiaawMcaaiaaiYcaaaa@5819@

             Y μ =sign(y) 0,0,1,0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaCa aaleqabaGaeqiVd0gaaOGaaGypaiaabohacaqGPbGaae4zaiaab6ga caaIOaGaamyEaiaaiMcadaqadaqaaiaaicdacaaISaGaaGimaiaaiY cacaaIXaGaaGilaiaaicdaaiaawIcacaGLPaaacaaISaaaaa@4903@

             Z μ =sign(y) sinh(y),0,0,cosh(y) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaCa aaleqabaGaeqiVd0gaaOGaaGypaiaabohacaqGPbGaae4zaiaab6ga caaIOaGaamyEaiaaiMcadaqadaqaaiGacohacaGGPbGaaiOBaiaacI gacaaIOaGaamyEaiaaiMcacaaISaGaaGimaiaaiYcacaaIWaGaaGil aiGacogacaGGVbGaai4CaiaacIgacaaIOaGaamyEaiaaiMcaaiaawI cacaGLPaaacaaIUaaaaa@53DA@

Средний квадрат амплитуды |M | 2 ¯ ПРП MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca aI8bGaamytaiaaiYhadaahaaWcbeqaaiaaikdaaaaaaOWaaSbaaSqa aiaab+bbcaqGGqGaae4heaqabaaaaa@3E08@  был вычислен с использованием программных пакетов FeynArts и ReggeQCD и является функцией переменных s ^ =( q 1 + q 2 ) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4Cayaaja GaaGypaiaaiIcacaWGXbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa amyCamaaBaaaleaacaaIYaaabeaakiaaiMcadaahaaWcbeqaaiaaik daaaaaaa@40D5@ , t ^ =( q 1 k ) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiDayaaja GaaGypaiaaiIcacaWGXbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Ia am4AaiaaiMcadaahaaWcbeqaaiaaikdaaaaaaa@3FE9@ , u ^ =( q 2 k ) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyDayaaja GaaGypaiaaiIcacaWGXbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Ia am4AaiaaiMcadaahaaWcbeqaaiaaikdaaaaaaa@3FEB@ , w 1 =( q 1 p c ) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaaIXaaabeaakiaai2dacaaIOaGaamyCamaaBaaaleaacaaI XaaabeaakiabgkHiTiaadchadaWgaaWcbaGaam4yaaqabaGccaaIPa WaaWbaaSqabeaacaaIYaaaaaaa@41F0@ , w 2 =( q 2 p c ¯ ) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaaIYaaabeaakiaai2dacaaIOaGaamyCamaaBaaaleaacaaI YaaabeaakiabgkHiTiaadchadaWgaaWcbaGabm4yayaaraaabeaaki aaiMcadaahaaWcbeqaaiaaikdaaaaaaa@420A@ , a c =2( p c P 2 )/s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaWGJbaabeaakiaai2dacaaIYaGaaGikaiaadchadaWgaaWc baGaam4yaaqabaGccaWGqbWaaSbaaSqaaiaaikdaaeqaaOGaaGykai aai+cacaWGZbaaaa@427E@ , a c ¯ =2( p c ¯ P 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaaceWGJbGbaebaaeqaaOGaaGypaiaaikdacaaIOaGaamiCamaa BaaaleaaceWGJbGbaebaaeqaaOGaamiuamaaBaaaleaacaaIYaaabe aakiaaiMcaaaa@40FD@ , a k =2( k γ P 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaWGRbaabeaakiaai2dacaaIYaGaaGikaiaadUgadaWgaaWc baGaeq4SdCgabeaakiaadcfadaWgaaWcbaGaaGOmaaqabaGccaaIPa aaaa@418F@ , b c =2( p c P 1 )/s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa aaleaacaWGJbaabeaakiaai2dacaaIYaGaaGikaiaadchadaWgaaWc baGaam4yaaqabaGccaWGqbWaaSbaaSqaaiaaigdaaeqaaOGaaGykai aai+cacaWGZbaaaa@427E@ , b c ¯ =2( p c ¯ P 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa aaleaaceWGJbGbaebaaeqaaOGaaGypaiaaikdacaaIOaGaamiCamaa BaaaleaaceWGJbGbaebaaeqaaOGaamiuamaaBaaaleaacaaIXaaabe aakiaaiMcaaaa@40FD@ , b k =2( k γ P 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa aaleaacaWGRbaabeaakiaai2dacaaIYaGaaGikaiaadUgadaWgaaWc baGaeq4SdCgabeaakiaadcfadaWgaaWcbaGaaGymaaqabaGccaaIPa aaaa@418F@ .

Вычисления в ПРП с использованием УМИЦ, описанные выше, могут быть выполнены альтернативным способом с использованием Монте-Карло-генератора событий партонного уровня KaTie [42], так же как и в работе [43] для процесса ассоциативного рождения J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  и D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraaaa@38D0@  -мезонов. Мы выполнили проверку всех наших вычислений в ПРП с использование УМИЦ с помощью генератора KaTie и получили хорошее согласие.

4 Результаты

Во-первых, мы вычислили сечение рождения J/ψ+γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEcqGHRaWkcqaHZoWzaaa@3DE6@  в ПРП с использованием подхода НРКХД, при этом мы раздельно рассматривали различные вклады в процессы рождения J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@ , происходящие через промежуточные синглетное и октетные по цвету различные состояния. Результаты представлены на рис. 4.1. Мы подтвердили вывод о доминирующей роли синглетного механизма в прямом рождении J/ψ+γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEcqGHRaWkcqaHZoWzaaa@3DE6@ [1, 3]. На рис. 4.1 мы также показываем сумму вкладов от подпроцессов кварк-антикварковой аннигиляции при рождении J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  через октетные по цвету состояния, вклады такого типа крайне малы. Принимая во внимание сложности экспериментального разделения вкладов прямого рождения и рождения через распады вышележащих состояний, мы оцениваем вклад в сечение рождения J/ψ+γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEcqGHRaWkcqaHZoWzaaa@3DE6@ , когда рождение J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  происходит через распады ψ(2S)J/ψX MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaG ikaiaaikdacaWGtbGaaGykaiabgkziUkaadQeacaaIVaGaeqiYdKNa amiwaaaa@42EE@  и χ cJ J/ψγ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aaS baaSqaaiaadogacaWGkbaabeaakiabgkziUkaadQeacaaIVaGaeqiY dKNaeq4SdCgaaa@4295@ .

 

Рис. 4.1. Сечение ассоциативного рождения J/ψ + γ как функция поперечного импульса pψT, полученная в ПРП с использованием НРКХД при энергии √ s = 14 ТэВ в центральной области по быстроте |yγ,ψ| < 2: непрерывная кривая — вклад МЦС, шриховая кривая — вклад в прямое рождение через октетное по цвету промежуточное состояние [1S(8) 0 ], пунктирная кривая — вклад в прямое рождение через октетное по цвету промежуточное состояние [3S(8) 1 ], вклад процессов кварк-антикварковой аннигиляции показан кривой с длинным штрихом

 

Рис. 4.2. Сечение ассоциативного рождения J/ψ + γ как функция поперечного импульса pψT, полученная в ПРП с использованием НРКХД при энергии √ s = 14 ТэВ в центральной области по быстроте |yγ,ψ| < 2: непрерывная кривая — вклад прямого рождения J/ψ-мезонов, штриховая кривая — вклад рождения через распад ψ(2S) → J/ψX, пунктирная кривая — вклад в рождение через распад χcJ → J/ψγ

Fig. 4.2. Cross section of associative production of J/ψ + γ as a function of transverse momentum pψT obtained in PRP using NRQCD at energy √ s = 14 TeV in the central rapidity region |yγ,ψ| < 2. Solid curve — contribution of direct production of J/ψ mesons, dashed curve — contribution of production via
decay ψ(2S) → J/ψX, dotted curve — contribution to production via decay χcJ → J/ψγ

 

 Как можно видеть на рис. 4.2, только вклад в рождение J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  через распад ψ(2S) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaG ikaiaaikdacaWGtbGaaGykaaaa@3CCE@  может быть значителен и составляет несколько процентов. Таким образом, при использовании НРКХД мы будем учитывать только вклад синглетного по цвету состояния, то есть мы будем использовать МЦС [7, 8]. Вклады от распадов ψ(2S), χ cJ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaG ikaiaaikdacaWGtbGaaGykaiaaiYcacqaHhpWydaWgaaWcbaGaam4y aiaadQeaaeqaaaaa@411E@  также не будут учитываться, так как они малы по сравнению с теоретической неопределенностью вычислений в ПРП.

 

Рис. 4.3. Дифференциальные сечения ассоциативного рождения J/ψ + γ как функция поперечного импульса pψT при pψT > 5 ГэВ в центральной области по быстроте |yψ, yγ| < 2: непрерывная черная кривая — сечение рождения, полученное в СЛП КПМ, используются результаты из [6]; штриховая кривая — сечение рождения, полученное в ПРП с использованием МЦС; пунктирная кривая — сечение рождения, полученное в ПРП с использованием УМИЦ

Fig. 4.3. Differential cross sections of associated J/ψ + γ production as a function of transverse momentum pψT at pψT > 5 GeV in the central rapidity region |yψ, yγ| < 2. Solid black curve — production cross section
obtained in SLP KPM, results from [6] are used; dashed curve — production cross section obtained in PRP using MCS; dotted curve — production cross section obtained in PRP using UMIC

 

Рис. 4.4. Полные сечения ассоциативного рождения J/ψ + γ как функция нижней границы поперечного импульса фотона pмин γT при pψT > 10 ГэВ: непрерывная черная кривая — сечение рождения, полученное в СЛП КПМ, используются результаты из [6]; штриховая кривая — сечение рождения, полученное в ПРП с использованием МЦС; пунктирная кривая — сечение рождения, полученное в ПРП с использованием УМИЦ

Fig. 4.4. Total cross sections of associated J/ψ + γ production as a function of the lower bound of the photon transverse momentum pmin γT at pψT > 10 GeV. Solid black curve — production cross section obtained
in SLP KPM, results from [6] are used; dashed curve — production cross section obtained in PRP using MCS; dotted curve — production cross section obtained in PRP using UMIC

 

Мы провели сравнение с вычислениями в СЛП КПМ с использованием МЦС при энергии s =14 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca WGZbaaleqaaOGaaGypaiaaigdacaaI0aaaaa@3B64@  ТэВ, опубликованными в [6]. Выполнен расчет спектра по поперечному импульсу J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  -мезонов в кинематической области | y ψ |,| y γ |<3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadM hadaWgaaWcbaGaeqiYdKhabeaakiaaiYhacaaISaGaaGiFaiaadMha daWgaaWcbaGaeq4SdCgabeaakiaaiYhacaaI8aGaaG4maaaa@4435@  и p γT >5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacqaHZoWzcaWGubaabeaakiaai6dacaaI1aaaaa@3D39@  ГэВ, которые использовались в [6]. Показано, что вычисления в ПРП с использованием МЦС немного завышают сечение рождения, вычисленное в СЛП КПМ с использованием МЦС при всех поперечных импульсах J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@ , см. рис. 4.3. Это интересный эффект, так как результаты одиночного рождения J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@ , полученные в ЛП ПРП и в СПЛ КПМ с использованием НРКХД, приблизительно совпадают. Также были обнаружены значительные расхождения предсказаний в ПРП, сделанных с использованием различных моделей адронизации: p T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGubaabeaaaaa@3A01@  -спектр, полученный с использованием УМИЦ, значительно ниже спектра, полученного в МЦС, в области от малых p ψT MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacqaHipqEcaWGubaabeaaaaa@3BCF@  до p ψT =30 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacqaHipqEcaWGubaabeaakiaai2dacaaIZaGaaGimaaaa@3E17@  ГэВ. Результаты расчета в СЛП КПМ с использованием УМИЦ в настоящее время, к сожалению, отсутствуют, и мы не можем провести сравнение расчетов в такой модели адронизации.

На рис. 4.1–4.6 теоретические неопределенности, связанные с вариацией жесткого масштаба на фактор 2, обозначаются заштрихованными областями.

 

Рис. 4.5. Дифференциальные сечения ассоциативного рождения J/ψ + γ при √ s = 13 ТэВ, в центральной области по быстроте |yγ,ψ| < 2 как функции поперечных импульсов pψT, pγT, быстрот yψ, yγ, разности быстрот Δy и разности азимутальных углов Δϕ: непрерывная кривая — в ПРП с использованием МЦС, штриховая кривая — в ПРП с использованием УМИЦ

Fig. 4.5. Differential cross sections of the associated production of J/ψ + γ at √ s = 13 TeV, in the central region in rapidity |yγ,ψ| < 2 as functions of the transverse momenta pψT, pγT, rapidities yψ, yγ, rapidity
difference Δy and azimuthal angle difference Δϕ. Continuous curve — in the PRP using the MCS, dashed curve — in the PRP using the UMIC

 

Рис. 4.6. Дифференциальные сечения ассоциативного рождения J/ψ + γ при энергии √ s = 13 ТэВ, в центральной области по быстроте |yγ,ψ| < 2 как функции инвариантной массы M = Mψγ, асимметрии поперечных импульсов AT, поперечного импульса пары pT = |pψT + pγT| и быстроты пары Yγψ: непрерывная кривая — в ПРП с использованием МЦС, штриховая — в ПРП с использованием УМИЦ

Fig. 4.6. Differential cross sections of associative production of J/ψ + γ at energy √ s = 13 TeV, in the central region in rapidity |yγ,ψ| < 2 as functions of invariant mass M = Mψγ, transverse momentum
asymmetry AT, pair transverse momentum pT = |pψT + pγT| and pair rapidity Yγψ. Continuous curve — in PRP using MCS, dashed — in PRP using UMICS

 

Отрасывая сравнительно небольшие вклады рождения J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  -мезона через октетные по цвету состояния и рождения через распады, были выполнены предсказания в ПРП с использованием МЦС и УМИЦ при энегии БАК s =13 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca WGZbaaleqaaOGaaGypaiaaigdacaaIZaaaaa@3B63@  ТэВ в центральной области по быстротам | y J/ψ | MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadM hadaWgaaWcbaGaamOsaiaai+cacqaHipqEaeqaaOGaaGiFaaaa@3E9D@  и | y γ |<2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadM hadaWgaaWcbaGaeq4SdCgabeaakiaaiYhacaaI8aGaaGOmaaaa@3E70@ . На рис. 4.5 представлены дифференциальные сечения как функции поперечного импульса J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@   p J/ψT MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGkbGaaG4laiabeI8a5jaadsfaaeqaaaaa@3D57@ , поперечного импульса фотона p γT MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacqaHZoWzcaWGubaabeaaaaa@3BA8@ , быстроты J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@   y J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGkbGaaG4laiabeI8a5bqabaaaaa@3C87@ , быстроты фотона y γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacqaHZoWzaeqaaaaa@3AD8@ , разности быстрот Δy=| y ψ y γ | MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam yEaiaai2dacaaI8bGaamyEamaaBaaaleaacqaHipqEaeqaaOGaeyOe I0IaamyEamaaBaaaleaacqaHZoWzaeqaaOGaaGiFaaaa@4408@  и разности азимутальных углов Δϕ=| ϕ ψ ϕ γ | MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaeq y1dyMaaGypaiaaiYhacqaHvpGzdaWgaaWcbaGaeqiYdKhabeaakiab gkHiTiabew9aMnaaBaaaleaacqaHZoWzaeqaaOGaaGiFaaaa@4666@ . Непрерывная кривая MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  расчет в ПРП с использованием МЦС, пунктирная MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ расчет в ПРП с использованием УМИЦ. На рис. 4.6 показаны дифференциальные сечения как функции инвариантной массы пары M= M ψγ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaai2 dacaWGnbWaaSbaaSqaaiabeI8a5jabeo7aNbqabaaaaa@3E13@ , асимметрии поперчных импульсов A T =(| p ψT || p γT |)/(| p ψT |+| p γT |) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaGa amivaaqabaGccaaI9aGaaGikaiaaiYhacaWGWbWaaSbaaSqaaiabeI 8a5jaadsfaaeqaaOGaaGiFaiabgkHiTiaaiYhacaWGWbWaaSbaaSqa aiabeo7aNjaadsfaaeqaaOGaaGiFaiaaiMcacaaIVaGaaGikaiaaiY hacaWGWbWaaSbaaSqaaiabeI8a5jaadsfaaeqaaOGaaGiFaiabgUca RiaaiYhacaWGWbWaaSbaaSqaaiabeo7aNjaadsfaaeqaaOGaaGiFai aaiMcaaaa@619A@ , поперечного импульса пары p T =| p ψT + p γT | MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGubaabeaakiaai2dacaaI8bGaamiCamaaBaaaleaacqaH ipqEcaWGubaabeaakiabgUcaRiaadchadaWgaaWcbaGaeq4SdCMaam ivaaqabaGccaaI8baaaa@453D@  и быстроты пары Y= Y ψγ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaiaai2 dacaWGzbWaaSbaaSqaaiabeI8a5jabeo7aNbqabaaaaa@3E2B@ . 

Заключение

Работая в рамках подхода ПРП, мы подтвердили результаты предыдущих работ других авторов, что для процесса ассоциативного рождения J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  -мезонов и прямых фотонов МЦС как приближение НРКХД применимо и вклад в сечение рождения чармония через октетные состояния может не учитываться. Также показано, что можно не учитывать вклад в сечение рождения в процессах кварк-антикварковой аннигиляции при вычислении сечений рождения J/ψ+γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEcqGHRaWkcqaHZoWzaaa@3DE6@  при энергиях s =1314 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca WGZbaaleqaaOGaaGypaiaaigdacaaIZaGaeyOeI0IaaGymaiaaisda aaa@3DC9@  ТэВ. Показано, что сечения рождения J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  -мезонов и фотонов, предсказанные с использованием МЦС и УМИЦ, сильно отличаются, при этом отличие растет с ростом поперечного импульса фотона. Предсказания УМИЦ сильно подавлены относительно предсказаний МЦС, что контрастирует с ситуацией хорошего согласия МЦС и УМИЦ при описании одиночного рождения J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  -мезонов. Также необходимо отметить, что проведенные нами ранее расчеты сечения ассоциативного рождения J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  и фотона при низких энергиях в обобщенной партонной модели [44], выполненные в разных моделях адронизации, УМИЦ и МЦС, примерно совпадали. Таким образом, экспериментальные измерения сечений ассоциативного рождения J/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai+ cacqaHipqEaaa@3B5D@  -мезонов и прямых фотонов с большим p T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGubaabeaaaaa@3A01@  могут быть исключительно важными для проверки моделей адронизации УМИЦ и НРКХД.

×

作者简介

Lev Alimov

Samara National Research University

Email: alimov.le@yandex.ru
ORCID iD: 0009-0009-4259-6707

postgraduate student of the Department of General and Theoretical Physics

俄罗斯联邦, Samara

Anton Karpishkov

Samara National Research University

Email: karpishkoff@gmail.ru
ORCID iD: 0000-0003-0762-5532

Candidate of Physical and Mathematical Sciences, assistant professor of the Department of General and Theoretical Physics

俄罗斯联邦, Samara

Vladimir Saleev

Samara National Research University

编辑信件的主要联系方式.
Email: saleev.va@ssau.ru
ORCID iD: 0000-0003-0505-5564

Doctor of Physical and Mathematical Sciences, professor, head of the Department of General and Theoretical Physics

俄罗斯联邦, Samara

参考

  1. Drees M., Kim C.S. Associate J/ψ+γ production: a clean probe of gluon densities. Zeitschrift für Physik C Particles and Fields, 1992, vol. 53, no. 4, pp. 673–678. DOI: https://doi.org/10.1007/BF01559746.
  2. Mehen T. Testing quarkonium production with photoproduced J/ψ+γ. Physical Review D, 1997, vol. 55, issue 7, pp. 4338–4343. DOI: https://doi.org/10.1103/PhysRevD.55.4338.
  3. Doncheski M,A„ Kim C.S. Associated J/ψ+γ production as a probe of the polarized gluon distribution. Physical Review D, 1994, vol. 49, issue 9, pp. 4463–4468. DOI: http://dx.doi.org/10.1103/PhysRevD.49.4463.
  4. den Dunnen W., Lansberg J.P., Pisano C. Accessing the Transverse Dynamics and Polarization of Gluons inside the Proton at the LHC. Physical Review Letters, 2014, vol. 112, issue 21, Article number 212001. DOI: https://doi.org/10.1103/PhysRevLett.112.212001.
  5. Butenschoen M., Kniehl B.A. Next-to-leading order tests of non-relativistic-QCD factorization with J/ψ yield and polarization. Modern Physics Letters A, 2013, vol. 28, no. 9, article number 1350027. DOI: https://doi.org/10.1142/S0217732313500272.
  6. Li R., Kniehl B.A. Next-to-leading-order QCD corrections to J/ψ (Υ)+ γ production at the LHC. Physics Letters B, 2009, vol 672, issue 1, pp. 51–55. DOI: https://doi.org/10.1016/j.physletb.2008.12.050.
  7. Baier R., Rückl R. Hadronic collisions: a quarkonium factory. Zeitschrift für Physik C Particles and Fields, 1983, vol. 19, pp. 251–266. DOI: https://doi.org/10.1007/BF01572254.
  8. Berger E.L., Jones D. Inelastic photoproduction of J ψ and Υ by gluons. Physical Review D, 1981, vol. 23, issue 7, pp. 1521–1530. DOI: http://doi.org/10.1103/PhysRevD.23.1521.
  9. Bodwin G.T., Braaten E., Lepage G.P. Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium. Physical Review D, 1995, vol. 51, issue 3, pp. 1125–1171. DOI: http://doi.org/10.1103/PhysRevD.51.1125.
  10. Fritzsch H. Producing heavy quark flavors in hadronic collisions. A test of quantum chromodynamics. Physics Letters B, 1977, vol. 67, issue 2, pp. 217–221. DOI: https://doi.org/10.1016/0370-2693(77)90108-3.
  11. Halzen F. CVC for gluons and hadroproduction of quark flavours. Physics Letters B, 1977, vol. 69, issue 1, pp. 105–108. DOI: https://doi.org/10.1016/0370-2693(77)90144-7.
  12. Ma Y.-Q., Vogt R. Quarkonium Production in an Improved Color Evaporation Model. Phys. Rev. D, 2016, vol. 94, issue 11, article number 114029. DOI: https://doi.org/10.1103/PhysRevD.94.114029.
  13. Collins J. Foundations of perturbative QCD. Cambridge: Cambridge University Press, 2011, 624 p. DOI: https://doi.org/10.1017/9781009401845.
  14. Collins J.C., Soper D.E., Sterman G. Factorization of hard processes in QCD. Adv. Ser. Direct. High Energy Phys, 1989, vol. 5, pp. 1–91. DOI: https://doi.org/10.1142/9789814503266_0001.
  15. Echevarria M.G., Kasemets T., Lansberg J.-P., Pisano C., Signori A. Matching factorization theorems with an inverse-error weighting. Physics Letters. Section B, 2018, vol. 781, pp. 161–168. DOI: https://dx.doi.org/10.1016/j.physletb.2018.03.075.
  16. Nefedov M.A., Saleev V.A., Shipilova A.V. Dijet azimuthal decorrelations at the LHC in the parton Reggeization approach. Phys. Rev. D, 2013, vol. 87, issue 9, p. 094930. DOI: https://doi.org/10.1103/PhysRevD.87.094030.
  17. Karpishkov A.V., Nefedov M.A., Saleev V.A. B ̄B angular correlations at the LHC in parton Reggeization approach merged with higher-order matrix elements. Phys. Rev. D, 2017, vol. 96, issue 9, p. 096019. DOI: https://doi.org/10.1103/PhysRevD.96.096019.
  18. Nefedov M.A., Saleev V.A. High-energy factorization for the Drell-Yan process in p p and p↑ collisions with new unintegrated PDFs. Phys. Rev. D, 2020, vol. 102, issue 11, p. 114018. DOI: https://doi.org/10.1103/PhysRevD.102.114018.
  19. Kniehl B.A., Vasin D.V., Saleev V.A. Charmonium production at high energy in the kT -factorization approach. Phys. Rev. D, 2006, vol. 73, issue 7, p. 074022. DOI: https://doi.org/10.1103/PhysRevD.73.074022.
  20. Saleev V.A., Nefedov M.A., Shipilova A.V. Prompt J/ψ production in the Regge limit of QCD: From the Tevatron to the LHC. Phys. Rev. D, 2012, vol. 85, issue 7, p. 074013. DOI: https://doi.org/10.1103/PhysRevD.85.074013.
  21. Kniehl B.A., Nefedov M.A., Saleev V.A. ψ (2 S) and Υ (3 S) hadroproduction in the parton Reggeization approach: Yield, polarization, and the role of fragmentation. Phys. Rev. D, 2016, vol. 94, issue 5, p. 054007. DOI: https://doi.org/10.1103/PhysRevD.94.054007.
  22. Chernyshev A.A., Saleev V.A. Single and pair J/ψ production in the improved color evaporation model using the parton Reggeization approach. Phys. Rev. D, 2022, vol. 106, issue 11, p. 114006. DOI: https://doi.org/10.1103/PhysRevD.106.114006.
  23. Brambilla N., Eidelman S., Heltsley B.K. et al. Heavy Quarkonium: Progress, Puzzles, and Opportunities. The European Physical Journal C, 2011, vol. 71, article number 1534. DOI: https://doi.org/10.1140/epjc/s10052-010-1534-9.
  24. Vogelsang W., Whalley M.R. A compilation of data on single and double prompt photon production in hadron-hadron interactions. Phys. Rev. D, 1997, vol. 23, issue 7A, p. A1–A69. DOI: https://doi.org/10.1088/0954-3899/23/7A/001.
  25. The ATLAS collaboration, Aad G., Abbott B. et al. Measurement of the production cross section of pairs of isolated photons in pp collisions at 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2021, vol. 2021, article number 169. DOI: https://doi.org/10.1007/JHEP11(2021)169.
  26. Acharya S., Adamov’a D., Adhya S.P. et al. Measurement of the inclusive isolated photon production cross section in pp collisions at √ s = 7 TeV. The European Physical Journal C, 2019, vol. 79, issue 11, article number 896. DOI: https://doi.org/10.1140/epjc/s10052-019-7389-9.
  27. Sirunyan A.M., Tumasyan A., Adam W. et al. Measurement of differential cross sections for inclusive isolated-photon and photon+jets production in proton-proton collisions at √ s = 13 TeV. The European Physical Journal C, 2019, vol. 79, issue 1, article number 20. DOI: https://doi.org/10.1140/epjc/s10052-018-6482-9.
  28. Saleev V.A. Prompt photon photoproduction at HERA within the framework of the quark Reggeization hypothesis. Phys. Rev. D, 2008, vol. 78, issue 11, p. 114031. DOI: https://doi.org/10.1103/PhysRevD.78.114031.
  29. Kniehl B.A., Saleev V.A., Shipilova A.V., Yatsenko E.V. Single jet and prompt-photon inclusive production with multi-Regge kinematics: From Tevatron to LHC. Phys. Rev. D, 2011, vol. 84, issue 7, p. 074017. DOI: https://doi.org/10.1103/PhysRevD.84.074017.
  30. Nefedov M., Saleev V. Diphoton production at the Tevatron and the LHC in the NLO approximation of the parton Reggeization approach. Phys. Rev. D, 2015, vol. 92, issue 9, p. 094033. DOI: https://doi.org/10.1103/PhysRevD.92.094033.
  31. Karpishkov A., Saleev V. Production of three isolated photons in the parton Reggeization approach at high energies. Phys. Rev. D, 2022, vol. 106, issue 5, p. 054036. DOI: https://doi.org/10.1103/PhysRevD.106.054036.
  32. Collins J.C., Ellis R.K. Heavy-quark production in very high energy hadron collisions. Nuclear Physics B, 1991, vol. 360, issue 1, pp. 3–30. DOI: https://doi.org/10.1016/0550-3213(91)90288-9.
  33. Catani S., Hautmann F. High-energy factorization and small-x deep inelastic scattering beyond leading order. Nuclear Physics B, 1994, vol. 427, issue 3, pp. 475–524. DOI: https://doi.org/10.1016/0550-3213(94)90636-X.
  34. Gribov L.V., Levin E.M., Ryskin M.G. Semihard processes in QCD. Physics Reports, 1983, vol. 100, issues 1–2, pp. 1–150. DOI: https://doi.org/10.1016/0370-1573(83)90022-4.
  35. Lipatov L.N. Gauge invariant effective action for high energy processes in QCD. Nuclear Physics B, 1995, vol. 452, issues 1-2, pp. 369–397. DOI: https://doi.org/10.1016/0550-3213(95)00390-E.
  36. Kimber M.A., Martin A.D., Ryskin M.G. Unintegrated parton distributions. Physical Review D, 2001, vol. 63, issue 11, p. 114027. DOI: https://doi.org/10.1103/PhysRevD.63.114027.
  37. Watt G., Martin A.D., Ryskin M.G. Unintegrated parton distributions and inclusive jet productionat HERA. The European Physical Journal C - Particles and Fields, 2003, vol. 31, pp. 73–89. DOI: http://dx.doi.org/10.1140/epjc/s2003-01320-4.
  38. Hahn T. Generating Feynman diagrams and amplitudes with FeynArts 3. Computer Physics Communications, 2001, vol. 140, issue 3, pp. 418–431. DOI: http://dx.doi.org/10.1016/S0010-4655(01)00290-9.
  39. Saleev V.A., Nefedov M.A., Shipilova A.V. Prompt J/psi production in the Regge limit of QCD: From Tevatron to LHC. Physical Review D, 2012, vol. 85, issue 7, p. 074013. DOI: https://doi.org/10.1103/PhysRevD.85.074013.
  40. Nefedov M.A., Saleev V.A., Shipilova A.V. Charmonium production at the Tevatron and Large Hadron Collider in the Regge limit of QCD. Physics of Atomic Nuclei, 2013, vol. 76, issue 12, pp. 1546–1553. DOI: https://doi.org/10.1134/S1063778813110124.
  41. Saleev V.A., Nefedov M.A., Shipilova A.V. Prompt J/ψ production in the Regge limit of QCD: From Tevatron to LHC. Phys. Rev. D, 2012, vol. 85, issue 7, p. 074013. DOI: https://doi.org/10.1103/PhysRevD.85.074013.
  42. van Hameren A. KaTie: For parton-level event generation with kT-dependent initial states. Computer Physics Communications, 2018, vol. 224, pp. 371–380. DOI: https://doi.org/10.1016/j.cpc.2017.11.005.
  43. Chernyshev A., Saleev V. Associated production of heavy quarkonia and D mesons in the improved color evaporation model with KaTie. Phys. Rev. D, 2024, vol. 109, issue 9, p. 094029. DOI: https://doi.org/10.1103/PhysRevD.109.094029.
  44. Alimov L.E., Saleev V.A. Associative production of J/ψ — mesons and direct photons at the energy of the NICA collider. Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya Vestnik of Samara University. Natural Science Series, 2023, vol. 29, no. 2, pp. 48–61. DOI: https://doi.org/10.18287/2541-7525-2023-29-2-48-61. (In Russ.)

补充文件

附件文件
动作
1. JATS XML
2. Fig. 4.1. Cross section of associative production of J/ψ + γ as a function of transverse momentum pψT obtained in PRP using NRQCD at energy √ s = 14 TeV in the central rapidity region |yγ,ψ| < 2. Solid curve — contribution of MCS, dashed curve — contribution to direct production via octet intermediate color state [1S(8) 0 ], dotted curve — contribution to direct production via octet intermediate color state [3S(8) 1 ]. Contribution of quark-antiquark annihilation processes is shown by curve with long dash

下载 (103KB)
3. Fig. 4.2. Cross section of associative production of J/ψ + γ as a function of transverse momentum pψT obtained in PRP using NRQCD at energy √ s = 14 TeV in the central rapidity region |yγ,ψ| < 2. Solid curve — contribution of direct production of J/ψ mesons, dashed curve — contribution of production via decay ψ(2S) → J/ψX, dotted curve — contribution to production via decay χcJ → J/ψγ

下载 (72KB)
4. Fig. 4.3. Differential cross sections of associated J/ψ + γ production as a function of transverse momentum pψT at pψT > 5 GeV in the central rapidity region |yψ, yγ| < 2. Solid black curve — production cross section obtained in SLP KPM, results from [6] are used; dashed curve — production cross section obtained in PRP using MCS; dotted curve — production cross section obtained in PRP using UMIC

下载 (93KB)
5. Fig. 4.4. Total cross sections of associated J/ψ + γ production as a function of the lower bound of the photon transverse momentum pmin γT at pψT > 10 GeV. Solid black curve — production cross section obtained in SLP KPM, results from [6] are used; dashed curve — production cross section obtained in PRP using MCS; dotted curve — production cross section obtained in PRP using UMIC

下载 (93KB)
6. Fig. 4.5. Differential cross sections of the associated production of J/ψ + γ at √ s = 13 TeV, in the central region in rapidity |yγ,ψ| < 2 as functions of the transverse momenta pψT, pγT, rapidities yψ, yγ, rapidity difference Δy and azimuthal angle difference Δϕ. Continuous curve — in the PRP using the MCS, dashed curve — in the PRP using the UMIC

下载 (375KB)
7. Fig. 4.6. Differential cross sections of associative production of J/ψ + γ at energy √ s = 13 TeV, in the central region in rapidity |yγ,ψ| < 2 as functions of invariant mass M = Mψγ, transverse momentum asymmetry AT, pair transverse momentum pT = |pψT + pγT| and pair rapidity Yγψ. Continuous curve — in PRP using MCS, dashed — in PRP using UMICS

下载 (337KB)

版权所有 © Alimov L.E., Karpishkov A.V., Saleev V.A., 2024

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».